GAMMA GRAPHS OF SOME SPECIAL
CLASSES OF TREES

ANNA BIEŃ

Abstract. A set $S \subseteq V$ is a dominating set of a graph $G = (V, E)$ if every vertex $v \in V$ which does not belong to S has a neighbour in S. The domination number $\gamma(G)$ of the graph G is the minimum cardinality of a dominating set in G. A dominating set S is a γ-set in G if $|S| = \gamma(G)$.

Some graphs have exponentially many γ-sets, hence it is worth to ask a question if a γ-set can be obtained by some transformations from another γ-set. The study of gamma graphs is an answer to this reconfiguration problem. We give a partial answer to the question which graphs are gamma graphs of trees. In the second section gamma graphs $\gamma.T$ of trees with diameter not greater than five will be presented. It will be shown that hypercubes Q_k are among $\gamma.T$ graphs. In the third section $\gamma.T$ graphs of certain trees with three pendant vertices will be analysed. Additionally, some observations on the diameter of gamma graphs will be presented, in response to an open question, published by Fricke et al., if $\text{diam}(T(\gamma)) = O(n)$?

1. Introduction

We say that $S \subseteq V$ is a dominating set of a graph $G = (V, E)$ if every vertex $v \in V$ which does not belong to S has a neighbour in S. The domination number $\gamma(G)$ of the graph G is the minimum cardinality of a dominating set in G. A dominating set S is a γ-set in G if $|S| = \gamma(G)$. We use standard notations of graph theory, as in Diestel [1]. For a comprehensive introduction to the
theory of domination in graphs we refer the reader to Haynes, Hedetniemi and Slater [4].

A gamma graph $\gamma.G$ of a graph G, defined by Lakshmanan and Vijayakumar [5], is such a graph that $S \subseteq V(G)$ is a vertex of $\gamma.G$ if S is a γ-set of G, and γ-sets S_1 and S_2 are adjacent iff there exist two vertices v, u of the graph G such that $S_1 = S_2 \setminus \{u\} \cup \{v\}$. Independently, in 2011, four authors initiated the study of a similar class of graphs. The gamma graph $G(\gamma)$ studied by G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi and K.R Hutson [2] is a $\gamma.G$ graph, whose vertices fulfill the following condition: if $S_1 = S_2 \setminus \{u\} \cup \{v\}$, then u and v are adjacent in the graph G. Notice that every graph $G(\gamma)$ is a spanning subgraph of $\gamma.G$, i.e. has the same vertex set. This straightforward observation is worth noting in the context of the research of Lakshmanan and Vijayakumar on the connectivity of a $\gamma.G$ graph. This means that every sufficient condition for $G(\gamma)$ is also valid for $\gamma.G$.

Other class of graphs whose vertices correspond to dominating sets was introduced by Haas and Seyffarth in 2014 [3]. k-dominating graph $D_k(G)$ is a graph, whose vertices are dominating sets of the graph G such that $|S| \leq k$. Two dominating sets S_1 and S_2 are adjacent in $D_k(G)$ iff there exist a vertex $v \in V(G)$ such that $S_1 = S_2 \cup \{v\}$. These authors also studied the conditions under which such graphs are connected. Their results include the following connection between connectivity of k-dominating graphs and gamma graphs: if $D_{\gamma+1}(G)$ is connected, then $\gamma.G$ is connected. Fricke et al. [2] proved that gamma graphs of trees $T(\gamma)$ are connected and asked which graphs are gamma graphs of trees. We will give a partial answer to this question, but with respect to the definition of Lakshmanan Vijayakumar. In the second section gamma graphs $\gamma.T$ of trees with diameter not greater than five will be presented. It will be shown that every gamma graph $\gamma.T$ of such trees is a hypercube Q_k, a hypercube without one vertex Q_k^-, or a cartesian product $Q_k^\Box Q_l^-$ or $Q_k^\Box Q_l^-$. Vertices of Q_k correspond to binary sequences of length k and edges correspond to such pairs of sequences which differ in exactly one coordinate.

The set of vertices of a cartesian product $G_1^\Box G_2$ of two graphs G_1 and G_2 is a set $V(G_1) \times V(G_2)$, and (v_1, v_2) is adjacent to (u_1, u_2) in $G_1^\Box G_2$ iff v_1 is adjacent to u_1 in G_1, $v_2 = u_2$ or v_2 is adjacent to u_2 in G_2, $v_1 = u_1$. In the third section $\gamma.T$ graphs of certain trees with three pendant vertices will be analysed. Also in response to an open question, if $\text{diam}(T(\gamma)) = O(n)$ (see [2]), some observations on the diameter of graphs presented in this paper are noted.

