Rozprawa doktorska

Wioleta Cieślik

Badanie spektrum aktywności biologicznej wybranych pochodnych chinoliny

Dr hab. Robert Musioł
Promotor pracy

Katowice 2015
Praca finansowana w ramach projektu badawczego Narodowego Centrum Nauki - PRELUDIUM 4 (2012/07/N/NZ7/02110) oraz Programów Stypendialnych UPGOW (Uniwersytet Partnerem Gospodarki Opartej na Wiedzy) i DoktorIS (Program na rzecz innowacyjnego Śląska) współfinansowanych przez Unię Europejską w ramach Europejskiego Funduszu Społecznego.
Pragnę podziękować wszystkim, którzy wnieśli znaczący wkład w powstanie niniejszej pracy.

Dedykuję Mężowi.
<table>
<thead>
<tr>
<th>Spis treści</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CEL PRACY</td>
</tr>
<tr>
<td>2. WSTĘP</td>
</tr>
<tr>
<td>2.1. Przyczyny poszukiwania nowych leków – problem lekooporności</td>
</tr>
<tr>
<td>2.2. Metody poszukiwania nowych leków</td>
</tr>
<tr>
<td>2.3. Koncepcja struktur uprzywilejowanych</td>
</tr>
<tr>
<td>2.3.1. Pochodne chinoliny – spektrum aktywności biologicznej</td>
</tr>
<tr>
<td>2.3.2. Pochodne 8-hydroksychinoliny - spektrum aktywności biologicznej</td>
</tr>
<tr>
<td>3. BADANIA WŁASNE</td>
</tr>
<tr>
<td>3.1. Pochodne styrylochinolinowe – analogi naftifiny</td>
</tr>
<tr>
<td>3.1.1. Wstęp oraz projektowanie celów syntetycznych</td>
</tr>
<tr>
<td>3.1.2. Otrzymanywane oraz analiza strukturalna styrylochinolin</td>
</tr>
<tr>
<td>3.1.3. Właściwości przeciwnowotworowe</td>
</tr>
<tr>
<td>3.1.4. Hamowanie procesu fotosyntezy</td>
</tr>
<tr>
<td>3.1.5. Właściwości przeciwbakteryjne</td>
</tr>
<tr>
<td>3.1.6. Właściwości przeciwnowotworowe oraz oznaczenia cytotoxiczności</td>
</tr>
<tr>
<td>3.2. Bliskie analogi terbinafiny i butenafiny</td>
</tr>
<tr>
<td>3.2.1. Wstęp oraz projektowanie nowych analogów</td>
</tr>
<tr>
<td>3.2.2. Otrzymanywane analogów terbinafiny oraz butenafiny</td>
</tr>
<tr>
<td>3.2.3. Właściwości biologiczne</td>
</tr>
<tr>
<td>3.3. Pochodne 1,2,3-triazoli</td>
</tr>
<tr>
<td>3.3.1. Wstęp oraz projektowanie 1,2,3-triazoli</td>
</tr>
<tr>
<td>3.3.2. Otrzymanywane oraz analiza strukturalna 1,2,3-triazoli</td>
</tr>
<tr>
<td>3.3.3. Właściwości biologiczne</td>
</tr>
<tr>
<td>4. PODSUMOWANIE</td>
</tr>
<tr>
<td>5. CZĘŚĆ EKSPERIMENTALNA</td>
</tr>
<tr>
<td>5.1. Metody badań fizykochemicznych</td>
</tr>
<tr>
<td>5.2. Synteza</td>
</tr>
<tr>
<td>5.2.1. Otrzymanywane styrylochinolin (1- 36, 43, 46)</td>
</tr>
<tr>
<td>5.2.2. Otrzymanywane bliskich analogów terbinafiny i butenafiny, sprzęganie Sonogashiry (37-42, 44, 45)</td>
</tr>
<tr>
<td>5.2.3. Otrzymanywane 1,2,3-triazoli opartych na pierścieniu chinoliny</td>
</tr>
<tr>
<td>5.2.3.1. Bromowanie 8-chlorochinaldyny (47-48)</td>
</tr>
<tr>
<td>B) Azydkowanie 2-(bromometrylo)-8-chlorochinoliny (49)</td>
</tr>
</tbody>
</table>
C) 1,2,3-triazole (50-57) ... 114

6. LITERATURA .. 121

7. DOROBEK NAUKOWY .. 134
 7.1. Publikacje ... 134
 7.2. Patenty ... 134
 7.3. Zgłoszenia patentowe .. 134
 7.4. Konferencje międzynarodowe (postery) ... 135
 7.5. Konferencje krajowe (prezentacje) .. 135
 7.6. Konferencje krajowe (postery) .. 136

8. CURRICULUM VITAE .. 137
Wykaz stosowanych skrótów:

8-HQ – 8-hydroksychinolina
AIBN - azobis(izobutyronitryl)
AIDS - Zespół nabytego niedoboru odporności (ang. Acquired Immune Deficiency Syndrome)
COSY - spektroskopia korelacyjna (ang. Correlation SpectroscopY)
DMF - dimetyloformamid
DMSO - dimetylosulfotlenek
HCT 116 – komórki nowotworów okrężnicy
HIV - ludzki wirus niedoboru odporności, HIV (ang. Human Immunodeficiency Virus)
HMQC - heterojądrowa korelacja z detekcją przejść wielokwantowych (ang. Heteronuclear Multiple Quantum Correlation)
HRMS - wysokorozdzielcza spektrometria mas (ang. High Resolution Mass Spectrometry)
LoVo – komórki ludzkich guzów okrężnicy
MAOS – synteza organiczna wspomagana mikrofalami (ang. Microwave Assisted Organic Synthesis)
MAPK – szlak kinaz aktywowanych mitogenami (ang. mitogen-activated protein kinases).
MDR – wielolekooporność (ang. multidrug resistance)
MIC- minimalne stężenie hamujące (ang. minimum inhibitory concentration)
NBS - N-Bromosukcynoimid
NHDF – ludzkie fibroblasty (ang. Human Dermal Fibroblasts)
NMR - spektroskopia magnetycznego rezonansu jądrowego (ang. nuclear magnetic resonance)
PET - fotosyntetyczny transport elektronów (ang. Photosynthetic Electron Transport)
P13K – 3-kinaza fosfatydloinozytolu
PS – struktura uprzywilejowana (ang. privileged structure)
SAR – zależność struktura - aktywność (ang. structure-activity relationships)
TB – gruźlica (ang. tuberculosis)
TEA - trietyloamina
THF - tetrahydrofuran
TLC – chromatografia cienkowarstwowa (ang. thin layer chromatography)
TP53 – gen kodujący białko p53 (ang. transcription protein 53)
WHO - Światowa Organizacja Zdrowia (ang. World Health Organization)
1. CEL PRACY

Celem niniejszej pracy było otrzymanie wybranych pochodnych chinoliny oraz badanie aktywności biologicznej uzyskanych połączeń w zakresie właściwości przeciwgrzybiczych, przeciwbakteryjnych oraz przeciwnowotworowych. Zakres pracy obejmuje projektowanie celów syntetycznych, opracowanie metod syntezy i oczyszczania otrzymanych produktów, analizę fizykochemiczną oraz analizę wyników testów biologicznych.
2. **WSTĘP**

2.1. **Przyczyny poszukiwania nowych leków – problem lekooporności**

Rozwój nauk medycznych pozwolił opanować wiele chorób, wciąż jednak istnieje potrzeba poszukiwania nowych metod terapii. Nadal brakuje skutecznych farmaceutyków w leczeniu m.in. nowotworów czy zakażeń wywołanych przez wirusy (HIV, Ebola, wścieklizna). Choroby nowotworowe stanowią jedną z głównych przyczyn śmierci XXI wieku. Dotykają one coraz większą część społeczeństwa i pomimo zaawansowanych metod leczenia prowadzą do około 8,2 miliona zgonów rocznie w skali światowej. Przewiduje się, że liczba nowych zachorowań wzrośnie wzzrośnie o około 70% w ciągu najbliższych 20 lat [1].

Ponadto brak jest skutecznych, bezpiecznych oraz przystępnych cenowo leków do kontroli wielu tropikalnych chorób zakaźnych (tzw. choroby zaniedbane). Pomimo rozwoju podstawowej wiedzy na temat tych chorób, jak i postępów w procesie projektowania leków, choroby takie jak malaria, leiszmanioza, słoniewacizna czy choroba Chagasa nadal są przyczyną wysokiej śmiertelności, głównie w krajach rozwijających się. Tylko 10% wydatków na badania w dziedzinie zdrowia przeznaczane jest na tego typu choroby, choć istniejące metody leczenia są coraz mniej skuteczne, m.in. z powodu małych możliwości diagnostycznych oraz rosnącej oporności na leki. Chociaż podstawowe badania naukowe odbywają się w laboratoriach uniwersyteckich i rządowych, to rozwój leków prowadzony jest głównie przez firmy farmaceutyczne. Natomiast wybór obiegujących kandydatów na leki spowodowany jest potencjalnymi zyskami, a nie globalnymi problemami zdrowia publicznego. System ten oczywiście nie uwzględnia potrzeb krajów trzeciego świata [2], [3].

Innym, stosunkowo nowym problemem współczesnej medycyny jest znaczny wzrost zakażeń bakteryjnych oraz grzybiczych. Okazuje się, iż nie można lekcować chorób, które wydają się już opanowane. Wraz z rozwojem chirurgii i pojawieniem się intensywnej opieki medycznej liczba oraz różnorodność owych zakażeń gwałtownie wzrasta [4]–[7]. Dodatkowo pandemia AIDS oraz rozwój chemoterapii doprowadziły do zwiększenia liczby pacjentów o obniżonej odporności [8], [9]. Idąc dalej zauważamy wzrost popularności stosowania antybiotyków, często o szerokim spektrum działania. Wskutek tego, na przestrzeni
bakterii, oporność grzybów rośnie z powodu zbyt częstego stosowania leków [22], [23].

Lekooporność mikroorganizmów stanowi poważny i nasilający się problem globalny. Raport Światowej Organizacji Zdrowia (WHO) wydany w kwietniu 2014 roku donosi, iż problem lekooporności nie jest już przewidywaniem przyszłości, lecz jest obecnie jednym z głównych zagrożeń dla zdrowia publicznego [24]. W 2013 roku stwierdzono 9 mln zachorowań na gruźlicę (TB - *tuberculosis*), stając się przyczyną śmierci 1,5 mln pacjentów, z czego 500 tys. zgonów było wywołane przez lekooporne prątki gruźlicy (MDR-TB - Multidrug resistance *tuberculosis*) [25]. Obecnie z powodu lekoopornych mikrobów umiera ok. 700 tys. osób rocznie. Szacuje się, iż za 35 lat liczba ta może zwiększyć się do około 10 milionów (Ryc. 1) [26], to więcej niż obecnie liczba zgonów z powodu chorób nowotworowych.

Ryc. 1. Roczna liczba zgonów ludzi z powodu lekooporności mikroorganizmów (MDR) w porównaniu do innych głównych przyczyn zgonów na świecie (dane z 2012-2013 r.)[27].

Od momentu odkrycia pierwszego antybiotyku oraz zrozumienia mechanizmów zwalczania chorób o podłożu mikrobiologicznym, firmy farmaceutyczne prześcigały się w dostarczaniu coraz to nowych, bardziej aktywnych środków. Szybko jednak nastąpiła stagnacja, a proponowane leki od pewnego czasu są podobne do siebie i oferują marginalną przewagę nad istniejącymi. Jednocześnie rozwój leków stał się procesem bardziej kosztownym oraz czasochłonnym [28].
W 2000 roku stwierdzono, iż głównymi czynnikami dyskwalifikującymi potencjalne antybiotyki w badaniach klinicznych są w 30% brak skuteczności działania oraz w kolejnych 30% wysoka toksyczność [29]. Ograniczenie stosowania antybiotyków staje się kluczowym aspektem przeciwdziałania rozwoju oporności. Dotyczy to przede wszystkim nieracjonalnego stosowania lub ich nadużywania. Ponadto niezbędne jest poszukiwanie nowych leków o unikalnych mechanizmach działania tak aby ograniczyć skutki oporności krzyżowej. Koncerny farmaceutyczne próbując utrzymać skuteczność oferowanych leków dążą do wprowadzania nowych specyfików co 5-7 lat. Stąd nieustanna presja poszukiwania nowych strategii działania w tej dziedzinie [28]. W przypadku chorób wywołanych przez chorobotwórcze bakterie i grzyby, jak również „chorób zaniedbanych” główny ciężar poszukiwania nowych środków spoczywa na ośrodkach akademickich oraz naukowo-badawczych, które w przeciwieństwie do firm farmaceutycznych nie są nastawione na zyski finansowe.

Podsumowując, choć pozytywnie wydaje się, że dysponujemy szerokim arsenałem środków leczniczych to dostępna ilość leków nie przekłada się w prosty sposób na możliwości prowadzenia terapii. Lekooporność oraz skutki uboczne stanowią główną przyczynę dalszych poszukiwań innowacyjnych leków, które okazałyby się bardziej skuteczne przeciwko czynnikowi chorobotwórczemu oraz mniej szkodliwe dla zdrowia człowieka.

2.2. Metody poszukiwania nowych leków

Polegają one na przebadaniu jak największej puli substancji w wybranym teście biologicznym. Związki nieaktywne są odrzucone, natomiast spośród związków wykazujących pewną aktywność tylko jeden na kilka tysięcy ma szanse dostać się do etapu badań klinicznych [14], [30]. Przykładem takich badań jest wytypowanie aktywnego układu diketokwasu w wyniku przesiewowych badań tysięcy losowych związków w poszukiwaniu inhibitorów integrazy HIV [31], [32]. Obecnie, obok wciąż stosowanych badań przesiewowych wprowadza się inne bardziej wydajne, a przede wszystkim mniej kosztowne metody poszukiwania leków. Przykładem takiego podejścia są badania nieprzesiewowe, w których rodzaj badanych substancji jest ograniczony. Związki wykazujące podobieństwo strukturalne do słabo działającej substancji (na przykład odkrytej w badaniach przesiewowych), mogą być poddane testom biologicznym w sposób selektywny. Źródłem badanych substancji mogą być leki pochodzące z medycyny naturalnej, tradycyjnie stosowane w leczeniu konkretnych schorzeń. Struktury wiodące są również poszukiwane podczas badań metabolizmu leków, a mianowicie określa się czy właściwości biologiczne są spowodowane działaniem samego leku, czy też jego metabolitu.

Opisane dotychczas metody poszukiwania struktur wiodących bywają krytykowane, jako nie do końca racjonalne. W dalszym ciągu ewentualny sukces zależy od przypadku. Obecnie zasadniczym aspektem w projektowaniu leków jest określenie molekularnych przyczyn badanej choroby, tak zwanych celów. Wówczas struktury wiodące stają się naturalnymi agonistami receptora lub substratami enzymu. Takie podejście określa się mianem zorientowanego na strukturę (structure based drug design) lub na cel. Wymaga bowiem dobrej znajomości celu działania przyszłych leków np. struktury krystalograficznej białka. Po identyfikacji struktury wiodącej przystępuje się do określenia farmakoforu, są to występujące w cząsteczce grupy odpowiedzialne ze działanie biologiczne. Inne grupy obecne w związku wiodącym mogą dodatkowo wpływać na to działanie. W oparciu o zgromadzone informacje kolejnym etapem jest projektowanie związków o korzystniejszych właściwościach terapeutycznych niż wybrana struktura wiodąca. W tym celu związki wiodące poddają się różnym przekształcaniom chemicznym, takim jak: wymiana podstawników, modyfikacje stopnia nasycenia pierścieni aromatycznych lub wiązań wielokrotnych, zmiana długości łańcucha czy wielkości pierścienia, upraszczanie lub usztywnianie struktury cząsteczki. Po zsyntezowaniu szeregu analogów związku wiodącego i poddaniu ich testom biologicznym, ustala się

Nowoczesne podejście łączy tradycyjne projektowanie leków opisane powyżej z modelowaniem molekularnym, które umożliwia zbadanie sposobów oddziaływania związku wiodącego z docelowym miejscem wiążącym. Zatem metoda SAR pozwala zidentyfikować farmakofor i ustalić sposób oddziaływania w miejscu wiążącym, natomiast modelowanie molekularne dostarcza informacji na temat dalszych analogów związku wiodącego, które warto syntezuować. Dzięki takiemu podejściu uwaga jest koncentrowana na analogach, które mają największe szanse oddziaływania z miejscem wiążącym, pomijając etap syntezy wszystkich możliwych analogów. Niestety projektowanie nowych, aktywnych związków jest zadaniami bardzo trudnymi i czasochłonnymi. Mimo znacznego zainteresowania i dostępności wielu badań wiążących strukturę chemiczną i aktywność biologiczną, często nie można ustalić jednoznacznych kryteriów jakie powinny spełniać aktywne związki. Wciąż potrzeba danych dotyczących nowych struktur oraz zależności pomiędzy ich cechami molekularnymi a aktywnością [14], [30]. Sytuacja komplikuje się dodatkowo gdy nie jest znany cel molekularny i z konieczności badania muszą koncentrować się na znanych strukturach aktywnych substancji, są to tak zwane badania zorientowane na ligand (ligand based drug design).

2.3. Koncepcja struktur uprzywilejowanych

Termin struktura uprzywilejowana (ang. privileged structure, PS) po raz pierwszy został zaproponowany przez Evansa i współpracowników w roku 1988 [33]. Dwa lata później Johnson i Maggiora sformułowali zasadę podobieństwa, która mówi, że strukturalnie pokrewne związki wykazują podobną aktywność biologiczną [34]. Później definicję zmobilizowali i rozszerzyli Patchett i Nargund [35]. Koncepcja struktur uprzywilejowanych mówi, iż pewne struktury (cechy strukturalne) mogą wywoływać skutki biologiczne częściej niż inne. Może być to wynikiem zdolności do interakcji z różnymi celami biologicznymi.
Z praktycznego punktu widzenia, jako czynnik rozróżniający, wykorzystuje się częstość występowania danego fragmentu strukturalnego w cząsteczkach związków wykazujących aktywność biologiczną, w szczególności leków [36], [37].