One of the simplest trees are paths. It was shown (see [2]) that $P_{3k}(\gamma) \cong K_1, P_{3k+2}(\gamma) \cong P_{k+2}$ and $P_{3k+1}(\gamma) \cong SG(k+1)$, where $SG(k)$ denotes spanning subgraph of a cartesian product of two paths $P_k^\Box P_k$ such that

$$V(SG(k)) = \{(i, j) : 1 \leq i, j \leq k, i + j \leq k + 2\}$$
and

\[E(SG(k)) = \{((i, j), (k, l)) : i = k, l = j + 1; k = i + 1, j = l \}. \]

Notice that \(\gamma.P_{3k} \simeq P_{3k}(\gamma) \). If \(s = 3k + 2 \), \(k \in \mathbb{N} \), then for every two \(\gamma \)-sets \(S_1, S_2 \) which correspond to vertices of \(P_s(\gamma) \): if \(S_1 = S_2 - \{u\} \cup \{v\} \), then \(u \) and \(v \) are adjacent in \(P_s \). Hence \(\gamma.P_{3k+2} \simeq P_{3k+2}(\gamma) \). \(\gamma.P_{3k+1} \) (see Figure 1) can be obtained from \(P_{3k+1}(\gamma) \) by adding \(k - 1 \) additional edges. Indeed, if \(S = \{g_1, g_2, \ldots, g_{k+1}\} \) is a \(\gamma \)-set of a graph \(P_{3k+1} \) such that \(g_{i+1} - g_i = 1 \) for some \(i \leq k \), then distances between other consecutive elements of \(S \) equal 3. If \(1 < i < k \), then \(S \) is adjacent in \(\gamma.P_{3k+1} \) to four sets: \(S \setminus \{g_i\} \cup \{g_i - 1\}, S \setminus \{g_i\} \cup \{g_{i+1} + 1\}, S \setminus \{g_i\} \cup \{g_i - 2\}, S \setminus \{g_i\} \cup \{g_{i+2}\} \). If \(i = 1 \) or \(i = k \) then \(S \) is adjacent to three such sets. \(\gamma \)-sets of other form have the same degree in both graphs \(P_{3k+1}(\gamma) \) and \(\gamma.P_{3k+1} \). This means that \(\gamma.P_{3k+1} \simeq SG^+(k+1) \), where \(SG^+(k) \) denotes such graph that \(V(SG^+(k)) = V(SG(k)) \) and

\[E(SG^+(k)) = E(SG(k)) \cup \{((i, j)(i+1, j-1)) : 2 \leq i \leq k-1, i+j = k+2\}. \]

For purpose of this article we define a slide graph. Let \(Sl(n) \) denote such graph that

\[V(Sl(n)) = V(SG^+(n)) \cup \{(n + 1, 1)\} \]

and

\[E(Sl(n)) = E(SG^+(n)) \cup \{((n, 1)(n+1, 1)), ((n, 2)(n+1, 1))\}. \]
2. Gamma graphs of trees with small diameter

One of the open problems in recent publications on gamma graphs was the question if \(\text{diam}(T(\gamma)) = O(n) \). We consider a modified version of this problem: is it true that \(\text{diam}(\gamma.T) = O(n) \)? For trees with diameter not greater than five the answer to this question is positive. Let \(T \) be a tree, \(d = \text{diam}(T) \). For \(d \in \{0, 1\} \) we have \(T \simeq K_d \), \(\gamma.T \cong K_d \) and \(\text{diam}(\gamma.T) = d \). If \(d = 2 \), then \(T = K_{1,n} \), \(n > 1 \), \(\gamma.T \cong K_1 \) and \(\text{diam}(\gamma.T) = 1 < d \). Since the next lemma can be easily shown by analysing the structure of the graph, we will skip the proof and proceed to more complex cases.

Lemma 2.1. If \(T \) is a tree such that \(\text{diam}(T) = 3 \) and \(T \not\cong P_4 \), then \(\gamma.T \cong K_1 \) or \(\gamma.T \cong K_2 \).