Od momentu wprowadzenia terminologii struktur uprzywilejowanych pojawiło się wiele prac porządkujących stan wiedzy w tej dziedzinie [38]–[40]. Jako struktury uprzywilejowane opisano między innymi: benzimidazol [40], benzodiazepinę [35], benzylopierydynę [35], difenylotetrazol [35], indol [35], [41], bifenyli [35], [42], 1,4-dihydropirydynę [43], benzopiran [44] (Ryc. 2) i wiele innych.

Ryc. 2. Przykładowe struktury uprzywilejowane.

2.3.1. Pochodne chinoliny – spektrum aktywności biologicznej

Analiza baz danych oraz doniesienia literaturowe wskazują chinolinę (Ryc. 3), jako strukturę uprzywilejowaną [32], [45]–[47], a więc fragment o szczególnym znaczeniu w projektowaniu nowych, aktywnych pochodnych.

Ryc. 3. Struktura chinoliny.

Znaczna liczba produktów naturalnych oraz środków farmaceutycznych zawiera chinolinowy fragment w cząsteczce. Antybiotyki chinolonowe są tutaj najbardziej spektakularnym przykładem potencjalnej skuteczności tego układu w chemii medycznej [48]. Natomiast cząsteczka chininy (Ryc. 4), która również jest oparta na ugrupowaniu chinoliny, jest dowodem na preferencje natury dla tego układu [49]. Chinina występuje w korze drzewa chinowego (*Cinchona L.*) i była
pierwszym skutecznym lekiem przeciwko malarii, szeroko stosowanym od XVII wieku. Oprócz zarodzika malarii chinina działa słabiej na niektóre pierwotniaki i bakterie, posiada również właściwości przeciwpiorączkowe i przeciwbólowe [50], [51]. Obecnie w celu nadania gorzkiego smaku jest dodawana do napojów gazowanych, np. toniku. Chinina jest już rzadko stosowana w lecznictwie, zastąpiły ją środki o mniejszych skutkach ubocznych.

Innym alkaloidem pochodzącym również z kory drzewa chinowego jest chinidyna (Ryc. 4). Mimo, iż jest prawoskrętnym diastereoizomerem chininy, jej aktywność biologiczna różni się dość istotnie. Chinidyna ma słabe właściwości przeciwmalarzyczne, jest znana natomiast jako środek do zmniejszania kurczliwości mięśni sercowych oraz szkieletowych, m.in. przez rozszerzanie naczyń krwionośnych obniża ciśnienie krwi. Stosowana jest w leczeniu migotania przedsięmię oraz komorowych zaburzeń rytmu serca [52].

Wczesne modyfikacje struktury chininy były spowodowane niedoborem naturalnych źródeł tego alkaloidu. Kora chinowa była dostępna jedynie na plantacjach poza granicami Europy. Próby znalezienia niezależnego i solidnego źródła leków przeciwmalarzycznych doprowadziły do odkrycia w 1925 roku pamachiny, a w 1932 mepakryny (Ryc. 5). Oba te leki były szeroko stosowane podczas II wojny światowej, szczególnie na południowo-zachodnim Pacyfiku [53]. Z powodu wysokiej toksyczności oraz poważnych efektów ubocznych, m.in. psychozy, powstawały dalsze modyfikacje tych leków. Kolejnym analogiem pamachiny była prymachina (Ryc. 5), odkryta w latach 40. Nowy analog okazał się skuteczniejszy oraz mniej toksyczny od dotychczasowych środków [54]. Jednak przełomem okazała się chlorochina (Ryc. 5), którą otrzymano już w roku 1934, lecz
omyłkowo uznano za zbyt toksyczną i zaniechano jej stosowana, aż do 1946 roku. Od tego czasu, chlorochina stała się najważniejszym i najbardziej skutecznym lekiem przeciw malarii, ponadto ze względu na niską toksyczność jest lekiem z wyboru a nie wyborem mniejszego zła. Poza działaniem przeciwmalarycznym, działa również na takie pasożyty jak Pełzak czerwonki oraz Lamblie jelitowe (np. *Giardia lamblia* - Ogoniastek jelitowy), ponadto posiada właściwości przeciwpalne [55]. W celach profilaktycznych chlorochinę dodawano do soli kuchennej w wybranych częściach Ameryki Południowej, Afryki i Azji. Prawdopodobnie w wyniku tego zabiegu pierwsze przypadki oporności na chlorochinę pojawiły się już pod koniec lat 50. Szczepy oporne na chlorochinę (*Plasmodium falciparum* - Zarodziec sierpowaty i do pewnego stopnia *P. vivat* - Zarodziec ruchliwy) stały się powszechne we wszystkich obszarach endemicznych na całym świecie. Ponadto pojawiają się wyniki badań sugerujące, że nadmierne stosowanie chlorochiny może powodować powstanie oporności krzyżowej na chinolony (cyprofloksacynę) u bakterii jelitowych *Escherichia coli* [56].
W obliczu śmiertelnych ofiar malarii podczas wojny w Wietnamie, doprowadzono do rozwoju nowych pochodnych przeciwmalarycznych. Wprowadzono kolejny analog chininy – meflochinę (Ryc. 5), obecnie dostępną w sprzedaży jako Lariam. Choć ma ona silne właściwości przeciwmalaryczne, może również wywoływać wiele niepożądanych skutków ubocznych, m.in. zawroty.
głowy, halucynacje czy depresje. Zarówno chlorochina, jak i meflochina są stosowane do dziś w lecznictwie. Chlorochina wciąż stanowi jeden z najczęściej używanych leków przeciwmalarcznych m.in. ze względu na bardzo niskie koszty produkcji [56], [57]. Meflochina natomiast jest traktowana jako standardowy środek terapeutyczny w przypadku walki ze szczepami opornymi na chlorchinę. Jednak jej stosowanie jest ograniczone z uwagi na wysokie koszty produkcji oraz możliwość wystąpienia skutków ubocznych [58]. W połowie lat 70. zainteresowanie przemysłu oraz wojska na nowe środki do walki z malarią znacznie spadło, co przełożyło się na zmniejszenie ilości wprowadzanych, nowych leków. Na rynek wprowadzono dwa kolejne analogi chlorochiny: amodiachinę, a później pironarydynę (Ryc. 5). Amodiachina okazała się być bardziej skuteczna w leczeniu infekcji malarii niż chlorochina, jest również na ogół dobrze tolerowana. Jednak od połowy lat 80. w niektórych częściach świata została wycofana z użytku z powodu rzadkich, ale niebezpiecznych efektów ubocznych, tj. agranulocytozy (spadek liczby neutrofili, czyli komórek układu odpornościowego we krwi. Pomimo tego, amodiachina zachowuje wysoką skuteczność i jest powszechnie dostępna w Afryce [59]. Natomiast pironarydyna Ryc. 5) jest najbardziej aktywną 4-amino pochodną chinoliny, również wobec szczepów opornych na chlorchinę. Została otrzymana w Chinach w latach 70. i jest stosowana w tym kraju od ponad trzydziestu lat [60]. W innych częściach świata środek ten nie został od razu wprowadzony do lecznictwa. Dopiero od 2012 roku Komitet Produktów Leczniczych (CHMP-Committee for Medicinal Products) wydał pozytywną opinię na temat stosowania preparatu Pyramax, gdzie jednym ze składników jest pironarydyna. Lek jest przeznaczony wyłącznie do stosowania poza terenem Unii Europejskiej [61].

Inną grupą leków opartych na fragmencie chinoliny są wspomniane już wcześniej, chinolony (Ryc. 6). Związki te stanowią największą grupę syntetycznych antybiotyków, rozwijanych już od lat 60. Kolejne modyfikacje struktur doprowadziły do zmiany siły oraz spektrum działania otrzymanych związków, jak również ich właściwości farmakokinetycznych [62]. Opisano już ponad 10 tysięcy analogów, z czego ponad 15 zostało zarejestrowanych jako leki [63].
Wzór reakcji przemiany chemicznej chinolonów.

Ryc. 6. Ogólna struktura chinolonów.

Ryc. 7. Wybrani przedstawiciele poszczególnych generacji chinolonów.

Generalnie fluorochinolony odgrywają ważną rolę w leczeniu ciężkich zakażeń bakteryjnych, zwłaszcza gdy jest podejrzenie zakażenia szczepami opornymi na starsze klasy środków przeciwbakteryjnych, zostały m.in. wprowadzone do drugiej linii leczenia gruźlicy [66]. Fluorochinolony są na ogół dobrze tolerowane przez pacjentów, większość działań niepożądanych przebiega łagodnie. Typowe skutki uboczne terapii to objawy żołądkowo-jelitowe, takie jak nudności, wymioty czy biegunka, a także bóle głowy i bezsenność [67]. Ostatnie doniesienia literaturowe wskazują również na przeciwnowotworowe oraz przeciwwirusowe działanie.
fluorochinolonów, co dodatkowo czyni je atrakcyjnymi i obiecującymi obiektami dalszych badań [68]–[71].

Oprócz tego, pewne związki również oparte na strukturze chinoliny wykazują bardzo skuteczne działanie antyproliferacyjne względem szerokiego spektrum nowotworów. Różnorodne analogi chinoliny zostały zbadane pod kątem hamowania wzrostu komórek nowotworowych, m.in. poprzez blokowanie kinaz białkowych czy naprawy DNA [45]. Otrzymano tysiące pochodnych, lecz do tej pory tylko kilka znalazło zastosowanie w lecznictwie. W tradycyjnej medycynie chińskiej do leczenia nowotworów stosowano wyciąg z kory drzewa „szczęścia” - *Camptotheca acuminata*. W 1966 roku odkryto, iż za działanie przeciwnowotworowe owej kory jest odpowiedzialna kamptotecyna – alkaloid, który zawiera fragment chinoliny w swojej strukturze (Ryc. 8) [72]. W badaniach klinicznych wykazano znaczącą aktywność tego związku, jednak niska rozpuszczalność oraz działania niepożądane ograniczyły jego zastosowanie w lecznictwie. Z tych powodów strukturę kamptotecyny poddano modyfikacjom chemicznym, w skutku czego powstały kolejne aktywne analogi. Pierwszym zarejestrowanym lekiem przeciwnowotworowym, pochodzącym od kamptotecyny jest topotekan (Ryc. 8) [73]. W roku 1998 został zarejestrowany jego kolejny analog, irynotekan (Ryc. 8) [74]. Substancje te należą do grupy inhibitorów topoizomerazy I i hamują replikację DNA, prowadząc do śmierci komórki [75].

Topotekan jest stosowany w leczeniu raka jajników oraz szyjki macicy [76], może być również używany w terapii drobnokomórkowego raka płuc [77]. Wciąż trwają badania kliniczne nad zastosowaniem topotekanu do leczenia innych typów nowotworów [78], [79]. Natomiast irynotekan jest głównie stosowany w terapii raka jelita grubego, ponadto poddany jest badaniom klinicznym, m.in. nad jego zastosowaniem w leczeniu raka płuc, wątroby i jajnika [80], [81]. Ciągle trwają prace nad rozwojem pochodnych kamptotecyny, aktualnie prowadzone są badania kliniczne dwóch kolejnych jej analogów: BNP 1350 oraz LE-SN38 (LE - Liposome Encapsulated) (Ryc. 8) [82], [83].
Innym, ciekawym celem molekularnym dla związków przeciwnowotworowych są kinazy białkowe - grupa enzymów odpowiedzialna za fosforylację białek, a w konsekwencji uwikłana w większość szlaków metabolicznych w komórkach. Spośród nich kluczowe znaczenie mają procesy sygnalizacji i regulacji, np. cyklu życiowego komórki. Grupa badawcza Augur'a opracowała inhibitor kinazy PI3K (3-kinazy fosfatydyloinozytolu) (GSK212645) (Ryc. 9). PI3K odgrywa istotną rolę w regulacji procesów związanych ze wzrostem, metabolizmem, przeżyciem oraz proliferacją komórek. Inhibitor GSK212645 jest oparty na strukturze chinoliny i posiada niezwykłe silne właściwości przeciwnowotworowe w zakresie nanomolowym (PI3K IC\textsubscript{50} = 0.04 nM). Obecnie związek ten jest w I fazie badań klinicznych zmierzających do ustalenia właściwego dawkowania u pacjentów z guzami litymi lub chłoniakami [84].

Również atrakcyjnym celem molekularnym są receptory kinazy tyrozynowej, które przyczyniają się do rozwoju i wzrostu komórek rakowych (np. receptor czynnika wzrostu GFR - growth factor receptor). Pochodne 4-anilinochinoliny stanowią obiecującą grupę związków hamującą działanie tych receptorów. Naukowcy od wielu lat modyfikują tę klasę związków w celu poprawy siły i selektywności ich działania, co zaowocowało wieloma aktywnymi
pochodnymi [44]. Wissner i współpracownicy odkryli pochodną EKB-569, a następnie HKI-272 (Ryc. 9) [69]. Związki te cechują się zarówno silnym, selektywnym, jak i nieodwracalnym działaniem wobec guzów. Jak dotąd, próby kliniczne dały obiecujące wyniki, które czynią EKB-569 i HKI-272 potencjalnymi kandydatami na leki skuteczne w leczeniu nowotworów okrężnicy, płuc oraz piersi [86].

![Struktury przykładowych pochodnych chinoliny, wykazujących właściwości przeciwnowotworowe.](image)

Ryc. 9. Struktury przykładowych pochodnych chinoliny, wykazujących właściwości przeciwnowotworowe.

Jak wskazują wyniki badań pochodne 4-anilinochinoliny mogą działać przeciwnowotworowo również według innego mechanizmu, polegającego na blokowaniu szlaku kinaz aktywowanych mitogenami (MAPK - *mitogen-activated protein kinases*). Blokowanie tego szlaku daje możliwości hamowania niekontrolowanego wzrostu komórek. Przykłady związków hamujących szlak MAPK, jak również wzrost komórek LoVo (linia ludzkich guzów okrężnicy) przedstawiono poniżej (ryc. 10) [87], [88].

![Przykłady związków hamujących szlak MAPK](image)

Ryc. 10. Związki o właściwościach przeciwnowotworowych.
Oprócz opisanych powyżej związków istnieje wiele innych pochodnych opartych na szkielecie chinoliny, które wykazują interesujące właściwości przeciwnowotworowe. Liczba potencjalnych leków znajdujących się obecnie w fazie badań klinicznych pozwala przypuszczać, że w najbliższej przyszłości zapewne niektóre z nich będą używane jako pierwsza linia bardziej skutecznych i bezpiecznych chemoterapeutyków [45].

Poza opisanymi wcześniej przykładami, pochodne chinoliny można znaleźć również m.in. wśród leków przeciwgrybiczych (dekwalina), przeciwwirusowych (sakwinawir – anty-HIV) oraz przeciwbólowych (antrafenina). Znane są również analogi chinoliny stosowane w leczeniu choroby Alzheimera (takryna), astmy i alergii (montelukast, nedokromil) (Ryc. 11) [89].

![Pochodne chinoliny]

Ryc. 11. Inne przykłady leków zawierających strukturę chinoliny w cząsteczce.

2.3.2. Pochodne 8-hydroksychinoliny - spektrum aktywności biologicznej

Spośród pochodnych chinoliny szczególne znaczenie ma fragment 8-hydroksychinoliny (8-HQ) (Ryc. 12), który jest jednym z najważniejszych odczynników chelatujących jony metali i stanowi doskonałe rusztowanie dla związków z ciekawym spektrum zastosowań farmaceutycznych [90]. Już w 1922 roku zostały opisane właściwości grzybobójcze 8-hydroksychinoliny i jej kompleksów z metalami [91], [92]. Prace te dotyczyły głównie aktywności względem grzybów atakujących rośliny. Później wykazano ich właściwości antyseptyczne oraz dezynfekujące, co więcej substancje te były stosowane w stomatologii do dezynfekcji jamy ustnej [93]. 8-HQ była również obiektem zainteresowań jako lek przeciwnowotworowy [94]. Ponadto proste modyfikacje
8-hydroksychinoliny dają pochodne o interesujących właściwościach grzybo- i bakteriobójczych. Jednym z takich środków jest chlorkinaldol (Ryc. 12), znany środek o właściwościach przeciwbakteryjnych, przeciwgrzybiczych oraz przeciwierwotniakowych, szczególnie silnie działa na ziarniaki Gram-dodatnie oraz drożdżaki, m.in. *Candida albicans*. Chlorkinaldol stosuje się w leczeniu miejscowym bakteryjnych i grzybiczych zakażeń błon śluzowych jamy ustnej, gardła, dróg rodnych oraz skóry. Środek ten jest dostępny w tabletkach do ssania, tabletkach dopochwowych oraz jako maść, stosuje się go również w niektórych szamponach przeciwłupieżowych [95]. Kolejnym znanym preparatem pochodzącym od 8-HQ jest kliochinol (Ryc. 12), który znalazł zastosowanie w lecznictwie jako środek o silnym i długotrwałym działaniu odkazującym i wysuszającym rany. Stosowany miejscowo jest nietoksyczny, ale dawniej był stosowany doustnie w leczeniu biegunki bakteryjnej, lecz został wycofany w 1983 roku ze względu na neurotoksyczne działanie [96]. Kliochinol był podejrzany o wywoływanie ciężkiej w skutkach choroby znanej jako neuropatia rdzeniowo wzrokowa - SMON (Subacute Melo-Optic Neuropathy), której objawami są m.in. zaburzenia czucia i widzenia [61]. Inną stosowaną pochodną 8-hydroksychinoliny jest nitroksolina (Ryc. 12), która działa bakteriobójczo na większości bakterii Gram-ujemnych i Gram-dodatnich, wywołujących zakażenia dróg moczowych [97]. W Europie jest w użyciu od około pięćdziesięciu lat, wykazuje znaczną skuteczność w zwalczaniu zakażeń bakterii tworzących biofilm [98]. Ponadto znane jest jej działanie grzybobójcze na szczepy z rodzaju *Candida* oraz właściwości przeciwnowotworowe [99].

Obecnie trwają badania nad zastosowaniem pochodnych 8-hydroksychinoliny jako potencjalnych środków do leczenia chorób zwyrodnieniowych układu nerwowego, takich jak choroba Alzheimera czy Parkinsona [90]. Działanie neuroprotekcyjne jest wynikiem chelatowania metali, takich jak żelazo, miedź czy cynk. Wyjąściowym związkiem do poszukiwań chelatorów żelaza był kliochinol,
dając początek kolejnym modyfikacją chemicznym, których przykładem jest związek PBT2 (Ryc. 12), znajdujący się w II fazie prób klinicznych w leczeniu choroby Alzheimera [100].

Do bardziej złożonych pochodnych 8-hydroksychinolininy stosowanych w lecznictwie można zaliczyć prokaterol oraz indakaterol (Ryc. 13). Obie substancje są stosowane do leczenia przewlekłej obturacyjnej choroby płuc. Ponadto prokaterol jest stosowany w leczeniu astmy [89], natomiast indakaterol jest aktualnie pod tym kątem oceniany. Przeprowadzone badania kliniczne wykazują wysoką skuteczność leku w kontroli objawów klinicznych i poprawie parametrów spirometrycznych [101].

Pochodne 8-HQ posiadają również właściwości antyretrowirusowe, okazało się, że pochodne styrylochinolinowe mogą być między innymi inhibitorami integrazy HIV-1. Aktywnym inhibitorem z tej grupy pochodnych jest związek o symbolu FZ-41 (Ryc. 14), który dotarł do fazy badań klinicznych. Jest on aktywny zarówno w etapie 3'-terminacji, jak i w etapie przeniesienia nici. Wartości IC\textsubscript{50} dla obu reakcji wynoszą odpowiednio: 0,7 μM i 1,7 μM [102].
W trakcie badań nad pochodnymi chinoliny prowadzonych w Zakładzie Chemii Organicznej Uniwersytetu Śląskiego okazało się, że pewne pochodne chinoliny mogą stanowić interesujące czynniki przeciwgrzybicze. Kilka z badanych pochodnych wykazuje aktywność hamującą rozwój grzybów MIC (Minimal Inhibitory Concentration) przy stężeniach niższych niż znany przeciwgrzybiczy środek flukonazol (Tabela 1) [103].

Tabela 1. Przykłady aktywności przeciwgrzybiczej wybranych związków, otrzymanych w Zakładzie Chemii Organicznej Uniwersytetu Śląskiego.

<table>
<thead>
<tr>
<th>Związek</th>
<th>Candida albicans</th>
<th>Candida krusei</th>
<th>Candida glabrata</th>
<th>Aspergillus fumigatus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC/IC₅₀ [μM]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>48h</td>
<td>24h</td>
<td>48h</td>
<td>24h</td>
</tr>
<tr>
<td>Aspiryn</td>
<td>1.95</td>
<td>15.63</td>
<td>15.63</td>
<td>3.91</td>
</tr>
<tr>
<td>7.81</td>
<td>15.63</td>
<td>15.63</td>
<td>15.63</td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>7.81</td>
<td>31.25</td>
<td>31.25</td>
<td>3.91</td>
</tr>
<tr>
<td>15.63</td>
<td>31.25</td>
<td>15.63</td>
<td>31.25</td>
<td></td>
</tr>
<tr>
<td>7.81</td>
<td>15.63</td>
<td>7.81</td>
<td>15.63</td>
<td></td>
</tr>
<tr>
<td>15.63</td>
<td>7.81</td>
<td>15.63</td>
<td>7.81</td>
<td></td>
</tr>
<tr>
<td>3.91</td>
<td>31.25</td>
<td>0.24</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>31.25</td>
<td>3.91</td>
<td>4.9</td>
<td>62.50</td>
<td></td>
</tr>
<tr>
<td>3.91</td>
<td>31.25</td>
<td>1.95</td>
<td>3.91</td>
<td></td>
</tr>
<tr>
<td>15.63</td>
<td>7.81</td>
<td>3.91</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Flukonazol</td>
<td>0.06</td>
<td>3.91</td>
<td>0.98</td>
<td>>125</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>15.62</td>
<td>3.91</td>
<td>>125</td>
</tr>
</tbody>
</table>

W Zakładzie Chemii Organicznej Uniwersytetu Śląskiego od kilku lat prowadzi się badania skoncentrowane na poszukiwaniu nowych, aktywnych związków chemicznych. Rozwijana jest metoda wykorzystująca przeszukiwanie wirtualnych baz danych takich jak PubChem czy DrugBank, skupiających dane dotyczące struktur i aktywności tysięcy związków. Zostały przeprowadzone badania na szeregu monoazanaftalenów, które potwierdziły częstość występowania szkieletu chinolinowego w związkach wykazujących aktywność biologiczną [46], [47].

Z uwagi na tak szerokie spektrum aktywności biologicznej pochodnych chinoliny (w tym również 8-hydrokschinoliny), niewątpliwie jej struktura wpisuje się w definicję *struktury uprzywilejowanej*. Mimo ograniczeń i pewnych niejasności koncepcyjnych, idea struktur uprzywilejowanych wydaje się być skuteczna
w projektowaniu leków, co potwierdzają nowe, aktywne analogii fragmentów uprzywilejowanych. Koncepcja ta jest często używana w laboratoriach syntetycznych posługujących się chemią kombinatoryczną, gdzie potrzeba prostych i wyraźnych schematów projektowania nowych substancji [40], [90]. Takie podejście może przyczynić się znacznie do rozwoju chemii medycznej, dostarczając nowych pomysłów w projektowaniu leków. Zatem poszukiwanie nowych związków z wbudowanym fragmentem chinolinowym wydaje się być jak najbardziej słuszne.
3. BADANIA WŁASNE

3.1. Pochodne styrylochinolinowe – analogi naftifiny.

3.1.1. Wstęp oraz projektowanie celów syntetycznych.

Leki przeciwgrzybicze charakteryzują się dużą różnorodnością budowy oraz mechanizmem działania. Wśród leków stosowanych obecnie można wyróżnić m.in. alliloaminy, azole, antybiotyki polienowe i inne. Mechanizm działania takich leków związany jest z zakłóceniem funkcji fizjologicznych grzyba. W przypadku alliloamin oraz azoli polega on na hamowaniu syntezy ergosterolu. Ergosterol jest ważnym składnikiem strukturalnym grzybów o funkcji i budowie analogicznej do cholesterolu u człowieka. Ten ostatni fakt jest niestety, powodem możliwych działań niepożądanych omawianych leków, gdyż podobieństwo strukturalne obydwu steroli może spowodować, że medykament zadziała też na komórki ludzkie [65]. Wśród dostępnych obecnie leków przeciwartwicznych najczęściej stosowane składniki czynne to związki z grupy azoli (Ryc. 15) [104].

![Flukonazol](image1)

Flukonazol

![Ketokonazol](image2)

Ketokonazol

Ryc. 15. Przedstawiciele stosowanych leków z grupy azoli.

Pomimo, iż leki te są dobrze tolerowane przez pacjentów oraz posiadają szerokie spektrum aktywności biologicznej, są również bardzo podatne na pojawianie się lekooporności [105]. Mniej podatne na to zjawisko są pochodne alliloaminy tj. naftifina, terbinafina czy butenafina [106], ponadto działają na wcześniejszym etapie hamowania syntezy ergosterolu, blokując epoksydację skwalenową (Ryc. 16) [107].
Zauważono, iż struktura chinoliny stanowi usztywniony analog jednego z mniej uprzywilejowanych konformerów homoalliloaminy (Ryc. 17). Fakt ten dał początek projektowaniu analogów opartych na fragmencie chinoliny. Co więcej styrylochinoliny wykazują znaczne podobieństwo do alliloamin [109], zatem potencjalnie będą naśladować naftisfinę czy terbinafinę (Ryc. 17). Takie podejście wydaje się być słuszne ze względu na duże prawdopodobieństwo aktywności biologicznej zaprojektowanych związków [109]. Ponadto postuluje się, że związki oparte na takich układach mogą być pozbawione toksyczności, jak np. terbinafina.\(^1\)

\(^1\) Zagadnienia omówiono szerzej w rozdziale 3.2.
W Zakładzie Chemii Organicznej Uniwersytetu Śląskiego od 2004 roku prowadzone są badania dotyczące projektowania nowych pochodnych chinoliny o działaniu przeciwgrzybiczym oraz przeciwbakteryjnym [103], [110], [111]. W związku z interesującymi właściwościami biologicznymi styrylochinolin, postanowiono rozbudować bibliotekę tych związków. Dotychczasowe wyniki badań wskazują, że fragment chinolinowy z podstawnikiem hydroksyłowym w pozycji 8 jest kluczowy dla aktywności badanych związków. Natomiast pierścień fenylowy powinien być podstawiony grupami hydroksyłowymi lub halogenowymi [103], [110]. Aby zweryfikować powyższe hipotezy zaprojektowano i otrzymano szereg związków opartych na szkieletie chinoliny o różnych podstawnikach, m.in. 8-hydroksychinoliny oraz 5,7-dichloro-8-hydroksychinoliny (Ryc. 18).
3.1.2. Otrzymywanie oraz analiza strukturalna styrylochinolin.
Styrylochinoliny otrzymano w reakcji kondensacji chinaldyny oraz aldehydu aromatycznego, stosując metodę konwencjonalnego lub mikrofalowego ogrzewania (MAOS) (Schemat 1). Wszystkie syntezyowane styrylochinoliny zebrano w Tabeli 2.

Schemat 1. Otrzymywanie styrylochinolin.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Struktura</th>
<th>clogP</th>
<th>Nr</th>
<th>Struktura</th>
<th>clogP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6.21</td>
<td>2</td>
<td></td>
<td>5.43</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4.05</td>
<td>4</td>
<td></td>
<td>5.16</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6.23</td>
<td>6</td>
<td></td>
<td>6.81</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure 1</td>
<td>Value 1</td>
<td>Chemical Structure 2</td>
<td>Value 2</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4.59</td>
<td></td>
<td>4.91</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>6.07</td>
<td></td>
<td>6.07</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>5.48</td>
<td></td>
<td>3.79</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>4.12</td>
<td></td>
<td>4.10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>4.12</td>
<td></td>
<td>4.10</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>3.31</td>
<td></td>
<td>3.43</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>2.74</td>
<td></td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>2.04</td>
<td></td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>2.93</td>
<td></td>
<td>4.16</td>
<td></td>
</tr>
</tbody>
</table>
Reakcje metodą konwencjonalną prowadzono w środowisku wrzącego bezwodnika octowego przez 16 h. Naturalną konsekwencją takiego doboru warunków jest acylowanie grup hydroksyloowych obecnych w cząsteczkach substratów. W związku z tym kolejnym etapem reakcji była hydroliza powstałej grupy acylowej. Hydrolizę przeprowadzono według opisanej procedury w mieszaninie pirydyna:woda w stosunku 3:1, ogrzewając w temperaturze wrzenia (100°C) przez 3 h [112]. Okazało się, że warunki te umożliwiają deacylowanie grupy hydroksyloowej podstawionej jedynie w pierścieniu chinolinowym, natomiast grupy acylowe w pierścieniu fenylowym pozostają niezhydrolizowane. Aby odbezpieczyć grupy hydroksyloowe w pierścieniu fenylowym, stosowano 3 M kwas siarkowy (VI) w temperaturze 100°C przez 3 godziny [112], [113]. Zbadano również możliwość odblokowania wszystkich

<table>
<thead>
<tr>
<th>25</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5.22</td>
<td>5.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4.69</td>
<td>5.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4.78</td>
<td>6.74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>31</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5.36</td>
<td>5.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6.48</td>
<td>6.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>35</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7.69</td>
<td>6.05</td>
</tr>
</tbody>
</table>
grup acyłowych stosując węglan potasu w środowisku metanolu, bez ogrzewania mieszaniny (Schemat 2). Metoda ta okazała się dogodniejsza od poprzedniej, ponieważ reakcja przebiega w łagodniejszych warunkach i krótszym czasie (2 h). Dodatkowo łatwiej jest wyizolować oraz oczyścić końcowy produkt. Warto zwrócić uwagę, że dzięki różnym metodom hydrolizy styrylochinolin można selektywnie deacylować grupy hydroksylowe. Otwiera to intrygującą możliwość zbadania wpływu grup OH na aktywność pochodnych chinoliny. W związku z powyższym zdecydowano otrzymać szereg częściowo i w pełni zhydrolizowanych związków.

Schemat 2. Reakcje deacylacji na przykładzie związku 12.

Powstawanie produktów ubocznych podczas reakcji kondensacji oraz konieczność przeprowadzania reakcji hydrolizy sprawia, że izolowanie i oczyszczenie produktów jest skomplikowane oraz czasochłonne. Produkty oczyszczano przez kilkukrotną krystalizację lub chromatografię kolumnową. Stosując metodę konwencjonalnej syntezy otrzymano i oczyszczono szereg związków (2, 5-29, 31, 32, 35).

Alternatywną metodą otrzymywania styrylochinolin jest synteza w polu mikrofalowym [103], [114]. Reakcję prowadzono w temperaturze 180°C przez 10 minut stosując ogrzewanie w masie, bezrozpuszczalnikowo. Środowiskiem reakcji był czterokrotny nadmiar aldehydu. Metoda mikrofalowa znacznie skróciła czas reakcji oraz rozwiązała niedogodności związane z koniecznością przeprowadzenia hydrolizy. Niestety jest skuteczna jedynie w sytuacji gdy aldehyd jest cieczą lub ma niską temperaturę topnienia. Pomimo prób wydłużania czasu reakcji, metoda ta prowadzi do uzyskania mieszany substratów i produktu, nie rozwiązując problemów z wyizolowaniem i oczyszczeniem końcowych związków.
Ponadto, otrzymane wydajności reakcji są dużo niższe, niż wydajności uzyskane metodą konwencjonalną.

Dość istotnym zagadnieniem jest analiza strukturalna otrzymanych związków, w szczególności w chemii medycznej znaczenie ma określenie konfiguracji izomerów [115]. Styrylochinoliny mogą występować w konfiguracji \(E \) i \(Z \) (Ryc. 19).

Ryc. 19. Izomery \(E \) i \(Z \) styrylochinolin.

Tego typu izomery można szybko i łatwo zidentyfikować metodami spektroskopii NMR. Atomy wodoru w położeniu \(E \) charakteryzują się dużymi wartościami stałej sprzężenia, tj. od 12 od 18 Hz, natomiast stała sprzężenia atomów wodorów w położeniu \(Z \) mieści się pomiędzy 10 a 12 Hz [116]. W przypadku styrylochinolin otrzymanych opisanymi metodami stała sprzężenia wynosi ok. 16 Hz, co sugeruje powstawanie izomeru \(E \). Poniżej przedstawiono przykładowe widmo \('\text{H}\text{NMR}\) związku 9 (Ryc. 20) zarejestrowane przy częstotliwości 400 MHz. Na widmie widoczny jest dublet (g) pochodzący od winylowego atomu wodoru ze stałą sprzężenia 15,9 Hz. Dla ułatwienia przypisania sygnałów odpowiednim atomom dodatkowo wykonano widmo dwuwymiarowe COSY (Ryc. 21), na którym poza sygnałami autokorelacyjnymi widać sprzęgania sąsiadujących protonów. Z analizy tego widma wynika, że drugi dublet pochodzący od protonu układu \(C=\text{C} \) (f) jest „schowany” w multiplecie (7,63-7,53 ppm).
Dla pełnego kompletu analiz oraz potwierdzenia struktur chemicznych wykonano również jednowymiarowe widma węglowe, dla wszystkich otrzymanych związków. Poniżej przedstawiono przykładowe widmo 13CNMR dla
pochodnej 9 (Ryc. 22) oraz widmo dwuwymiarowe HMQC (Ryc. 23) w celu przypisania sygnału protonów (a-j) do odpowiednich atomów węgla (1-17). Analogiczne cechy analizy spektroskopowej opisanej powyżej można zauważyć we wszystkich widmach otrzymanych związków.

Ryc. 22. Widmo 13CNMR dla związku 9.

Dodatkowo wykonano analizę rentgenowską dla związku 9, która potwierdza obecność izomeru E (Ryc. 24). Podsumowując, stosowana metoda syntezy umożliwia otrzymanie czystych izomerów E.

3.1.3. Właściwości przeciwgrzybicze

2 Badania zostały wykonane we współpracy z dr Mariuszem Wolffem (Zakład Krystalografii, Instytut Chemii Uniwersytetu Śląskiego),
3 Badania zostały wykonane we współpracy z dr Marcelą Vejsovą (Zakład Mikrobiologii Klinicznej, Wydział Farmacji, Uniwersytet Karola, Hradec Kralove, Czechy).
Tabela 3. Wyniki testów przeciwgrzybiczych otrzymanych styrylochinolin 1-36.