Lemma 2.2. If \(T \) is a tree such that \(\text{diam}(T) = 4 \), then there exist \(n \in \mathbb{N} \), such that \(\gamma.T \cong Q_n \) or \(\gamma.T \cong Q_n^e \).

Proof. Let \(S \) be an arbitrary \(\gamma \)-set of \(T \). Note that \(T \) contains an induced path \(P_5 \). Let \(v_0 \) be the vertex of this path which is not adjacent to pendant vertices of this path. Note that \(d(v, v_0) \leq 2 \), for every vertex \(v \in V(T) \). Hence \(T \) can be obtained from a graph \(H \), which is an independent sum of stars \(K_{1,n} \) and isolated vertices, by joining a vertex \(v_0 \) to every component of \(H \) with one such vertex of this component, which has the maximal degree.

If \(H \) has at least two isolated vertices, then \(v_0 \) belongs to \(S \), and every vertex not dominated by \(v_0 \) is pendant in \(T \) and is dominated by itself or its neighbour. Hence, every element of \(S \) different from \(v_0 \) is a vertex of a component of \(H \) which is a star \(K_{1,n} \). Moreover, \(S \) contains exactly one vertex from every star which has a maximal degree in this component. Two \(\gamma \)-sets \(S_1 \) and \(S_2 \) are adjacent iff \(S_2 = S_1 - \{v\} \cup \{u\} \), where \(u \) and \(v \) are two vertices of one component \(K_{1,1} \) of \(H \). Hence \(\gamma.T \cong Q_k \), where \(k \) is the number of \(K_{1,1} \) components.

If \(H \) has one isolated vertex \(u \), then \(v_0 \) or \(u \) belongs to \(S \). Neither \(v_0 \) nor \(u \) dominate any vertex \(v \) such that \(d(v_0, v) = 2 \). Analogously to the previous case we infer that \(S \) contains exactly one vertex of the maximal degree from every component of \(H \) which is a star \(K_{1,n} \). Also in this case \(\gamma.T \cong Q_k \), where \(k - 1 \) is the number of \(K_{1,1} \) components of \(H \).

If \(H \) has no isolated vertices, then \(|S| \) is equal to the number of all components of \(H \). Note that there is a bijection between the \(\gamma \)-sets from \(V(\gamma.T) \) and binary sequences of length \(k \), where \(k \) is the number of all \(K_{1,1} \) components of \(H \). Let enumerate components \(K_{1,1} \) of \(H \), and define a mapping such that \(S \mapsto (a_i)_{i=1}^k \), where \(a_i = 1 \) whenever \(s \in S \) which lies in the \(i \)-th component is a pendant vertex in \(T \), otherwise \(a_i = 0 \). If \(H \) contains at least one component \(K_{1,n} \), where \(n > 1 \), then every \(\gamma \)-set contains the vertex of this star which
dominates \(v_0 \). If \(H \) is an independent sum of copies \(K_{1,1} \), then the set which contains only pendant vertices and corresponds to the sequence \((1,1,1,\ldots,1)\) does not dominate \(v_0 \). In this case \(\gamma(T) \cong Q_k^- \).

Since \(\text{diam}(Q_k) = k \), we draw the following conclusion from the lemma above.

Corollary 2.3. If \(T \) is a tree with \(n \) vertices such that \(\text{diam}(T) = 4 \), then \(\text{diam}(\gamma(T)) \leq n/2 \).

Lemma 2.4. If \(T \) is a tree such that \(\text{diam}(T) = 5 \), then there exist \(n,m \in \mathbb{N} \) such that \(\gamma(T) \cong Q_n \) or \(\gamma(T) \cong Q_n \square Q_m^- \) or \(\gamma(T) \cong Q_n^- \square Q_m^- \).