<table>
<thead>
<tr>
<th>Nr</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>CA<sup>a</sup></th>
<th>CT<sup>a</sup></th>
<th>CK<sup>a</sup></th>
<th>CG<sup>a</sup></th>
<th>TB<sup>a</sup></th>
<th>AF<sup>b</sup></th>
<th>AC<sup>b</sup></th>
<th>TM<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24h / 48h</td>
<td>24h / 120h</td>
</tr>
<tr>
<td>1</td>
<td>8-Cl</td>
<td>2-Cl</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>2-Cl</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>2-OH</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>4-OEt</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>4-OBu</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>4-Bu</td>
<td>>250</td>
<td>-</td>
<td>>250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>8-OAc</td>
<td>2-F</td>
<td>>500</td>
<td>>500</td>
<td>15.62</td>
<td>15.62</td>
<td>62.50</td>
<td>62.50</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>8</td>
<td>8-OH</td>
<td>2-F</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>9</td>
<td>8-OH</td>
<td>2,3-Cl</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>10</td>
<td>8-OH</td>
<td>3,4-Cl</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>11</td>
<td>8-OH</td>
<td>2-Cl</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>12</td>
<td>8-OAc</td>
<td>2-OAc</td>
<td>31.25</td>
<td>>125</td>
<td>>125</td>
<td>62.50</td>
<td>62.50</td>
<td>31.25</td>
<td>125</td>
<td>62.50</td>
</tr>
<tr>
<td>13</td>
<td>8-OH</td>
<td>2-OAc</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>14</td>
<td>8-OH</td>
<td>2-OH</td>
<td>31.25</td>
<td>125</td>
<td>500</td>
<td>31.25</td>
<td>62.50</td>
<td>31.25</td>
<td>62.50</td>
<td>31.25</td>
</tr>
<tr>
<td>15</td>
<td>8-OH</td>
<td>3-OAc</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>16</td>
<td>8-OH</td>
<td>3-OH</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>17</td>
<td>8-OAc</td>
<td>2,4-OAc</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>31.25</td>
<td>62.50</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>18</td>
<td>8-OH</td>
<td>2,4-OH</td>
<td>>125</td>
<td>>125</td>
<td>125</td>
<td>62.50</td>
<td>125</td>
<td>62.50</td>
<td>125</td>
<td>62.50</td>
</tr>
<tr>
<td>19</td>
<td>8-OAc</td>
<td>2,4,6-OAc</td>
<td>62.50</td>
<td>>125</td>
<td>31.25</td>
<td>31.25</td>
<td>62.50</td>
<td>31.25</td>
<td>62.50</td>
<td>62.50</td>
</tr>
<tr>
<td>20</td>
<td>8-OH</td>
<td>2,4,6-OH</td>
<td>500</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>125</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>21</td>
<td>8-OAc</td>
<td>2,3,4-</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>125</td>
<td>125</td>
<td>>125</td>
<td>>125</td>
<td>62.50</td>
</tr>
<tr>
<td>No</td>
<td>Butylochinolina</td>
<td>Struktura</td>
<td>Płyn</td>
<td>500</td>
<td>>500</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>22</td>
<td>8-OH 3,4,5-OH</td>
<td>500</td>
<td>500</td>
<td>>500</td>
<td>>500</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>23</td>
<td>8-OH 3,4-OAc-5-OCH₃</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>24</td>
<td>8-OH 7-COOH 5-OCH₃</td>
<td>250</td>
<td>500</td>
<td>>500</td>
<td>500</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>500</td>
</tr>
<tr>
<td>25</td>
<td>8-OH 2-OEt</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>26</td>
<td>8-OH 4-OEt</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>250</td>
<td>>250</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>27</td>
<td>8-OH 3-OCH₃</td>
<td>125</td>
<td>>500</td>
<td>>500</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>28</td>
<td>8-OH 3-CH₃</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>29</td>
<td>8-OH 2,5-OCH₃</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>31</td>
<td>8-OH-5,7-Cl 4-OH</td>
<td>125</td>
<td>>125</td>
<td>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>32</td>
<td>8-OH-5,7-Cl 2-OH</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>33</td>
<td>8-OH-5,7-Cl 4-OEt</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
</tr>
<tr>
<td>34</td>
<td>8-OH-5,7-Cl 2-OEt</td>
<td>0.49</td>
<td>0.98</td>
<td>0.8</td>
<td>1.95</td>
<td>0.49</td>
<td>1.95</td>
<td>1.95</td>
<td>1.95</td>
<td>1.95</td>
</tr>
<tr>
<td>35</td>
<td>8-OAc-5,7-Cl 4-OEt</td>
<td>>250</td>
<td>-</td>
<td>>250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>8-OH-5-Cl 2-OEt</td>
<td>>250</td>
<td>-</td>
<td>>250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Flukonazol

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.12</td>
<td>3.91</td>
<td>0.98</td>
<td>0.24</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>1.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>>125</td>
<td>15.62</td>
<td>3.91</td>
<td>0.48</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>3.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a, b Aktywność przeciwgrzybicza jest wyrażona jako IC₈₀ [µM] dla drożdży oraz IC₅₀ [µM] dla pleśni; CA = Candida albicans, CT = Candida tropicalis, CK = Candida krusei, CG = Candida glabrata, TB = Trichosporon beigelli, AF = Aspergillus fumigatus (Kropidlak popielaty), AC = Absidia corymbifera, TM = Trichophyton mentagrophytes; FLU = flukonazol. Wszystkie związki badano pod względem aktywności krótko- i długoterminowej, jeśli związek jest nieaktywny podano tylko jedną wartość.

Zaprojektowane styrylochinoliny wykazały interesujący rozkład aktywności, w niektórych przypadkach przewyższając aktywność flukonazolu. Związki zawierające w części chinolinowej dwa atomy chloru (oparte na strukturze chlorchinaldolu) wykazały większą aktywność przeciwgrzybiczą niż pochodne...

Niektóre otrzymane styrylochinoliny zostały przetestowane na trzech dodatkowych szczepach grzybiczych⁴, wyizolowanych z materiałów klinicznych (Tabela 4) w Pracowni Mikrobiologii Śląskiego Centrum Chorób Serca w Zabrzu.

Tabela 4. Rodzaj materiału klinicznego wyizolowanych szczepów.

<table>
<thead>
<tr>
<th>Nazwa gatunkowa</th>
<th>Rodzaj materiału</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida kefyr</td>
<td>Aspirat oskrzelowy</td>
</tr>
<tr>
<td>Candida parapsilosis</td>
<td>Plwocina oskrzelowa pęcherzykowa</td>
</tr>
<tr>
<td>Candida dubliniensis</td>
<td>Wymaz z oskrzela</td>
</tr>
</tbody>
</table>

⁴ Badania zostały wykonane we współpracy z mgr inż. Przemysławem Hahn (Wydział Chemiczny Politechniki Śląskiej).
Szczepy te pochodzą z rodzaju Candida: *Candida kefyr*, *Candida parapsilosis* oraz *Candida dubliniensis*. Testy biologiczne wykonano, stosując te same procedury co poprzednio (Tabela 5).

Tabela 5. Wyniki testów przeciwgrzybiczych wybranych styrylochinolin.

<table>
<thead>
<tr>
<th>Nr</th>
<th>R₁</th>
<th>R₂</th>
<th>MIC/IC₈₀ [µM]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CKe</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>7</td>
<td>8-OAc</td>
<td>2-F</td>
<td>15.63/500</td>
</tr>
<tr>
<td>12</td>
<td>8-OAc</td>
<td>2-OAc</td>
<td>125/125</td>
</tr>
<tr>
<td>13</td>
<td>8-OH</td>
<td>2-OAc</td>
<td>>500/500</td>
</tr>
<tr>
<td>14</td>
<td>8-OH</td>
<td>2-OH</td>
<td>15.63/15.63</td>
</tr>
<tr>
<td>15</td>
<td>8-OAc</td>
<td>3-OAc</td>
<td>>500/500</td>
</tr>
<tr>
<td>17</td>
<td>8-OAc</td>
<td>2,4-OAc</td>
<td>>500/500</td>
</tr>
<tr>
<td>18</td>
<td>8-OH</td>
<td>2,4-OH</td>
<td>62.50/62.50</td>
</tr>
<tr>
<td>19</td>
<td>8-OAc</td>
<td>2,4,6-OAc</td>
<td>>500/500</td>
</tr>
<tr>
<td>20</td>
<td>8-OH</td>
<td>2,4,6-OH</td>
<td>62.50/62.50</td>
</tr>
<tr>
<td>21</td>
<td>8-OAc</td>
<td>2,3,4-OAc</td>
<td>31.25/31.25</td>
</tr>
<tr>
<td>26</td>
<td>8-OH</td>
<td>4-OC₂H₅</td>
<td>250/31.25</td>
</tr>
<tr>
<td>27</td>
<td>8-OH</td>
<td>3-OCH₃</td>
<td>>500/500</td>
</tr>
<tr>
<td>30</td>
<td>8-OH-5,7-Cl</td>
<td>2-Cl</td>
<td>125/125</td>
</tr>
<tr>
<td>32</td>
<td>8-OH-5,7-Cl</td>
<td>2-OH</td>
<td>250/250</td>
</tr>
<tr>
<td>33</td>
<td>8-OH-5,7-Cl</td>
<td>4-OC₂H₅</td>
<td>3.91/3.91</td>
</tr>
<tr>
<td>34</td>
<td>8-OH-5,7-Cl</td>
<td>2-OC₂H₅</td>
<td>3.91/7.81</td>
</tr>
<tr>
<td>35</td>
<td>8-OAc-5,7-Cl</td>
<td>4-OEt</td>
<td>-/>250</td>
</tr>
<tr>
<td>36</td>
<td>8-OH-5-Cl</td>
<td>2-OEt</td>
<td>-/>250</td>
</tr>
</tbody>
</table>

Flukonazol

<table>
<thead>
<tr>
<th>MIC/IC₈₀ [µM]</th>
<th>Flukonazol</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKe</td>
<td>CP</td>
</tr>
<tr>
<td>0.24</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Aktywność przeciwgrzybicza jest wyrażona jako IC₈₀ [µM]. CKe = *Candida kefyr*, CP = *Candida parapsilosis*, CD = *Candida dubliniensis*; FLU = flukonazol. Wszystkie...
związki badano pod względem aktywności krótko- i długoterminowej, jeśli związek jest nieaktywny podano tylko jedną wartość.

Pochodne oparte na 8-hydroksy- i 8-acetoksychinolinie wykazują umiarkowany rozkład aktywności. Najlepsze rezultaty osiągnęły związki 33 oraz 34, zawierające wbudowaną strukturę clorchinaldolu. Pochodne te wykazują szeroki zakres aktywności, a w przypadku Candida dubliniensis osiągają porównywalne lub niższe wartości IC₈₀ od flukonazolu. Istotny wydaje się również podstawnik etoksylowy w pierścieniu fenylowym, gdyż inne związki oparte na 5,7-dichloro-8-hydroksychinolinie (30, 32) nie wykazują tak wysokich właściwości hamujących, bądź są ich pozbawione. Zmiany w pierścieniu chinoliny, tj. usunięcie atomów chloru (34/36, 33/26) lub zamiana grupy hydroksylowej na acetoksylową na acetoksylową (33/35) powoduje całkowity zanik właściwości przeciwgrzybiczych.

Nie zauważono prostych zależności pomiędzy obliczonymi wartościami lipofilowości clogP z aktywnościami przeciwgrzybiczymi zsytezowanych związków. Brak takiego powiązania wskazuje na to, że lipofilowość jest tutaj jedynie dodatkową składową, która częściowo wpływa na aktywność, natomiast wpływ innych czynników działa hamująco na rozwój grzybów, np. zdolność kompleksowania metali.

3.1.4. Hamowanie procesu fotosyntezy

Dodatkowo otrzymane związki zbadano pod kątem zdolności hamowania procesu fotosyntetycznego transportu elektronów (ang. PET, photosynthetic electron transport) w chloroplastach szpinaku (Spinacia oleracea) (Tabela 6), używając standardowych procedur [118]. Jako wzorca użyto komercyjnie dostępnego herbicydu DCMU (Diuron), związku dezaktywującego fotosystem II. Badania tego procesu mogą pomóc w ocenie możliwości wykorzystania pochodnych chinoliny jako potencjalnych herbicydów w chemii rolniczej. Ponadto, co równie istotne, pozwolą ocenić szeroko rozumianą toksyczność badanych związków.

5 Badania przeprowadzone we współpracy z dr hab. Josefem Jampilkiem (University of Veterinary and Pharmaceutical Sciences, Brno, Czechy).
Tabela 6. Wyniki testów na hamowanie procesu fotosyntezy otrzymanych styrylochinolin.

<table>
<thead>
<tr>
<th>Nr</th>
<th>R¹</th>
<th>R²</th>
<th>PET IC₅₀ [μM]</th>
<th>Nr</th>
<th>R¹</th>
<th>R²</th>
<th>PET IC₅₀ [μM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8-Cl</td>
<td>2-Cl</td>
<td>114.7</td>
<td>16</td>
<td>8-OH</td>
<td>3-OH</td>
<td>63.4</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>2-OH</td>
<td>145.5</td>
<td>18</td>
<td>8-OH</td>
<td>2,4-OH</td>
<td>8.1</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>4-OEt</td>
<td>1018.4</td>
<td>20</td>
<td>8-OH</td>
<td>2,4,6-OH</td>
<td>89.0</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>4-OBu</td>
<td>467.0</td>
<td>22</td>
<td>8-OH</td>
<td>3,4,5-OH</td>
<td>87.6</td>
</tr>
<tr>
<td>8</td>
<td>8-OH</td>
<td>2-F</td>
<td>106.2</td>
<td>24</td>
<td>8-OH-7-COOH</td>
<td>5-OCH₃</td>
<td>202.6</td>
</tr>
<tr>
<td>9</td>
<td>8-OH</td>
<td>2,3-Cl</td>
<td>483.5</td>
<td>25</td>
<td>8-OH</td>
<td>2-OEt</td>
<td>383.7</td>
</tr>
<tr>
<td>10</td>
<td>8-OH</td>
<td>3,4-Cl</td>
<td>495.8</td>
<td>26</td>
<td>8-OH</td>
<td>4-OEt</td>
<td>404.8</td>
</tr>
<tr>
<td>13</td>
<td>8-OH</td>
<td>2-OAc</td>
<td>654.1</td>
<td>28</td>
<td>8-OH</td>
<td>3-CH₃</td>
<td>277.1</td>
</tr>
<tr>
<td>14</td>
<td>8-OH</td>
<td>2-OH</td>
<td>36.5</td>
<td>29</td>
<td>8-OH</td>
<td>2,5-OCH₃</td>
<td>508.3</td>
</tr>
<tr>
<td>15</td>
<td>8-OH</td>
<td>3-OAc</td>
<td>208.6</td>
<td>DCMU</td>
<td></td>
<td></td>
<td>1.9</td>
</tr>
</tbody>
</table>

Testom tym poddano wszystkie zsyntezowane związki, a wyniki dla tych, które wykazały znaczącą aktywność zebrano w Tabeli 6. Natomiast resztę pochodnych opisanych w niniejszej pracy należy uznać za nieaktywną względem PET. Podczas analizy zależności struktura - aktywność można zauważyć, że grupa związków oparta na szkieletie 8-acetoksychinoliny oraz 5,7-dichloro-8-hydroksychinoliny okazała się zupełnie nieaktywna. Kluczowe dla wywołania inhibicji wydaje się podstawienie grupami hydroksylowymi zarówno chinoliny, jak i pierścienia fenylowego. Najciekawszy związek 18 wykazuje aktywność rzędu 8,1 μM (IC₅₀). Zauważono również pewną zależność między inhibicją procesu fotosyntezy a lipofilowością (Ryc. 25). Współczynnik korelacji modelu (R²) na poziomie 0,82 wskazuje na dobre dopasowanie obu parametrów. Najniższe wartości IC₅₀ osiągnęły związki, których parametr clogP nie przekracza 4,5. Prawdopodobnym wyjaśnieniem tej obserwacji jest specyficzna budowa chloroplastów, stawiająca transportowanym cząsteczkom pewne wymagania. Chloroplasty otoczone są podwójną błoną o różnej przepuszczalności poszczególnych warstw. Pierwsza zewnętrzna blona jest mniej ścisła i umożliwia transport większej liczby cząsteczek, druga natomiast tworzy tylakoidy. W przeciwieństwie do błon bateryjnych lub grzybiczych błona tylakoidu składa się w pewnej części z galaktolipidów. W związku z tym parametry wpływające na transport cząsteczek zdają się mieć większe znaczenie niż w przypadku badań na...
komórkach grzybów. Ponadto podczas procesu fotosyntezy istotnie spada pH wewnątrz chloroplastów. W tej sytuacji obok pewnej lipofilowości cząsteczki inhibitorów powinny wykazywać rozpuszczalność w kwaśnym środowisku wodnym. Reasumując, badania wobec wyizolowanych chloroplastów mogą preferować cząsteczki o pewnej lipofilowości, niższej jednak niż w przypadku grzybów oraz posiadające właściwości słabej zasady. Rozważania te zdają się potwierdzać doniesienia literaturowe na temat zależności lipofilowości i aktywności w hamowaniu transportu elektronu w chloroplastach [119].

Ryc. 25. Wykres zależności parametru clogP od zdolności hamowania procesu fotosyntezy.

3.1.5. Właściwości przeciwbakteryjne

6 Badania przeprowadzone we współpracy z dr hab. Josefem Jampilkiem (University of Veterinary and Pharmaceutical Sciences, Brno, Czechy).
bakterii Gram-dodatnich (Tabela 7), natomiast w grupie bakterii Gram-ujemnych wszystkie otrzymane pochodne okazały się nieaktywne.

Tabela 7. Wyniki testów przeciwbakteryjnych otrzymanych styrylochinolin 1-36.