Proof. Let \(S \) be an arbitrary \(\gamma \)-set of \(T \), and let \(v_0, v_1 \) be the vertices of an induced \(P_6 \) subpath of \(T \), whose distance from the pendant vertices of the path \(P_6 \) is greater than one (see Figure 2). Let \(T_0 \) and \(T_1 \) denote two components of the graph \(T - v_0v_1 \). Assume that \(T_0 \) denotes the component which contains \(v_0 \). Note that \(d(v,v_0) \leq 2 \) for every vertex \(v \in V(T_0) \), and \(d(v,v_1) \leq 2 \) for every vertex \(v \in V(T_1) \). This implies that both graphs \(T_1 \) and \(T_0 \) can be constructed like the tree in the proof of the previous lemma. Let \(l \) be the the number of stars \(K_{1,1} \), in the graph \(H = T - \{v_0,v_1\} \), where \(n > 1 \). Notice that all \(l \) vertices whose degree in \(H \) is greater than 1 belong to \(S \). Moreover, \(S \) contains exactly one vertex of every \(K_{1,1} \) component of \(H \). This means that \(|S| \geq l + k \). We enumerate components \(K_{1,1} \) of \(H \), and consider the mapping \(S \mapsto (a_i^S)_{i=1}^k \) defined in the proof of the previous lemma. If \(a^S = (0,0,\ldots,0) \), then \(v_0 \) and \(v_1 \) are dominated by vertices which are not isolated in \(H \). It implies that if \(H \) does not have isolated vertices, then \(\gamma(T) = l + k \).

Let \(a^{S_i} \) be the subsequence of \(a^S \) corresponding to the components of \(H \) which are connected to \(v_i \), for \(i \in \{0,1\} \). Assume that \(H \) has no isolated vertices, and \(S \) contains at least one neighbour of \(v_0 \), and one neighbour of \(v_1 \).
This means that \(a^S \) is a binary sequence such that \(a^{S_0} \), and \(a^{S_1} \) have at least one element which equals 0. In this case \(S \) is adjacent in \(\gamma.T \) to \(S' \) if \(a^{S_0} = a^{S_1} \), and \(a^{S_1} \neq (1,1,\ldots,1) \) and differs from \(a^{S_1} \) only at one coordinate, or symmetrically if \(a^{S_1} = a^{S_0} \), and \(a^{S_0} \neq (1,1,\ldots,1) \) and differs from \(a^{S_0} \) only at one coordinate. In this case \(\gamma.T \simeq Q^-_n \square Q^-_m \), \(n + m = k \).

Let \(H \) have at least one isolated vertex \(v \). Assume that \(v \in V(T_0) \). If there are no pendant vertices adjacent to \(v_1 \), then \(|S| = k + l + 1 \). If there are more than two pendant vertices adjacent to \(v_0 \), then \(v_0 \in S \) dominates \(v_1 \). Furthermore, it is possible that \(a^S \) is any binary sequence of length \(k \), hence \(\gamma.T \simeq Q_n \). If \(v \) is the only pendant vertex adjacent to \(v_0 \), then \(\gamma.T \simeq Q_n \) or \(\gamma.T \simeq Q_n \square Q^-_m \). \(\gamma.T \simeq Q_n \) under the condition that \(v_1 \) is adjacent to a vertex \(u \) of \(T_1 \) with degree greater than 2. In this case \(u \) belongs to every \(\gamma \)-set of \(T \).

In the other case \(\gamma.T \simeq Q_n \square Q^-_m \), because \(S \) contains exactly one vertex from every \(K_{1,1} \) component of \(H \) and one vertex from the set \(\{v,v_0\} \), and \(a^{S_0} \) can be any binary sequence of an appropriate length, but \(a^{S_1} \ast a_{k+1} \neq (1,1,\ldots,1) \), where \(a_{k+1} = 1 \) iff \(v \in S \).

If also \(v_1 \) is adjacent to a pendant vertex, then \(|S| = k + l + 2 \). Analogous reasoning lets us deduce that \(\gamma.T \simeq Q_n \).

\[\square \]

Note that if \(\gamma.T \simeq Q_n \square Q^-_m \) or \(\gamma.T \simeq Q_n \square Q^-_m \), then \(m + n \leq |V|/2 \). This proves the following fact.

Corollary 2.5. If \(T \) is a tree with \(n \) vertices such that \(\text{diam}(T) = 5 \), then \(\text{diam}(\gamma.T) \leq n/2 \).

3. Gamma graphs of caterpillars with one leg

In this section we consider certain trees with three pendant vertices. These trees can be obtained from a path by joining a new vertex to such vertex \(v \) of this path which is not pendant. We will use the following notation. Let a **caterpillar with one leg** \(\text{Cat}^s_n \) be a graph defined in the following way: \(V(\text{Cat}^s_n) = V(P_n) \cup \{0\} \), and \(E(\text{Cat}^s_n) = E(P_n) \cup \{(0,s)\} \). For a caterpillar with one leg \(G = \text{Cat}^s_n \) let \(G^- \) denote the graph \(\text{Cat}^s_n - \{0,s\} \), and let \(G^-^- = G^- - \{s - 1, s + 1\} \). Further we partition the class of caterpillars with one leg into the following six classes:

\[
\begin{align*}
C_{11} &= \{ \text{Cat}^s_{3k} : s \equiv 2(\text{mod } 3), 1 < s < 3k, k \in \mathbb{N} \}, \\
C_{10} &= \{ \text{Cat}^s_{3k+2} : s \not\equiv 0(\text{mod } 3), 1 < s < 3k + 2, k \in \mathbb{N} \}, \\
C_{12} &= \{ \text{Cat}^s_{3k+1} : s \not\equiv 1(\text{mod } 3), 1 < s < 3k + 1, k \in \mathbb{N} \},
\end{align*}
\]
$$C_{00} = \{\text{Cat}^s_{3k+1}: s \equiv 1(\text{mod } 3), 1 < s < 3k + 1, k \in \mathbb{N}\},$$
$$C_{02} = \{\text{Cat}^s_{3k}: s \not\equiv 2(\text{mod } 3), 1 < s < 3k, k \in \mathbb{N}\},$$
$$C_{22} = \{\text{Cat}^s_{3k+2}: s \equiv 0(\text{mod } 3), 1 < s < 3k + 2, k \in \mathbb{N}\}.$$

Note that G^{-} is a sum of two independent paths and that indices $!, 0$ and 2 indicate how many vertices belong to each component of G^{-}: the index $!$ corresponds to a component with $3t + 1$ vertices, 0 corresponds to a component with $3t$ vertices, and 2 corresponds to a component with $3t + 2$ vertices. We use the index $!$ instead of 1 to stress that the component corresponding to this index can be omitted in finding $\gamma(G)$.

Corollary 3.1. If $v \in G$ is a pendant vertex adjacent to a cutvertex c of $G - v$ and there exists a γ-set S such that $v \in S$, then the subgraph H of $\gamma(G)$ induced by γ-sets containing v is a graph $H \simeq H_1 \square H_2 \cdots \square H_k$, where H_i for $i \in \{1, \ldots, k\}$ are gamma graphs of components of $G - \{v, c\}$.

Proof. It suffices to prove that if S is a γ-set of G such that $v \in S$, then $S = \{v\} \cup S_1 \cup S_2 \cup \cdots \cup S_k$, where S_i is a vertex of H_i, $i \in \{1, 2, \ldots, k\}$. Note that $c \notin S$, otherwise $S \setminus \{v\} \subset S$ would be a dominating set such that $|S| < \gamma(G)$. Since $G - \{v, c\}$ is not connected and $c \notin S$, then S contains a γ-set S_i of every component of $G - \{v, c\}$. On the other hand every set S such that $S = \{v\} \cup S_1 \cup S_2 \cup \cdots \cup S_k$, where S_1, S_2, \ldots, S_k are gamma sets of components of $G - \{v, c\}$ dominates G. □

Further we will use this corollary for caterpillars with one leg. Below we explicitly formulate the special case which is essential in proofs of final theorems.

Lemma 3.2. Let H be a subgraph of $G = \gamma$. Cat^s_i induced by all γ-sets of G which contain 0. Then $H = H_1 \square H_2$, where vertices of H_1 and H_2 correspond to dominating sets of components of G^{-}.

A similar observation can be made for a subgraph H of $G = \gamma$. Cat^s_i induced by all γ-sets of G which contain s. Notice that $H = H_1 \square H_2$, where vertices of H_1 and H_2 correspond to subsets of components of G^{-} which dominate components of G^{-}. These observations will be helpful in describing the structure of $\gamma.\text{Cat}^s_i$.

Theorem 3.3. Let $G = \gamma.\text{Cat}^s_i$, and let H be a subgraph of G induced by all γ-sets of G which contain 0.

If $G \in C_{00}$, then $H \simeq K_1$,
if $G \in C_{02}$, then $H \simeq P_n$,
if $G \in C_{22}$, then $H \simeq P_n \square P_m$.

Gamma graphs of some special classes of trees 31
It suffices to apply Lemma 3.2 to the appropriate caterpillar with one leg. The graph H is a product of $\gamma.G$ graphs of two paths.

Lemma 3.4. If $G \in \mathcal{C}_{10} \cup \mathcal{C}_{12} \cup \mathcal{C}_{!!}$, then the vertex 0 does not belong to any γ-set of G.