<table>
<thead>
<tr>
<th>Nr</th>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>SA 24h</th>
<th>MRSA 24h</th>
<th>SE 24h</th>
<th>EF 24h</th>
<th>SA 48h</th>
<th>MRSA 48h</th>
<th>SE 48h</th>
<th>EF 48h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8-Cl</td>
<td>2-Cl</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>2-Cl</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>2-OH</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>4-OEt</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>4-OBu</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>4-Bu</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8-OAc</td>
<td>2-F</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8-OH</td>
<td>2-F</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8-OH</td>
<td>2,3-Cl</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8-OH</td>
<td>3,4-Cl</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8-OH</td>
<td>2-Cl</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8-OAc</td>
<td>2-OAc</td>
<td>125</td>
<td>250</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8-OH</td>
<td>2-OAc</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8-OH</td>
<td>2-OH</td>
<td>62.50</td>
<td>62.50</td>
<td>62.50</td>
<td>125</td>
<td>62.50</td>
<td>125</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8-OH</td>
<td>3-OAc</td>
<td>62.50</td>
<td>62.50</td>
<td>62.50</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>31.25</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8-OH</td>
<td>3-OH</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>8-OAc</td>
<td>2,4-OAc</td>
<td>3.9</td>
<td>15.62</td>
<td>31.25</td>
<td>125</td>
<td>31.25</td>
<td>125</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>8-OH</td>
<td>2,4-OH</td>
<td>15.62</td>
<td>31.25</td>
<td>31.25</td>
<td>62.50</td>
<td>125</td>
<td>250</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8-OAc</td>
<td>2,4,6-OAc</td>
<td>62.50</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>8-OH</td>
<td>2,4,6-OH</td>
<td>125</td>
<td>250</td>
<td>125</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8-OAc</td>
<td>2,3,4-OAc</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>62.5</td>
<td>125</td>
<td>>125</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8-OH</td>
<td>3,4,5-OH</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>125</td>
<td>250</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8-OH</td>
<td>3,4-OAc</td>
<td>>125</td>
<td>>125</td>
<td>62.50</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td>>125</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>8-OH</td>
<td>7-COOH</td>
<td>500</td>
<td>500</td>
<td>250</td>
<td>500</td>
<td>125</td>
<td>250</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8-OH</td>
<td>2-OEt</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>8-OH</td>
<td>4-OEt</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td></td>
</tr>
</tbody>
</table>

R₁ i **R₂** - pochodne styrylochinolinu 1-36.

MIC/IC₉₀ [μM]

SA - S. aureus

MRSA - MRSA

SE - S. epidermidis

EF - efekty testów

Tabela 7. Wyniki testów przeciwbakteryjnych otrzymanych styrylochinolin 1-36.
<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>8-OH</td>
<td>3-CH₃</td>
<td>125</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>28</td>
<td>8-OH</td>
<td>3-CH₃</td>
<td>250</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>29</td>
<td>8-OH</td>
<td>2,5-OCH₃</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>30</td>
<td>8-OH</td>
<td>5,7-Cl</td>
<td>2-Cl</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>250</td>
<td>250</td>
<td>15.62</td>
</tr>
<tr>
<td>31</td>
<td>8-OH</td>
<td>5,7-Cl</td>
<td>4-OH</td>
<td>7.81</td>
<td>15.62</td>
<td>31.25</td>
<td>31.25</td>
<td>62.50</td>
<td>62.50</td>
</tr>
<tr>
<td>32</td>
<td>8-OH</td>
<td>5,7-Cl</td>
<td>2-OH</td>
<td>7.81</td>
<td>15.62</td>
<td>31.25</td>
<td>62.50</td>
<td>31.25</td>
<td>62.50</td>
</tr>
<tr>
<td>33</td>
<td>8-OH</td>
<td>5,7-Cl</td>
<td>4-OEt</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>>125</td>
</tr>
<tr>
<td>34</td>
<td>8-OH</td>
<td>5,7-Cl</td>
<td>2-OEt</td>
<td>3.9</td>
<td>7.81</td>
<td>3.9</td>
<td>7.81</td>
<td>3.9</td>
<td>7.81</td>
</tr>
<tr>
<td>35</td>
<td>8-OAc</td>
<td>5,7-Cl</td>
<td>4-OEt</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>8-OH-5-Cl</td>
<td>2-OEt</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PEN</td>
<td></td>
<td>0.24</td>
<td>0.24</td>
<td>125</td>
<td>125</td>
<td>31.25</td>
<td>125</td>
<td>7.81</td>
</tr>
<tr>
<td></td>
<td>CPX</td>
<td></td>
<td>0.98</td>
<td>0.98</td>
<td>500</td>
<td>500</td>
<td>250</td>
<td>250</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Aktywność przeciwbakteryjna jest wyrażona jako IC₉₀ [µM]; SA = Staphylococcus aureus, MRSA = metycylinowo-oporny Staphylococcus aureus, SE = Staphylococcus epidermidis, EF = Enterococcus faecalis; BAC = bacytracina, PEN = penicyllina V, CPX = cyprofloksacyna. Wszystkie związki badano pod względem aktywności krótko- i długoterminowej.

Tabela 8. Wyniki testów przeciwbakteryjnych wybranych styrylochinolin.

<table>
<thead>
<tr>
<th>Nr</th>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>MIC/IC<sub>90</sub> [μM]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MS 48h</td>
</tr>
<tr>
<td>6</td>
<td>H 4-Bu</td>
<td>>500</td>
<td>7</td>
</tr>
<tr>
<td>35</td>
<td>8-OAc-5,7-Cl</td>
<td>154,9</td>
<td>4,8</td>
</tr>
<tr>
<td>36</td>
<td>8-OH-5-Cl</td>
<td>>500</td>
<td>12,3</td>
</tr>
<tr>
<td>INH</td>
<td>-</td>
<td>284</td>
<td>73</td>
</tr>
<tr>
<td>CPX</td>
<td></td>
<td>24</td>
<td>4</td>
</tr>
</tbody>
</table>

Aktywność przeciwbakteryjna jest wyrażona jako IC₉₀ [μM]. MS = *M. smegmatis*; MK = *M. kansasii*, MM = *M. Marinum*; MA = *M. avium*, MAP = *M. avium paratuberculosis*; MT = *M. tuberculosis*; INH = izoniazyd; CPX = cyprofloksacyna. Wszystkie związki badano pod względem aktywności długoterminowej.
3.1.6. Właściwości przeciwnowotworowe oraz oznaczenia cytotoksyczności

W Zakładzie Chemii Organicznej Uniwersytetu Śląskiego zaobserwowano, że niektóre pochodne chinolininy wykazują wysoką aktywność przeciwnowotworową [121], [122]. Wartość IC₅₀ związku 2-[2-(4-chlorofenylo)-winylo]-chinolin-8-ol (A, Ryc. 26) w stosunku do linii SK-N-MC (ludzkie komórki nablonyka nerwowego) wynosi 0,77 μM [121]. Uzyskana aktywność antyproliferacyjna tej pochodnej jest podobna do triapiny – leku, który przeszedł drugą fazę badań klinicznych i jest szczególnie skuteczny w zwalczaniu białaczki, nowotworów płuc oraz jajników [123], [124]. Kolejnym związkiem wykazującym wysoką aktywność antyproliferacyjną, tym razem względem komórek HCT116p53+/+ (nowotwór okrężnicy), jest pochodna chinazolonu (B, Ryc. 26). Wartość IC₅₀ dla tego związku wynosi 1,5 μM [125].

Informacje te stały się inspiracją do przetestowania otrzymanych styrylochinolin względem komórek nowotworowych. Wybrane linie komórkowe należą do nowotworów złośliwych jelita grubego, które co roku są przyczyną ponad 600 tysięcy zgonów na świecie [126]. W samej Polsce nowotwór okrężnicy stanowi drugie miejsce wśród zgonów z powodu nowotworów złośliwych [127].

Aktywność przeciwnowotworowa została zbadana na komórkach nowotworu okrężnicy linii HCT116 p53+/+ (tzw. „typ dziki” z normalną ekspresją genu supresorowego TP53) oraz HTC116 p53-/- (nowotwór z delecją tego genu, nieposiadający aktywnego białka p53). Białyko p53 reguluje wiele procesów komórkowych, m.in. procesy proliferacyjne, aktywuje mechanizmy naprawy DNA oraz wprowadza komórkę na szlak programowanej śmierci - apoptozy. Z tej

7 Badania wykonane we współpracy z dr Anną Mrozek-Wilczkiewicz (Zakład Fizyki Ciała Stałego, Instytut Fizyki Uniwersytetu Śląskiego) oraz mgr Ewelíną Spaczyńską (Zakład Chemii Organicznej, Instytut Chemii Uniwersytetu Śląskiego).
przyczyny mutacje w genie kodującym białko p53 mają szczególne znaczenie w powstawaniu różnych rodzajów nowotworów [128], [129]. Należy tu wymienić przede wszystkim lekooporność powiązaną z mutacją tego genu supresorowego. Jednocześnie takie mutacje notuje się w ponad 50% przypadków niektórych nowotworów. Z reguły obecność mutacji w zakresie tego genu wiąże się z utrudnioną terapią i złymi rokowaniami. Dla najbardziej aktywnych pochodnych określono również toksyczność względem prawidłowych komórek ludzkich, fibroblastów (NHDF). Wszystkie oznaczenia były przeprowadzone w oparciu o standardowe procedury do wyznaczania parametru IC$_{50}$ [130], [131]. Wyniki testów biologicznych przedstawiono w Tabeli 9.

Tabela 9. Wyniki testów przeciwnowotworowych oraz cytotoxiczności otrzymanych styrylochinolin (1-36).

<table>
<thead>
<tr>
<th>Nr</th>
<th>R$_1$</th>
<th>R$_2$</th>
<th>IC$_{50}$ [µM]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCT 116 +/-</td>
</tr>
<tr>
<td>1</td>
<td>8-Cl</td>
<td>2-Cl</td>
<td>>25</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>2-Cl</td>
<td>>25</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>2-OH</td>
<td>17.45±2.20</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>4-OEt</td>
<td>>25</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>4-OBu</td>
<td>>25</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>4-Bu</td>
<td>>25</td>
</tr>
<tr>
<td>7</td>
<td>8-OAc</td>
<td>2-F</td>
<td>12.07±3.02</td>
</tr>
<tr>
<td>8</td>
<td>8-OH</td>
<td>2-F</td>
<td>15.43±2.46</td>
</tr>
<tr>
<td>9</td>
<td>8-OH</td>
<td>2,3-Cl</td>
<td>5.13±1.14</td>
</tr>
<tr>
<td>10</td>
<td>8-OH</td>
<td>3,4-Cl</td>
<td>9.41±0.21</td>
</tr>
<tr>
<td>11</td>
<td>8-OH</td>
<td>2-Cl</td>
<td>9.84±1.79</td>
</tr>
<tr>
<td>12</td>
<td>8-OAc</td>
<td>2-OAc</td>
<td>8.08±0.56</td>
</tr>
<tr>
<td>13</td>
<td>8-OH</td>
<td>2-OAc</td>
<td>7.32±1.01</td>
</tr>
<tr>
<td>14</td>
<td>8-OH</td>
<td>2-OH</td>
<td>16.07±0.88</td>
</tr>
<tr>
<td>15</td>
<td>8-OH</td>
<td>3-OAc</td>
<td>7.88±1.98</td>
</tr>
<tr>
<td>16</td>
<td>8-OH</td>
<td>3-OH</td>
<td>16.31±0.76</td>
</tr>
<tr>
<td>17</td>
<td>8-OAc</td>
<td>2,4-OAc</td>
<td>>25</td>
</tr>
<tr>
<td>18</td>
<td>8-OH</td>
<td>2,4-OH</td>
<td>>25</td>
</tr>
<tr>
<td>19</td>
<td>8-OAc</td>
<td>2,4,6-OAc</td>
<td>>25</td>
</tr>
<tr>
<td>20</td>
<td>8-OH</td>
<td>2,4,6-OH</td>
<td>>25</td>
</tr>
</tbody>
</table>
Analizując zależności pomiędzy strukturą związku i jego aktywnością przeciwnowotworową można zauważyć, pewne istotne schematy podstawników, zarówno pierścienia chinolinowego, jak i fenylowego. Mianowicie okazuje się, że podstawienie pierścienia fenylowego w pozycji 2 wpływa na aktywność poszczególnych pochodnych wg następującego szeregu OH < OEt < F < Cl (Tabela 10). Zatem związki zawierające atomy halogenowe w pierścieniu fenylowym wykazują największą aktywność.

Tabela 10. Szereg aktywności przeciwnowotworowej styrylochinolin ze względu na podstawienie pierścienia fenylowego.

<table>
<thead>
<tr>
<th>Halogenowe</th>
<th>OEt</th>
<th>2-OH</th>
<th>2-F</th>
<th>2-Cl</th>
<th>2,3-Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-OH</td>
<td>2-OEt</td>
<td>< 2-F</td>
<td>< 2-Cl</td>
<td>< 2,3-Cl</td>
<td></td>
</tr>
<tr>
<td>2-OH</td>
<td>< 2-OEt</td>
<td><</td>
<td>< 2-Cl</td>
<td><</td>
<td></td>
</tr>
</tbody>
</table>

Należy zwrócić uwagę, iż wszystkie te grupy: hydroksylowa, alkoksylowa oraz halogenowe, ze względu na wolne pary elektronowe, dostarczają elektronów do pierścienia aromatycznego w wyniku rezonansu. Grupy hydroksylowe oraz alkoksylowe posiadają bardzo silny efekt rezonansowy, natomiast dla grup halogenowych efekt ten słabnie [132]. Nasuwa się wniosek, że im słabszy efekt rezonansowy dostarczający elektrony do pierścienia, tym wyższa aktywność.
przeciwnowotworowa. Pozostaje otwartym pytanie czy analogiczne związki z podstawnikami wyciągającymi elektrony, np. -NO₂, -CN itp. wykazałyby lepsze właściwości hamujące dla komórek nowotworowych?

Pewna zależność istnieje również w podstawieniu części chinolinowej. Porównano pochodne o takim samym podstawieniu pierścienia fenylowego, różniące się tylko częścią chinolinową. Okazuje się, że aktywność związków zmienia się wraz z podstawieniem pierścienia chinolinowego odpowiednio wg szeregu 8-H<8-OH<5,7-Cl-8-OH (Tabela 11).

Tabela 11. Szereg aktywności przeciwnowotworowej styrylochinolin ze względu na podstawienie pierścienia chinolinowego.

<table>
<thead>
<tr>
<th>Struktura</th>
<th>8-H</th>
<th>8-OH</th>
<th>5,7-Cl</th>
<th>8-OAc</th>
<th>5,7-Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-H</td>
<td></td>
<td></td>
<td><</td>
<td></td>
<td><</td>
</tr>
<tr>
<td>8-OAc</td>
<td></td>
<td></td>
<td></td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>5,7-Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><</td>
</tr>
</tbody>
</table>

Najwyższą aktywność przeciwnowotworową wykazują związki zawierające wbudowany w strukturę cząsteczki 5,7-dichloro-8-hydroksychinoline. Nawet tak drobne modyfikacje jak zastąpienie grupy hydroksylowej grupą acylową (związki 33/35), czy usunięcie atomu chloru z pozycji 7 (34/36) wpływa na zmniejszenie aktywności biologicznej. Najwyższą aktywność przeciwnowotworową spośród wszystkich otrzymanych styrylochinolin wykazuje związek 30, którego struktura oparta jest na chlorychinaldolu, a pierścień fenylowy podstawiony jest atomem chloru w pozycji 2. Analizując wyżej opisane wyniki należy spodziewać się, że pochodna oparta na chlorychinaldolu w podstawieniem 2,3-Cl w pierścieniu fenylowym wykazałyby jeszcze większą aktywność od związku 30.

Interesujące jest również działanie otrzymanych związków na komórki o różnej ekspresji genu TP53. W przypadku związków opartych na 8-hydroksychinolinie komórki linii HCT116⁻/⁻ zazwyczaj osiągają wyższą aktywność niż linii HCT116⁺/⁺, natomiast w przypadku 5,7-dichloro-8-hydroksychinoliny jest odwrotnie (przykłady 11/30; 14/32; 26/33). Warto również zwrócić uwagę na fakt, że badane związki nie
wykazują toksyczności względem prawidłowych komórek ludzkich, co świadczy o ich wysokiej selektywności działania. Informacja ta jest szczególnie istotna w odniesieniu do wcześniej opisanych badań, dotyczących aktywności przeciwwgrzybiczej oraz przeciwbakteryjnej. Wyjątkiem jedynie są tutaj związki 12 oraz 35 dla których toksyczność względem fibroblastów jest porównywalna lub wyższa niż względem komórek neoplastycznych. Podobnie jak w rozdziałach 3.1.3 i 3.1.5 nie zauważono zależności między aktywnością biologiczną a lipofilowością.
3.2. Bliskie analogi terbinafiny i butenafiny.

3.2.1. Wstęp oraz projektowanie nowych analogów.

Dla weryfikacji głównej tezy podobieństwa styrylochinolin do alliloamin zaprojektowano i otrzymano bliskie analogi terbinafiny oraz butenafiny, opartych na podstrukturze chinoliny (Ryc. 27).

Alliloaminy poprzez swój unikalny mechanizm działania stanowią kluczową grupę leków w leczeniu grzybic. Ze względu na wysoką lipofilowość, tego typu związki gromadzą się w paznokciach, skórze oraz tkankach tłuszczowych [133]. Z drugiej strony tak lipofilowe pochodne mogą być hepatotoksyczne, jak np. butenafina, naftifina czy amorolifina [109]. Jednakże terbinafina stanowi w tej grupie wyjątek, gdyż posiada szeroki zakres aktywności przeciwgrzybiczej i jednocześnie stosunkowo niewielką toksyczność. Lek ten jest interesującą alternatywą zarówno w preparatach do podawania doustnego, jak i miejscowego [106], jest szczególnie skuteczny do leczenia dermatomykozy [134]. Nie podlega wątpliwości, iż terbinafina oraz inne alliloaminy są interesującymi strukturami, które mogą być wykorzystywane do opracowywania nowych środków przeciwgrzybiczych. W świetle dotychczasowych rozważań nad układami

Ryc. 27. Struktury zaprojektowanych analogów terbinafiny i butenafiny.
cholinowymi można zauważyć, że potrójne wiązanie oraz łańcuch alifatyczny powinny zwiększyć lipofilowość syntetyzowanych związków. Właściwości te mogą być kluczowym parametrem jeśli chodzi o przenikanie przez błonę komórkową oraz biodystrybucję w komórce.

3.2.2. Otrzymywanie analogów terbinafiny oraz butenafiny.

3.2.3. Właściwości biologiczne.

Syntezowane związki zostały poddane testom biologicznym. Badania wykazały, wbrew oczekiwaniom, że związki te w zakresie użytecznych stężeń są całkowicie pozbawione aktywności przeciwgrzybiczej. Fakt ten można wyjaśnić w oparciu o niedawno opublikowaną pracę Nowosielskiego i współautorów [138], w której autorzy podjęli próbę określenia prawdopodobnego wiązania się terbinafiny z celem
molekularnym. Dotychczas wiadomo było, iż głównym celem molekularnym terbinafiny i innych alliloamin jest epoksydaza skwalenowa (rozdz. 3.1.1), enzym błony komórkowej grzyba, który bierze udział w syntezie ergosterolu. Niedobór ergosterolu oraz nagromadzenie się skwalenu, powoduje śmierć komórki grzyba. W cytowanej pracy, autorzy zastosowali metody modelowania molekularnego oraz dokowania. Pomimo, iż struktura krystalograficzna epoksydazy skwalenowej nie jest znana, naukowcy zaprojektowali pełną strukturę 3D enzymu, opartą na modelu drożdży piekarskich (Saccharomyces cerevisiae), jak również danych dotyczących badań lekooporności oraz struktur hydroksylaz. Stwierdzili, iż w takim modelu cząsteczka terbinafiny przyjmuje konformację, w której łańcuch alkilowy ułożony jest prostopadle do pierścienia naftalenowego (Ryc. 28). Taka konformacja nie jest możliwa w przypadku otrzymanych płaskich analogów terbinafiny oraz wszystkich styrlochinolin. W konsekwencji otrzymane wcześniej związki, pomimo pozornego podobieństwa strukturalnego do alliloamin nie są inhibitorami epoksydazy skwalenowej. Zatem ich właściwości przeciwgrzybicze muszą być wynikiem działania innego mechanizmu.

Ryc. 28. Sugerowana konformacja terbinafiny.

Otrzymane związki zostały również przebadane jak wcześniej wobec szczepów bakteryjnych, nowotworu jelita grubego oraz hamowania procesu fotosyntezy. Nie wykazały jednak znaczącej aktywności w żadnym z tych testów. Wyjątek stanowią pochodne styrlochinolininy 43 i 46, które posiadają pewne właściwości hamujące proces fotosyntezy, odpowiednio o wartościach IC₅₀ równych 184 i 456 μM. Wszystkie otrzymane analogi terbinafiny nie wykazują w badanych stężeniach toksyczności względem neoplastycznych oraz prawidłowych komórek ludzkich.

59
3.3. Pochodne 1,2,3-triazoli

3.3.1. Wstęp oraz projektowanie 1,2,3-triazoli

Jak wspomniano w rozdziale 3.1.1., obecnie uważa się, że najsikuteczniejszymi lekami przeciwgrzybiczymi są pochodne azoli. Przykładem jest flukonazol, rutynowo stosowany w leczeniu grzybic. Ponadto, preparaty 1,2,4-triazolowe uważane są za najbezpieczniejsze spośród azoli, gdyż wykazują najmniej działań niepożądanych. Z powodu coraz częstszych stosowań triazoli w lecznictwie, pojawiają się lekooporne mikroorganizmy [139], [140]. Aktualnie oporność mikroorganizmów na czynniki antybiotykowe jest już poważnym problemem klinicznym. Infekcje powodowane przez oporne szczepy grzybów czy bakterii, które nie reagują na leczenie, skutkują przedłużającymi się chorobami i większym ryzykiem śmierci [141] (rozdział 2.1). Dlatego istotne jest, aby szukać zupełnie nowych klas związków chemicznych o nowym mechanizmie działania [142].

Ciekawą alternatywą dla 1,2,4-triazoli wydają się być ich bioizostery, mianowicie 1,2,3-triazole. Ugrupowanie to jest bardzo stabilne zarówno metabolicznie, jak i pod względem degradacji chemicznej. Ponadto jest najczęściej obojętne na czynniki utleniające i redukujące, nawet w wysokich temperaturach [143]. 1,2,3-triazole są zdolne do tworzenia wiązań wodorowych, co może ułatwić łączenie się z biomolekułami oraz wpływać korzystnie na wzrost rozpuszczalności. Cechy te są odpowiedzialne za zwiększenie aktywności biologicznej [144]. Ugrupowanie to staje się coraz bardziej użyteczne w tworzeniu bioaktywnych i funkcjonalnych cząsteczek. Znalazło zastosowanie zarówno jako „linker”, który może połączyć dwa farmakofory dając innowacyjne, dwufunkcyjne związki [142], jak i budulec (building block) dla bardziej złożonych związków chemicznych. Pomimo, iż 1,2,3-triazole posiadają szerokie spektrum aktywności biologicznej, to środków dostępnych w lecznictwie jest stosunkowo niewiele (Ryc. 29) [145]. Najprawdopodobniej przyczyną takiego stanu rzeczy jest niewielka dostępność syntetyczna takich związków, która do niedawna ograniczała wykorzystanie tych fragmentów w projektowaniu leków.
Ryc. 29. Przykładowe leki zawierające strukturę 1,2,3-triazolu; CAI - lek przeciwnowotworowy, TSAO - inhibitor HIV, tazobaktam i cefatryzyna - antybiotyki.

Poszukiwanie nowych związków biologicznie aktywnych wśród 1,2,3-triazoli wciąż jest kontynuowane [145]. W niniejszej pracy zdecydowano połączyć dwie aktywne molekuły: chinolinę oraz 1,2,3-triazol z różnymi podstawnikami w pozycji 4 (Ryc. 30). Literatura donosi, iż analogiczne związki posiadają właściwości przeciwbakteryjne oraz przeciwgrzybicze [144], [146], [147]

Ryc. 30. Ogólny wzór zaprojektowanych 1,2,3-triazoli.

3.3.2. Otrzymywanie oraz analiza strukturalna 1,2,3-triazoli.

Do otrzymania zaprojektowanych 1,2,3-triazoli stosowano reakcje między organicznym azydkiem i terminalnymi alkinami. Reakcja ta jest znana od ponad 100 lat, a jako pierwszy rozwinął ją najszerzej Prof. Rolf Huisgen na początku lat sześciodziestych XX wieku. Reakcja Huisgena to reakcja cykloaddycji typu [3+2], prowadząc ją w podwyższonej temperaturze (ok. 100°C) przez ok. 18 godzin otrzymujemy mieszaninę 1,4- oraz 1,5-dwupodstawionych 1,2,3-triazoli [148] (Schemat 4).

Opracowano kilkuetapową metodę syntezy nowych 1,2,3-triazoli o podstawieniu 1,4, opartych na szkieletach 8-chlorochinoliny (Schemat 5). Pierwszą reakcją zaplanowanej ścieżki syntetycznej było bromowanie bocznego łańcucha 8-chlorochinaldyny za pomocą NBS (N-Bromosukcynoimid) oraz AIBN (azobis(izobutyronitrily)) jako inicjatora, w środowisku CCl₄. Reakcja nie jest selektywna, dlatego powstaje zarówno monohromochinoliny (47), jak i dihromochinoliny (48). Po oczyszczeniu chromatograficznym 2-(bromometylo)-8-chlorochinoliny (47), kolejnym etapem syntezy było przekształcenie bromku w azydek. Reakcję prowadzono z azydkiem sodu w obecności eteru koronowego 18-korona-6, w acetonitrylu.
Schemat 5. Otrzymywanie 1,2,3-triazoli opartych na pierścieniu chinolinowym.

Tak funkcjonalizowaną pochodną 8-chlorochinoliny (49) użyto w reakcji 1,3-dipolarnej cykloaddycji otrzymując 1,4-dwupodstawione 1,2,3-triazole (50-57). Jako katalizator stosowano siarczan miedzi(II), chlorek miedzi(II) oraz octan miedzi(II), lecz najlepsze wyniki otrzymano używając octanu miedzi(II). Czynnikiem redukującym miedź był askorbinian sodu. Reakcja zachodzi w temperaturze pokojowej, natomiast najlepszym środowiskiem reakcji okazał się tert-butanol. Produkty reakcji oczyszczano przez krystalizację lub na kolumnie chromatograficznej. Wszystkie otrzymane związki zostały zestawione w Tabeli 12.

Struktury chemiczne otrzymanych związków zostały potwierdzone widmami NMR oraz ESI-MS. Ponieważ wszystkie związki zawierają mostek metylenowy, interpretacja widm ¹H NMR oraz ¹³C NMR jest ułatwiona. Na Rycinie 31 przedstawiono widma protonowe różnie sfuncjonalizowanych pochodnych 8-chlorochinoliny. Zaznaczono charakterystyczne przesunięcia dla mostków metylenowych w danych strukturach. Ten sam zabieg powtórzono dla widm węglowych, przedstawionych poniżej na Rycinie 32. Analogiczne przesunięcia sygnałów protonowych (5.96 ppm) czy węglowych (55.44 ppm) przykładowego triazolu (52), pochodzących od mostka metylenowego można zauważyć we wszystkich widmach otrzymanych 1,2,3-triazoli (50-57).
Ryc. 31. Widma \(^1\)HNMR otrzymanych pochodnych 8-chlorochinoliny.
3.3.3. Właściwości biologiczne.

Otrzymane pochodne zostały poddane testom biologicznym. Właściwości przeciwgrzybicze związków zostały określone przez wyznaczenie parametrów MIC, jak w podrozdziale 3.1.3. Do testów wykorzystano ponownie szczepy z rodzaju Candida (C. albicans, C. tropicalis, C. krusei, C. glabrata, C. parapsilosis) oraz Trichosporon beigeli, Aspergillus fumigatus (Kropidlak popielaty), Absidia corymbifera i Trichophyton mentagrophytes. Testy prowadzone były z wykorzystaniem słejpej próbki oraz próbki ze związku referencyjnym - flukonazolem. Zahamowanie rozwoju grzybów było mierzone tylko po wydłużonym czasie inkubacji tj. 48 h lub 120 h (Tabela 13).

<table>
<thead>
<tr>
<th>Nr</th>
<th>MIC / IC₈₀ / IC₅₀ [µM]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAᵃ</td>
</tr>
<tr>
<td></td>
<td>48h</td>
</tr>
<tr>
<td>48</td>
<td>62,8</td>
</tr>
<tr>
<td>49</td>
<td>73,4</td>
</tr>
<tr>
<td>50</td>
<td>>500</td>
</tr>
<tr>
<td>51</td>
<td>>500</td>
</tr>
<tr>
<td>52</td>
<td>>500</td>
</tr>
<tr>
<td>53</td>
<td>>250</td>
</tr>
<tr>
<td>54</td>
<td>>250</td>
</tr>
<tr>
<td>55</td>
<td>>250</td>
</tr>
<tr>
<td>56</td>
<td>>250</td>
</tr>
<tr>
<td>57</td>
<td>>250</td>
</tr>
<tr>
<td>FLU</td>
<td>0,12</td>
</tr>
</tbody>
</table>

Przetestowane związki okazały się praktycznie nieaktywne w zakresie badanych stężenia. Zaledwie trzy pochodne (47, 49, 50) wykazują umiarkowane właściwości przeciwgrzybicze względem pojedynczych szczepów. Ponadto otrzymane związki nie wykazują istotnych właściwości hamujących procesu fotosyntezy (PET), wyjątek stanowi pochodna 52, której IC₅₀ wynosi 564 µM. Zsyntezowane pochodne zostały również poddane testom aktywności wobec różnych szczepów bakteryjnych: S. aureus (Gronkowiec złocisty), metylicynooporny S. aureus, S. epidermis, E. faecalis (Pacjorkowiec kałowy), M. smegmatis, M. kansasii, M. Marinum, M. avium, M. avium paratuberculosis oraz M. tuberculosis (Prątek gruźlicy) (Tabela 14). Podobnie jak w podrozdziale 3.1.5 testy prowadzone były z wykorzystaniem ślepej próby oraz próby ze związkiem referencyjnym.
(cyprofloksacyna, izoniazyd). Zahaumowanie rozwoju bakterii było mierzone po wydłużonym czasie inkubacji tj. 48 h.

<table>
<thead>
<tr>
<th>Nr</th>
<th>MIC/IC\textsubscript{90} [\mu M]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>48h</td>
</tr>
<tr>
<td>47</td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>49</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>>500</td>
</tr>
<tr>
<td>51</td>
<td>500</td>
</tr>
<tr>
<td>52</td>
<td>>500</td>
</tr>
<tr>
<td>53</td>
<td>-</td>
</tr>
<tr>
<td>54</td>
<td>-</td>
</tr>
<tr>
<td>55</td>
<td>-</td>
</tr>
<tr>
<td>56</td>
<td>-</td>
</tr>
<tr>
<td>57</td>
<td>-</td>
</tr>
<tr>
<td>CPX</td>
<td>0.98</td>
</tr>
<tr>
<td>INH</td>
<td>-</td>
</tr>
</tbody>
</table>

Aktywność przeciwbakteryjna jest wyrażona jako IC\textsubscript{90} [\mu M]; SA = Staphylococcus aureus, MRSA = methicillin-resistant Staphylococcus aureus, SE = Staphylococcus epidermidis, EF = Enterococcus faecalis, MS = M. smegmatis; MK = M. kansasii, MM = M. Marinum; MA = M. avium, MAP = M. avium paratuberculosis, MT = M. tuberculosis; CPX = cyprofloksacyna, INH = izoniazyd. Wszystkie związki badano pod względem aktywności długoterminowej.

68
parametru clogP od IC₉₀ dla szczepu *M. tuberculosis* (Prątek gruźlicy) (Ryc. 33). Wysoka wartość współczynnika korelacji modelu (R² = 0,91) wskazuje na dobre dopasowanie obu parametrów.

Ryc. 33. Wykres zależności parametru clogP od właściwości hamujących dla szczepu *Mycobacterium tuberculosis*.

Podobnie jak w podrozdziale 3.1.6 zbadano aktywności antyproliferacyjne oraz cytotoxyczność otrzymanych związków (Tabela 15). Tylko pochodne 47 oraz 48 wykazują właściwości hamujące na komórkach HCT116, niestety dodatkowo wykazują wysoką cytotoxyczność względem fibroblastów. Reszta związków z tej grupy (49-57) nie wykazuje istotnych właściwości przeciwnowotworowych, lecz nie są też toksyczne względem komórek prawidłowych - NHDF.

Tabela 15. Właściwości przeciwnowotworowe oraz cytotoxyczność związków 47-57.

<table>
<thead>
<tr>
<th>Nr</th>
<th>MIC / IC₅₀ [μmol/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HCT 116 +/-</td>
</tr>
<tr>
<td>47</td>
<td>10,36±2,98</td>
</tr>
<tr>
<td>48</td>
<td>5,35±1,04</td>
</tr>
<tr>
<td>49</td>
<td>>25</td>
</tr>
<tr>
<td>50</td>
<td>>25</td>
</tr>
<tr>
<td>51</td>
<td>>25</td>
</tr>
<tr>
<td>52</td>
<td>>25</td>
</tr>
<tr>
<td>53</td>
<td>>25</td>
</tr>
<tr>
<td>54</td>
<td>>25</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>55</td>
<td>>25</td>
</tr>
<tr>
<td>56</td>
<td>>25</td>
</tr>
<tr>
<td>57</td>
<td>>25</td>
</tr>
<tr>
<td>Dox</td>
<td>5.95±0.5</td>
</tr>
</tbody>
</table>
4. PODSUMOWANIE

1. Zaprojektowano i otrzymano 57 związków stanowiących produkty główne lub prekursory do dalszych reakcji, w tym 43 nowych pochodnych wcześniej nieopisanych w literaturze. Syntezowane analogi stanowią:

- 38 pochodnych styrylochinoliny (1-36, 43, 46) otrzymanych na drodze kondensacji w warunkach konwencjonalnego lub mikrofalowego ogrzewania;
- 2 bliskie pochodne terbinafiny (39, 40) otrzymane w reakcji Sonogashiry;
- 8 pochodnych triazołowych (50-57) otrzymanych w wyniku 1,3-dipolarnej cykloaddycji katalizowanej solami miedzi(I);
- 9 prekursorów do otrzymania bliskich analogów terbinafiny (37, 38, 41, 42, 44, 45) czy pochodnych triazołowych (47-49), które zostały otrzymane w wyniku reakcji Sonogashiry, hydrolizy lub bromowania.

2. Analizę strukturalną otrzymanych związków wykonano posługując się takimi technikami, jak NMR, El-MS, HR-MS oraz analiza elementarna. W celu oczyszczenia zszytynowanych produktów stosowano krystalizację oraz chromatografię kolumnową.

3. Dla wszystkich otrzymanych pochodnych chinoliny oznaczono w ramach współpracy z innymi jednostkami właściwości przeciwgrybicze, przeciwbakteryjne, przeciwnowotworowe oraz hamowanie procesu fotosyntezy. Dla najbardziej aktywnych związków oznaczono toksyczność względem normalnych komórek ludzkich.

4. Przeprowadzone testy biologiczne pokazują, że styrylochinoliny z wbudowaną strukturą 5,7-dichloro-8-hydroksychinoliny wykazują większą aktywność przeciwgrybiczą, przeciwbakteryjną oraz przeciwnowotworową, niż pochodne 8-hydroksy, 8-acetoksy czy niepodstawione chinoliny. Usunięcie grupy chlorowej z pozycji 7 w strukturze chlorchinaldolu powoduje obniżenie aktywności biologicznej. Dodatkowo korzystny dla aktywności jest podstawnik elektronodonorowy w pozycji orto pierścienia fenylowego.

5. Pochodna 34 posiada najlepsze właściwości przeciwgrybicze oraz przeciwbakteryjne spośród otrzymanych związków, często lepsze lub na podobnym poziomie niż stosowane leki. Ponadto wykazuje aktywność wobec
wszystkich badanych szczepów. Dodatkowo nie jest toksyczna dla prawidłowych komórek ludzkich.