Proof. If $G = \text{Cat}^s_{3k+i} \in \mathcal{C}_{10} \cup \mathcal{C}_{12} \cup \mathcal{C}_{!!}$, then P_{3k+1} is a component of G^-. Suppose that S is a γ-set such that $0 \in S$. Notice that $s \notin S$ because S is minimal. It means that $|S| = 1 + (t + 1) + (k - t) = k + 2$. On the other hand if S' is a gamma set such that $0 \notin S'$, then $s \in S'$. No vertex of the graph G^{--} is dominated by s, and domination numbers of its components are $\Gamma(P_{3t}) = t$, and $\Gamma(P_{3(k-t-1)+i}) = k - t$, hence $|S'| \leq 1 + t + k - t = k + 1$. Since $|S'| < |S|$, then any gamma set of Cat^s_{3k+i} cannot contain the vertex 0. \(\square\)

Notice that if S is a gamma set of Cat^s_i and $0 \in S$, then $S \setminus \{0\} \cup \{s\}$ is also a γ-set. Therefore if H_s is a subgraph of G induced by all γ-sets of G which contain s and H_0 is a subgraph of G induced by all γ-sets of G which contain 0, then H_0 is isomorphic to an induced subgraph of H_s. This proves the following proposition.

Proposition 3.5. If $G = \text{Cat}^s_i$, H_s is a subgraph of $\gamma.G$ induced by all γ-sets of G which contain s and H_0 is a subgraph of $\gamma.G$ induced by all γ-sets of G which contain 0, then $V(\gamma.G) = V(H_s) \cup V(H_0)$ and

$$E(\gamma.G) = E(H_s) \cup E(H_0) \cup \{(S, S \setminus \{0\} \cup \{s\}) : S \in V(H_0)\}.$$

Notice that for $\text{Cat}^s_i \in \mathcal{C}_{10} \cup \mathcal{C}_{12} \cup \mathcal{C}_{!!}$ the graph H_0 is empty. In this case $\gamma.\text{Cat}^s_i \simeq H_s$. In order to complete the description of $\gamma.\text{Cat}^s_i$ graphs it suffices to prove the following theorem.

Theorem 3.6. Let $G = \gamma.\text{Cat}^s_i$. If H is a subgraph of G induced by all γ-sets of G which contain s, then there exist $n, m \in \mathbb{N}$ that:

- if $G \in \mathcal{C}_{00}$, then $H \simeq P_n \Box P_m$,
- if $G \in \mathcal{C}_{02}$, then $H \simeq P_n \Box \text{Sl}(n)$,
- if $G \in \mathcal{C}_{22}$, then $H \simeq \text{Sl}(n) \Box \text{Sl}(m)$,
- if $G \in \mathcal{C}_{10}$, then $H \simeq P_n$,
- if $G \in \mathcal{C}_{12}$, then $H \simeq \text{Sl}(n)$,
- if $G \in \mathcal{C}_{!!}$, then $H \simeq K_1$.

Proof. Let S be a γ-set of G. If $G \in \mathcal{C}_{10} \cup \mathcal{C}_{12} \cup \mathcal{C}_{!!}$, then P_{3n+1} is a component of G^-. We can assume that $n > 1$, and then P_{3n} is one of the components of G^{--}. Additionally, n vertices of S which dominate this component belong to its γ-set. Otherwise one of the pendant vertices of P_{3n} would be dominated
by a vertex of G^--G^-, but the vertices of P_{3n-1} cannot be dominated by a set of $n-1$ vertices. In this case $S = \Gamma \cup \{s\} \cup \Gamma'$, where Γ is the only γ-set of P_{3n}, and $\Gamma' \subset V(G^--P_{3n+1})$ dominates vertices of the other component of G^-.

If $G \in C_0 \cup C_{00} \cup C_{02}$, then P_{3n} is a component of G^-, and then $P_{3(n-1)+2}$ is one of the components of G^-. Similarly, like in the previous case, n vertices of S which dominate this component belong to its γ-set. Hence $S = \Gamma \cup \{s\} \cup \Gamma'$, where Γ is a γ-set of $P_{3(n-1)+2}$, and $\Gamma' \subset V(G^--P_{3n+1})$ dominates the other component of G^-. In other words, Γ corresponds to a vertex of the graph $P_{3(n-1)+2} \simeq P_{n-1+2}$.

If $G \in C_2 \cup C_{02} \cup C_{22}$, then P_{3n+2} is a component of G^- and P_{3n+1} is one of the components of G^-. We can assume that $V(P_{3n+2}) = \{1, 2, \ldots, 3n+2\}$ and $3n + 3 = s$. In this case $n + 1$ vertices of S which dominate P_{3n+1} either belong to its γ-set or $3n + 2$ is one of these vertices and n other vertices dominate the path P_{3n}, to which they belong. Assume that the second case is true and notice that the n vertices which dominate P_{3n} is the unique γ-set S_0 of this path, where $S_0 = \{3i + 2 : 0 \leq i < n\}$. Hence $S = \Gamma \cup \{s\} \cup \Gamma'$, where Γ is a γ-set of P_{3n+1} or $\Gamma = S_0 \cup \{3n+2\}$, and $\Gamma' \subset G^- - P_{3n+2}$ dominates the other component of G^-. $S_0 \cup \{3n+1\}$ and $S_0 \cup \{3n\}$ are the only γ-sets of P_{3n+1} which have only one element different from the set $S_0 \cup \{3n+2\}$. This proves that subsets of γ-sets of G which dominate the component P_{3n+1} correspond to vertices of the graph obtained from $SG^+(n)$ by adding one new vertex and two edges. This graph is isomorphic to $Sl(n)$.

If $G \in C_0 \cup C_{11} \cup C_{12}$, then one component of the graph G^- is a path P_{3t+1}. If additionally $t = 0$, then G^- has only one component $P_{3(k-1)+i}$, $i \in \{0, 1, 2\}$.

If G^- has exactly two components G_1 and G_2, then every γ-set of G which contains s is a set $\{s\} \cup \Gamma_1 \cup \Gamma_2$, where Γ_1 dominates G_1 and Γ_2 dominates G_2. Two such gamma sets $\{s\} \cup \Gamma_1 \cup \Gamma_2$ and $\{s\} \cup \Gamma'_1 \cup \Gamma'_2$ are adjacent iff $\Gamma_1 = \Gamma'_1$ and Γ_2 has only one element different from Γ'_2, or Γ_1 has exactly one element different from Γ'_1 and $\Gamma_2 = \Gamma'_2$. Hence $\gamma.G \simeq H_1 \square H_2$, where H_1 and H_2 are isomorphic to a path, slide or a graph K_1.

We finish with observations on the size of diameter of $\gamma.\text{Cat}^s_i$. Let H_0 and H_s be induced subgraphs of $\gamma.\text{Cat}^s_i$ defined as in Proposition 3.5. It is obvious that $\text{diam}(H_0) < \text{diam}(H_s)$. Since every vertex of H_0 is adjacent in $\gamma.\text{Cat}^s_i$ to some vertex of H_s, we immediately conclude that $\text{diam}(\gamma.\text{Cat}^s_i) \leq \text{diam}(H_s) + 1$. Furthermore it is easy to show that $\text{diam}(Sl(n)) = n$, $\text{diam}(G_1 \square G_2) = \text{diam}(G_1) + \text{diam}(G_2)$. The proof of the theorem shows that the ratio between $|V(H_s)|$ and $|V(\gamma.\text{Cat}^s_i)|$ is the biggest when $\text{Cat}^s_i \in C_{00}$. In this case H_s is a product of two paths and for every γ-set $S = \Gamma_1 \cup \{s\} \cup \Gamma_2 \in V(H_s)$ the sets Γ_1 and Γ_2 correspond to some vertices of $\gamma.P_{3k+2} \simeq P_{k+2}$ and $\gamma.P_{3l+2} \simeq P_{l+2}$, where $|V(\gamma.\text{Cat}^s_i)| = (3k + 2) + (3l + 2) + 3 + 1 = 3(k + l) + 8$. Then
\[|V(G_1)| + |V(G_2)| = l + k + 4 \] and hence \(\text{diam}(H_s) = (n + 4)/3 \). Therefore, the following proposition holds.

Proposition 3.7. If \(G = \text{Cat}_t^s \) is a caterpillar with one leg then

\[\text{diam}(\gamma.G) \leq (t + 5)/3 + 1. \]

References

Institute of Mathematics
University of Silesia
Bankowa 14
40-007 Katowice
Poland
e-mail: anna.bien@us.edu.pl