6. Analizując zależności pomiędzy strukturą a aktywnością przeciwnowotworową otrzymanych stychylochinolin zauważono, iż wraz ze słabącym efektem rezonansowym dostarczającym elektrony podstawników w pozycji orto pierścienia fenylowego, aktywność przeciwnowotworowa rośnie.

7. Na podstawie testów biologicznych otrzymanych bliskich analogów terbinafiny oraz ostatnich doniesień literaturowych stwierdzono, iż zsyntezowane, płaskie związki pomimo podobieństwa strukturalnego do alliloamin muszą działać według innego mechanizmu.

8. Pochodne chinoliny z wdudowanym pierścieniem 1,2,3-triazolowym wykazują wysokie właściwości hamujące względem bakterii z rodziny Mycobacterium (Prątki).

9. Zbadane zależności struktura-aktywność otrzymanych pochodnych mogą posłużyć jako źródło danych w dalszym projektowaniu nowych aktywnych połączeń chemicznych.
5. CZĘŚĆ EKSPERYMENTALNA

5.1. Metody badań fizykochemicznych

5.1.1. Pomiar temperatury topnienia

Temperatury topnienia substancji zmierzono korzystając z aparatu Thermo-Scientific 9100 w otwartych, szklanych kapilarach. Podawane wartości są wartościami nieskorygowanymi.

5.1.2. Chromatografia cienkowarstwowa (TLC)

Chromatografię cienkowarstwową wykonywano na płytkach z foli aluminiowej pokrytych żelem krzemionkowym 60 F254 o grubości warstwy absorbenta 0,2 mm firmy Merck. Chromatogramy obserwowano w świetle lampy UV przy długości fali 254 lub 365 nm.

5.1.3. Chromatografia kolumnowa

Do chromatografii kolumnowej został użyty żel krzemionkowy firmy Merck 60 A, 0.040 – 0.064 mm.

5.1.4. NMR

Widma ¹H-NMR, ¹³C-NMR oraz eksperymenty dwuwymiarowe wykonywano na spektrometrze Bruker (Bruker BioSpin Comp., Karlsruhe, Germany) model Avance III 400 MHz FT-NMR, przy częstotliwości 400 oraz 100 MHz. Część widm spektroskopii NMR zarejestrowano również na aparacie Bruker Avance 500 MHz, przy częstotliwości 500 i 125 MHz. Jako wzorca w przypadku widm ¹H- oraz ¹³C-NMR używano tetrametylosilanu - (CH₃)₄Si. Przesunięcia chemiczne (δ) podawano w skali ppm, a stałe sprzężenia spinowego (J) w Hz. Próbki rozpuszczano w deuterowanym DMSO lub chloroformie, a pomiar był prowadzony w temperaturze pokojowej. Do opisywania widm użyto skrótów: s-singlet, d-dublet, dd-dublet dubletów, t-triplet, q-kwartet, m-multiplet.

5.1.5. LR-MS

Niskorozdzielcze widma masowe LR-MS (ESI) były wykonywane za pomocą aparatu Varian LC-920.

5.1.6. HR-MS

Badanie wysokorozdzielczej spektrometrii masowej wykonywano używając aparatów: Finnigan MAT95 spectrometer (ThermoFinnigan, San Jose, CA, USA)
oraz Mariner ESI-TOF (Applied Biosystems), używając soli sodowej glikolu polietylenowego 400 jako wzorca.

5.2. Synteza

Wszystkie stosowane rozpuszczalniki firmy POCH, Acros Organics oraz Chempur destylowano w razie potrzeby, oraz suszono nad sitami molekularnymi 4Å (Acros Organics). Odczynniki używane do syntez zakupiono w firmach Acros Organics oraz Sigma-Aldrich. Parametry lipofilowości dla zsyntezowanych związków obliczano w programie ChemBioOffice 12.0, zaś widma spektroskopii NMR opracowywano w programie MestreNova 8.1. Reakcje w polu mikrofalowym wykonywano za pomocą reaktora firmy CEM (Matthews, NC, USA) model DISCOVERY. Reakcje przeprowadzano w hermetycznie zamkniętych, szklanych probówkach (system zamykania probówek firmy Sigma-Aldrich).

5.2.1. Otrzymywanie styrylochinolin (1-36, 43, 46)

A) Metoda konwencjonalna 1:

W probówce o pojemności 20 cm³ zamkniętej kapsłem aluminiowym z septą, zaopatrzona w dipol magnetyczny, rozpuszczono 2,5 mmola pochodnej chinaldyny w 10 cm³ bezwodnika octowego. Następnie dodano 5 mmoli odpowiedniego aldehydu. Probówkę zamykano szczelnie aluminiowym kapsłem zawierającym septę i ogrzewano w temperaturze 130°C przez 16 godz. Po skończonej reakcji na wyparce rotacyjnej odparowano bezwodnik octowy i mieszaninę ochładzono do temp. 0°C. Wykrystalizowany osad oczyszczano przez krystalizację, bądź używając chromatografii kolumnowej.

B) Metoda konwencjonalna 2:

W probówce o pojemności 20 cm³ zamkniętej kapsłem aluminiowym z septą, zaopatrzona w dipol magnetyczny, rozpuszczono 2,5 mmola pochodnej chinaldyny w 10 cm³ bezwodnika octowego. Następnie dodano 5 mmoli odpowiedniego
aldehydu. Probówek zamykano szczelnie aluminiowym kapsłem zawierającym septę i ogrzewano w temperaturze 130° C przez 16 godz. Po skończonej reakcji na wyparce rotacyjnej odparowano bezwodnik octowy. W celu hydrolizy grupy acyłowej do mieszaniny poreakcyjnej dodano 9 ml pyridyny oraz 3 ml wody destylowanej i ogrzewano w temp. 100° C. Po 3 godz. grzania odparowano rozpuszczalniki i otrzymany produkt oczyszczano przez krystalizację lub przy użyciu chromatografii kolumnowej.

C) Metoda konwencjonalna 3:

W probówce o pojemności 20 cm³ zamkniętej kapsłem aluminiowym z septą, zaopatrzonej w dipol magnetyczny, rozpuszczono 2 mmole pochodnej styrylochinolinę w 18 cm³ metanolu. Następnie dodano odpowiednią ilość K₂CO₃ i mieszano przez 2 godz. w temperaturze pokojowej. Roztwór neutralizowano stężonym kwasem solnym, wytrącony osad odsączono pod zmniejszonym ciśnieniem i przemyto wodą. Surowy produkt krystalizowano z etanolu.

D) Metoda wspomagana mikrofalowo:

W dedykowanej probówce do reaktora mikrofalowego o pojemności 10 cm³, zaopatrzonej w dipol magnetyczny umieszczono 1 mmol pochodnej chinaldyny oraz 4 mmole odpowiedniego aldehydu. Probówek zamykano szczelnie aluminiowym kapsłem zawierającym septę, a następnie ogrzewano w temperaturze 180° C przez 10 min., przy czym maksymalna moc reaktora nie przekraczała 50 W. Mieszanię poreakcyjną chłodzono do temp. 0° C. Otrzymany produkt oczyszczano przez krystalizację w polarnym rozpuszczalniku, bądź używając chromatografii kolumnowej.

(E)-2-[2-(2-chlorofenylo)winylo]-8-chlorochinolina (1)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.D, używając do reakcji 0,175 g (1 mmol) 8-chlorochinaldyny oraz 0,562 g (4 mmol) aldehydu
2-chlorobenzoesowego. Produkt reakcji otrzymano w postaci białego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 37%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.48 (d, $J = 8.5$ Hz, 1H), 8.24 (d, $J = 16.1$ Hz, 1H, winyl), 8.05 (dd, $J = 7.5$, 1.9 Hz, 1H), 8.00 – 7.92 (m, 3H), 7.64 – 7.53 (m, 3H), 7.48 – 7.38 (m, 2H).

13C NMR (100 MHz, DMSO-d_6), δ: 156.08, 143.93, 138.03, 134.28, 133.56, 132.62, 131.66, 130.83, 130.61, 130.53, 130.39, 129.14, 128.19, 128.02, 127.82, 127.08, 122.03.

EI-HRMS: 299.02606 (C$_{17}$H$_{12}$Cl$_2$N; obliczono 299.02685).

Czystość HPLC: 99.72%.

Temperatura topnienia: 120° C.

cLogP: 6.21.

(E)-2-[2-(2-chlorofenylo)winylo]chinolina (2)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0.353 g (2.5 mmol) chinaldyny oraz 0.703 g (5 mmol) aldehydu 2-chlorobenzoesowego. Produkt reakcji otrzymano w postaci beżowego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 7%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.40 (d, $J = 8.39$ Hz, 1H), 8.13 (d, $J = 16.20$ Hz, 1H, winyl), 8.05-7.95 (m, 3H), 7.85 (d, $J = 8.54$ Hz, 1H), 7.78 (ddd, $J = 8.43$ Hz, $J = 6.87$ Hz, $J = 1.49$ Hz, 1H), 7.62-7.53 (m, 3H), 7.47-7.37 (m, 2H).

13C NMR (100 MHz, DMSO-d_6), δ: 155.39, 148.10, 137.28, 134.47, 133.43, 132.11, 130.62, 130.46, 130.36, 129.44, 129.33, 128.34, 128.16, 127.90, 127.74, 126.96, 121.12.

EI-HRMS: 265.06571 (C$_{17}$H$_{12}$ClN; obliczono 265.06583).

Czystość HPLC: 99.58%.
Temperatura topnienia: 72-74° C (lit. 78° C [153]).

cLogP: 5.43.

(E)-2-[2-(2-hydroksyfenylo)winylo]chinolina (3)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.D, używając do reakcji 0,140 g (1 mmol) chinaldyny oraz 0,488 g (4 mmol) aldehydu 2-hydroksybenzoesowego. Produkt reakcji otrzymano w postaci żółtego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 6%.

1H NMR (400 MHz, DMSO-d_6), δ: 9.99 (s, 1H, OH), 8.33 (d, $J = 8.6$ Hz, 1H), 8.05 (d, $J = 16.5$ Hz, 1H, winyl), 7.99 (d, $J = 8.6$ Hz, 1H), 7.93 (t, $J = 7.4$ Hz, 1H), 7.80 (d, $J = 8.6$ Hz, 1H), 7.74 (ddd, $J = 6.9$, 5.9, 1.4 Hz, 1H), 7.70 (dd, $J = 7.7$, 1.4 Hz, 1H), 7.57 - 7.52 (m, 1H), 7.48 (d, $J = 16.5$ Hz, 1H, winyl), 7.22 - 7.15 (m, 1H), 6.96 - 6.91 (m, 1H), 6.87 (t, $J = 7.5$ Hz, 1H).

13C NMR (101 MHz, DMSO-d_6) δ: 156.63, 156.30, 148.19, 136.89, 131.22, 130.24, 130.04, 129.09, 128.47, 128.24, 127.87, 127.40, 126.41, 123.48, 120.51, 119.90, 116.52.

EI-HRMS: 247.09938 (C$_{17}$H$_{13}$NO; obliczono 247.09971).

Czystość HPLC: 96,13%.

Temperatura topnienia: 205° C (lit. 206° C [154]).

cLogP: 4.05.

(E)-2-[2-(4-etoksyfenylo)winylo]chinolina (4)
Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.D, używając do reakcji 0,140 g (1 mmol) chinaldyny oraz 0,601 g (4 mmol) aldehydu 2-etoksybenzosowego. Produkt reakcji otrzymano w postaci żółtego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 17%.

1H NMR (400 MHz, DMSO-d$_6$), δ: 8.32 (d, $J = 8.6$ Hz, 1H), 7.98 (d, $J = 8.5$ Hz, 1H), 7.93 (d, $J = 8.0$ Hz, 1H), 7.84 (d, $J = 8.6$ Hz, 1H), 7.79 (d, $J = 16.3$ Hz, 1H, winyl), 7.73 (dd, $J = 11.2$, 4.2 Hz, 1H), 7.68 (d, $J = 8.7$ Hz, 2H), 7.58 – 7.51 (m, 1H), 7.33 (d, $J = 16.4$ Hz, 1H, winyl), 6.99 (d, $J = 8.7$ Hz, 2H), 4.08 (q, $J = 6.9$ Hz, 2H, CH$_2$-etoksy), 1.35 (t, $J = 7.0$ Hz, 3H, CH$_3$-etoksy).

13C NMR (101 MHz, DMSO-d$_6$), δ: 159.60, 158.92, 157.11, 156.46, 148.17, 136.06, 134.35, 131.16, 130.22, 129.24, 128.25, 127.35, 126.81, 122.51, 120.25, 115.27, 114.59, 64.20, 15.10.

EI-HRMS: 275,13145 (C$_{19}$H$_{17}$NO; obliczono 275.13101).

Czystość HPLC: 98,94%.

Temperatura topnienia: 143-145°C.

cLogP: 5.16.

(E)-2-[2-(4-butoksyfenylo)winylo]chinolina (5)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0,353 g (2,5 mmol) chinaldyny oraz 0,890 g (5 mmol) aldehydu 4-butoksybenzosowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:6. Otrzymano produkt w postaci jasno żółtego osadu z wydajnością 24%.

1H NMR (400 MHz, DMSO-d$_6$), δ: 8.11 (dd, $J = 14.3$, 8.6 Hz, 2H), 7.80 (d, $J = 8.0$ Hz, 1H), 7.73 (d, $J = 8.3$ Hz, 1H), 7.71 – 7.67 (m, 1H), 7.65 (d, $J = 7.2$ Hz, 1H), 7.60 (d, $J = 8.7$ Hz, 2H), 7.50 (t, $J = 7.5$ Hz, 1H), 7.33 (s, 1H), 6.95 (d,
$J = 8.7\ \text{Hz},\ 2H\), 4.03 (t, $J = 6.5\ \text{Hz},\ 2H,\ \text{butylo})$, 1.86 – 1.77 (m, 2H, butylo), 1.59 – 1.48 (m, 2H, butylo), 1.01 (t, $J = 7.4\ \text{Hz},\ 3H,\ \text{butylo})$.

13C NMR (101 MHz, DMSO-d_6), δ: 159.09, 157.41, 135.51, 134.74, 130.62, 129.59, 128.89, 128.71, 127.51, 127.47, 127.14, 126.89, 126.40, 122.25, 118.97, 114.86, 114.24, 67.76, 31.30, 19.24, 13.84.

LR-MS (ESI): 304.34 [M+H]$^+$, (C$_2$H$_2$NO; obliczono 303.16).

Analiza elementarna: C, 80.81; H, 6.35; N, 3.93, O, 5.89 (C$_2$H$_2$NO; obliczono C, 83.13; H, 6.98; N, 4.62; O, 5.27).

Temperatura topnienia: 93$^\circ$C.

cLogP: 6.23.

(E)-2-[2-(4-butylofenylo)winylo]chinolina (6)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0.353 g (2.5 mmol) chinaldyny oraz 0.810 g (5 mmol) aldehydu 4-butylobenzoesowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:8. Otrzymano produkt w postaci jasno żółtego osadu z wydajnością 12%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.34 (d, $J = 8.6\ \text{Hz},\ 1H$), 7.99 (d, $J = 8.4\ \text{Hz},\ 1H$), 7.94 (d, $J = 8.1\ \text{Hz},\ 1H$), 7.87 (d, $J = 8.6\ \text{Hz},\ 1H$), 7.82 (d, $J = 16.4\ \text{Hz},\ 1H$, winyl), 7.75 (ddd, $J = 8.4, 6.9, 1.4\ \text{Hz},\ 1H$), 7.65 (d, $J = 8.1\ \text{Hz},\ 2H$), 7.59 – 7.52 (m, 1H), 7.43 (d, $J = 16.4\ \text{Hz},\ 1H$, winyl), 7.26 (d, $J = 8.1\ \text{Hz},\ 2H$), 2.61 (t, $J = 7.6\ \text{Hz},\ 2H$, butylo), 1.63 – 1.53 (m, 2H, butylo), 1.38 – 1.27 (m, 2H, butylo), 0.91 (t, $J = 7.3\ \text{Hz},\ 3H$, butylo).

13C NMR (101 MHz, DMSO-d_6), δ: 156.23, 148.14, 143.71, 136.90, 134.54, 134.21, 130.26, 129.29, 129.09, 128.26, 127.71, 127.45, 126.55, 120.35, 35.12, 33.44, 22.22, 14.25.
Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1. A, używając do reakcji 0.4 g (2.5 mmol) 8-hydroksychinaldyny oraz 0.620 g (5 mmol) aldehydu 2-fluorobenzoesowego. Produkt reakcji otrzymano w postaci żółtego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 78%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.44 (d, $J = 8.6$ Hz, 1H), 7.98 (d, $J = 16.2$ Hz, 1H, winyl), 7.93 (dd, $J = 8.0$, 1.4 Hz, 1H), 7.88 (dd, $J = 8.1$, 1.9 Hz, 2H), 7.61-7.52 (m, 3H), 7.44 (m, 1H), 7.35 - 7.28 (m, 2H), 2.49 (s, 3H, CH$_3$).

13C NMR (100 MHz, DMSO-d_6), δ: 169.78, 161.93, 159.46, 155.21, 147.64, 140.70, 137.41, 131.06, 128.83, 128.48, 126.74, 126.12, 125.38, 124.11, 122.15, 121.78, 116.55, 116.34, 21.01.

LR-MS (ESI): 309.42 [M+2H]$^+$, (C$_{19}$H$_{14}$FNO$_2$; obliczono 307.10).

Analiza elementarna: C, 74.65; H, 4.96; N, 4.93, (C$_{19}$H$_{14}$FNO$_2$; obliczono C, 74.26; H, 4.59; F, 6.18; N, 4.56; O, 10.41).

Czystość HPLC: 99,54%.

Temperatura topnienia: 117° C.

cLogP: 4.59.
(E)-2-[2-(2-fluorofenylo)winylo]-8-hydroksychinolina (8)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.C, używając do reakcji 0.6 g (2 mmol) 2-[2-(2-chloro-fenylo)-winylo]-8-acetoksychiloniny (7) oraz 0.4 g (3 mmol) K₂CO₃. Produkt reakcji otrzymano w postaci pomarańczowego osadu. Wydajność reakcji wynosiła 49%.

^H NMR (400 MHz, DMSO-d₆), δ: 11.46 (bs, 1H, OH), 8.81 (d, J = 7.9 Hz, 1H), 8.41 (d, J = 7.1 Hz, 1H), 8.24 (d, J = 16.5 Hz, 1H, winylo), 8.01 (d, J = 16.4 Hz, 1H, winylo), 7.83 (t, J = 7.7 Hz, 1H), 7.66 - 7.56 (m, 2H), 7.52 (dd, J = 12.9, 6.6 Hz, 1H), 7.44 (d, J = 5.8 Hz, 1H), 7.38 (dd, J = 13.3, 4.9 Hz, 2H).

^13C NMR (100 MHz, DMSO-d₆), δ: 162.39, 159.88, 152.35, 149.87, 143.78, 134.68, 132.80, 130.00, 128.86, 125.71, 124.76, 123.43, 119.69, 118.56, 116.96, 116.74, 116.15.

LR-MS (ESI): 266.24 [M+2H]^+, (C₁₁H₁₂FNO; obliczono 265.09).

Analiza elementarna: C, 76.57; H, 4.19; N, 4.95, (C₁₁H₁₂FNO; obliczono C, 76.97; H, 4.56; F, 7.16; N, 5.28; O, 6.03).

Czystość HPLC: 99.83%.

Temperatura topnienia: 239° C.

cLogP: 4.91.

(E)-2-[2-(2,3-dichlorofenylo)winylo]-8-hydroksychinolina (9)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0.4 g (2.5 mmol) 8-hydroksychinaldyny oraz 0.875 g (5 mmol) aldehydu
2,3-dichlorobenzoesowego. Surowy produkt oczyszczano przez krystalizację z etanolu. Otrzymano jasno żółty osad z wydajnością 94%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.47 (d, $J = 8.5$ Hz, 1H), 8.22 (d, $J = 15.9$ Hz, 1H), 8.00 (dt, $J = 13.9$, 7.0 Hz, 1H), 7.89 (dd, $J = 7.9$, 1.5 Hz, 1H), 7.83 (d, $J = 8.5$ Hz, 1H), 7.67 (dd, $J = 7.9$, 1.2 Hz, 1H), 7.61 (d, $J = 7.8$ Hz, 1H), 7.58 (s, 1H), 7.56 (dd, $J = 7.4$, 1.5 Hz, 1H), 7.46 (t, $J = 7.9$ Hz, 1H).

13C NMR (100 MHz, DMSO-d_6), δ: 169.72, 154.60, 147.67, 140.72, 137.57, 136.76, 132.92, 132.60, 131.31, 130.82, 129.80, 128.91, 126.79, 126.39, 126.14, 122.43, 122.20.

LR-MS (ESI): 317.37 [M+2H]$^+$, (C$_{17}$H$_{11}$Cl$_2$NO; obliczono 315.02).

Analiza elementarna: C, 59.02; H, 3.03; N, 4.05, (C$_{17}$H$_{11}$Cl$_2$NO; obliczono C, 64.58; H, 3.51; N, 4.43).

Czystość HPLC: 98,16%.

Temperatura topnienia: 148° C.

cLogP: 6.07.

(E)-2-[2-(3,4-dichlorofenylo)winylo]-8-hydroksychinolina (10)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1. B, używając do reakcji 0,4 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,875 g (5 mmol) aldehydu 3,4-dichlorobenzoesowego. Surowy produkt oczyszczano przez krystalizację z etanolu. Otrzymano żółty osad z wydajnością 97%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.44 (d, $J = 8.6$ Hz, 1H), 8.07 (d, $J = 1.7$ Hz, 1H), 7.87 (d, $J = 8.5$ Hz, 2H), 7.82–7.73 (m, 2H), 7.70 (d, $J = 8.4$ Hz, 1H), 7.59 (d, $J = 6.5$ Hz, 1H), 7.58–7.51 (m, 2H).
\[^{13}\text{C}\] NMR (100 MHz, DMSO-\(d_6\)), \(\delta\): 169.87, 155.25, 147.59, 140.85, 137.47, 137.31, 132.35, 132.17, 131.36, 131.22, 129.42, 128.80, 127.89, 126.65, 126.12, 122.28, 121.39.

LR-MS (ESI): 317.32 \([\text{M+2H}]^+\), (C\(_{17}\)H\(_{11}\)Cl\(_2\)NO; obliczono 315.02).

Analiza elementarna: C, 61.02; H, 3.35; N, 4.08, (C\(_{17}\)H\(_{11}\)Cl\(_2\)NO; obliczono C, 64.58; H, 3.51; N, 4.43).

Czystość HPLC: 98,48%.

Temperatura topnienia: 140° C.

cLogP: 6.07.

\((E)-2-[2-(2-chlorofenylo)winylo]-8-hydroksychinolina (11)\)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0,4 g (2,5 mmol) 8-hydroksychinaldiny oraz 0,703 g (5 mmol) aldehydu 2-chlorobenzoesowego. Surowy produkt oczyszczano przez krystalizację z etanolu. Otrzymano żółty osad z wydajnością 91%.

\[^{1}\text{H}\] NMR (400 MHz, DMSO-\(d_6\)), \(\delta\): 8.45 (d, \(J = 8.6\ \text{Hz}, 1\)H), 8.22 (d, \(J = 16.0\ \text{Hz}, 1\)H, winyl), 8.04 (dd, \(J = 7.6, 1.8\ \text{Hz}, 1\)H), 7.88 (dd, \(J = 7.9, 1.7\ \text{Hz}, 1\)H), 7.81 (d, \(J = 8.5\ \text{Hz}, 1\)H), 7.62 – 7.53 (m, 4H), 7.47 – 7.37 (m, 2H).

\[^{13}\text{C}\] NMR (100 MHz, DMSO-\(d_6\)), \(\delta\): 169.73, 154.89, 147.65, 140.71, 137.52, 134.11, 133.59, 131.16, 130.75, 130.40, 129.79, 128.90, 128.14, 127.74, 126.64, 126.14, 122.41, 122.15.

EI-HRMS: 281.06112 (C\(_{17}\)H\(_{12}\)ClNO; obliczono 281.06074).

Czystość HPLC: 97,04%.

Temperatura topnienia: 125° C.

cLogP: 5.48.
Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0,4 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,610 g (5 mmol) aldehydu 2-hydroksybenzoesowego. Produkt reakcji otrzymano w postaci beżowego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 94%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.43 (d, $J = 8.6$ Hz, 1H), 7.97 (dd, $J = 7.7$, 1.4 Hz, 1H), 7.91 - 7.85 (m, 2H), 7.78 (d, $J = 16.3$ Hz, 1H, winyl), 7.59 (d, $J = 7.6$ Hz, 1H), 7.57 - 7.52 (m, 1H), 7.50 (d, $J = 16.2$ Hz, 1H, winyl), 7.44 (td, $J = 7.8$, 1.6 Hz, 1H), 7.37 (t, $J = 7.1$ Hz, 1H), 7.22 (dd, $J = 8.0$, 1.2 Hz, 1H), 2.48 (s, 3H, CH$_3$), 2.42 (s, 3H, CH$_3$).

13C NMR (100 MHz, DMSO-d_6), δ: 169.70, 155.37, 149.14, 147.56, 140.78, 137.34, 131.04, 130.26, 129.19, 128.83, 127.86, 127.47, 126.87, 126.57, 126.15, 123.76, 122.18, 121.85, 21.21, 21.10.

LR-MS (ESI): 349.56 [M+2H]$^+$, (C$_{21}$H$_{17}$NO$_4$; obliczono 347.12).

Analiza elementarna: C, 72.78; H, 4.57; N, 4.01; O, 18.81, (C$_{21}$H$_{17}$NO$_4$; obliczono C, 72.61; H, 4.93; N, 4.03; O, 18.42).

Czystość HPLC: 99.67%.

Temperatura topnienia: 128° C.

cLogP: 3.79.
Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0,4 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,610 g (5 mmol) aldehydu 2-hydroksybenzoesowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 2:3. Otrzymano produkt w postaci białego osadu z wydajnością 29%.

1H NMR (400 MHz, DMSO-d_6), δ: 9.65 (bs, 1H, OH), 8.31 (d, $J = 8.6$ Hz, 1H), 7.99 (d, $J = 16.3$ Hz, 1H, winyl), 7.92 (dd, $J = 7.7, 1.6$ Hz, 1H), 7.84 (d, $J = 8.6$ Hz, 1H), 7.50 (d, $J = 16.3$ Hz, 1H, winyl), 7.45 – 7.33 (m, 4H), 7.21 (dd, $J = 7.9, 1.3$ Hz, 1H), 7.10 (dd, $J = 7.1, 1.8$ Hz, 1H), 2.44 (s, 3H, CH$_3$).

13C NMR (100 MHz, DMSO-d_6), δ: 169.94, 153.59, 153.52, 149.10, 138.70, 137.05, 130.94, 129.94, 129.54, 128.35, 127.90, 127.76, 127.51, 126.81, 123.86, 121.53, 118.08, 111.93, 21.40.

LR-MS (ESI): 306.58 [M+2H]$^+$, (C$_{19}$H$_{15}$NO$_3$; obliczono 305.10).

Analiza elementarna: C, 74.35; H, 4.55; N, 4.59; O, 16.13, (C$_{19}$H$_{15}$NO$_3$; obliczono C, 74.74; H, 4.95; N, 4.59; O, 15.72).

Czystość HPLC: 99,82%.

Temperatura topnienia: 128º C.

cLogP: 4.12.

$^{(E)}$-2-[2-(2-acetoksyfenylo)winylo]-8-hydroksychinolina (13)

$^{(E)}$-2-[2-(2-hydroksyfenylo)winylo]-8-hydroksychinolina (14)
Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.C, używając do reakcji 0,70 g (2 mmol) 2-[2-(2-acetoksy-fenylo)-winylo]-8-acetoksychiloniny (12) oraz 0,76 g (6 mmol) K2CO3. Produkt reakcji otrzymano w postaci pomarańczowego osadu. Wydajność reakcji wynosiła 30%.

1H NMR (400 MHz, DMSO-d6), δ: 11.72 (bs, 1H, OH), 10.61 (s, 1H, OH), 8.82 (d, J = 9.0 Hz, 1H), 8.43 (d, J = 7.4 Hz, 1H), 8.29 (d, J = 16.4 Hz, 1H, winył), 8.09 (d, J = 16.6 Hz, 1H, winył), 7.62 (d, J = 5.0 Hz, 3H), 7.47 (s, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 8.2 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H).

13C NMR (100 MHz, DMSO-d6), δ: 158.06, 153.50, 149.07, 144.18, 139.91, 132.63, 129.77, 128.44, 122.25, 120.46, 120.01, 119.15, 118.70, 117.16, 116.60.

EI-HRMS: 263.09370 (C17H13N O2; obliczono 263.09463).

Czystość HPLC: 99.63%.

Temperatura topnienia: 316° C (rozkład).

cLogP: 4.10.

(E)-2-[2-(3-acetoksyfenylo)winylo]-8-hydroksychinolina (15)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0,4 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,610 g (5 mmol) aldehydu 3-hydroksybenzosowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:4, 3:7 oraz 2:3. Otrzymano produkt w postaci żółtego osadu z wydajnością 29%.

1H NMR (400 MHz, DMSO-d6), δ: 9.57 (bs, 1H, OH), 8.31 (d, J = 8.6 Hz, 1H), 8.15 (d, J = 16.2 Hz, 1H, winył), 7.77 (d, J = 8.5 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.50 (dd, J = 14.2, 9.9 Hz, 3H), 7.44 – 7.35 (m, 2H), 7.16 – 7.07 (m, 2H), 2.32 (s, 3H, CH3).
13C NMR (100 MHz, DMSO-\textit{d}_6), \(\delta\): 169.70, 153.55, 153.44, 151.48, 138.61, 137.06, 133.79, 130.44, 129.43, 128.24, 127.67, 125.24, 122.35, 121.61, 120.53, 118.04, 111.69, 21.36.

LR-MS (ESI): 307.37 [M+2H]^+, (C_{19}H_{15}N\textit{O}_3; obliczono 305.10).

Analiza elementarna: C, 74.88; H, 4.57; N, 4.66; O, 15.91, (C_{19}H_{15}N\textit{O}_3; obliczono C, 74.74; H, 4.95; N, 4.59; O, 15.72).

Czystość HPLC: 99.78%.

Temperatura topnienia: 83\textdegree C.

cLogP: 4.12.

\(\text{(E)}\)-2-[2-(3-hydroksyfenylo)winylo]-8-hydroksychinolina (16)

\[\text{\includegraphics{structure.png}}\]

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0.4 g (2.5 mmol) 8-hydroksychinaldyny oraz 0.610 g (5 mmol) aldehydu 3-hydroksybenzosowego. Po odparowaniu bezwodnika octowego do mieszaniny poreakcyjnej dodano 3M H\textsubscript{2}SO\textsubscript{4} i ogrzewano jeszcze przez 3 godziny w 100\textdegree C. Mieszanię po ochłodzeniu do 0\textdegree C neutralizowano 6M NaOH, wytrącony osad przesączono i krystalizowano z etanolu. Otrzymano pomarańczowy osad z wydajnością 50%.

\textbf{1H NMR (400 MHz, DMSO-\textit{d}_6), \(\delta\):} 10.93 (bs, 1H, OH), 9.73 (bs, 1H, OH), 8.68 (s, 1H), 8.24 (s, 1H), 8.14 (d, \(J = 16.3\) Hz, 1H, winylo), 7.72 (d, \(J = 16.3\) Hz, 1H, winylo), 7.62 – 7.50 (m, 2H), 7.31 (t, \(J = 7.8\) Hz, 2H), 7.17 (d, \(J = 7.7\) Hz, 1H), 7.14 (d, \(J = 18.3\) Hz, 1H), 6.86 (dd, \(J = 8.0, 1.8\) Hz, 1H).

\textbf{13C NMR (100 MHz, DMSO-\textit{d}_6), \(\delta\):} 158.33, 153.17, 150.63, 141.76, 140.68, 137.34, 130.58, 129.06, 128.46, 123.86, 120.23, 119.37, 118.58, 117.78, 114.58.

EI-HRMS: 263.09391 (C_{17}H_{13}N\textit{O}_2; obliczono 263.09463).

Czystość HPLC: 99.91%.
Temperatura topnienia: 215° C.
cLogP: 4.10.

(E)-2-[2-(2,4-diacetoksyfenylo)winylo]-8-acetoksychinolina (17)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1, używając do reakcji 0,4 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,690 g (5 mmol) aldehydu 2,4-dihydroksybenzosowego. Produkt reakcji otrzymano w postaci blado żółtego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 81%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.43 (d, $J = 8.6$ Hz, 1H), 8.01 (d, $J = 8.6$ Hz, 1H), 7.91 – 7.85 (m, 2H), 7.75 (d, $J = 16.3$ Hz, 1H, winyl), 7.61 – 7.52 (m, 2H), 7.48 (d, $J = 16.2$ Hz, 1H, winyl), 7.17 (dd, $J = 8.5$, 2.4 Hz, 1H), 7.13 (d, $J = 2.3$ Hz, 1H), 2.47 (s, 3H, CH$_3$), 2.41 (s, 3H, CH$_3$), 2.30 (s, 3H, CH$_3$).

13C NMR (100 MHz, DMSO-d_6), δ: 169.70, 169.50, 169.36, 155.32, 151.40, 149.32, 147.54, 140.76, 137.36, 131.04, 128.83, 128.07, 127.14, 126.91, 126.60, 126.16, 122.19, 121.83, 120.61, 117.51, 21.31, 21.20, 21.10.

LR-MS (ESI): 407.75 [M+2H]$^+$, (C$_{23}$H$_{19}$NO$_6$; obliczono 405.12).

Analiza elementarna: C, 68.17; H, 4.55; N, 3.49; O, 23.80, (C$_{23}$H$_{19}$NO$_6$; obliczono C, 68.14; H, 4.72; N, 3.46; O, 23.68).

Czystość HPLC: 96,77%.

Temperatura topnienia: 159° C.
cLogP: 3.31.
(E)-2-[2-(2,4-dihydroksyfenylo)winylo]-8-hydroksychinolina (18)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.C, używając do reakcji 0,80 g (2 mmol) 2-[2-(2,4-diacetoksy-fenylo)winylo]-8-acetoksychinoliny (17) oraz 0,76 g (6 mmol) K₂CO₃. Produkt reakcji otrzymano w postaci ceglasto-czerwonego osadu. Wydajność reakcji wynosiła 59%.

\(^1\)H NMR (400 MHz, DMSO-\(d_6\)), \(\delta\): 11.89 (bs, 1H, OH), 10.66 (s, 1H, OH), 10.32 (bs, 1H, OH), 8.78 (d, \(J = 9.1\) Hz, 1H), 8.42 (d, \(J = 9.1\) Hz, 1H), 8.23 (d, \(J = 16.2\) Hz, 1H, winyl), 7.95 (d, \(J = 16.1\) Hz, 1H, winyl), 7.59 (t, \(J = 6.6\) Hz, 2H), 7.46 (t, \(J = 7.4\) Hz, 2H), 6.55 (d, \(J = 2.1\) Hz, 1H), 6.42 (dd, \(J = 8.6, 2.0\) Hz, 1H).

\(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)), \(\delta\): 162.80, 160.31, 154.19, 148.37, 143.88, 141.52, 131.84, 129.27, 128.53, 127.84, 118.75, 116.81, 115.54, 114.33, 109.04, 103.33.

EI-HRMS: 279.08949 (C\(_{17}\)H\(_{13}\)NO\(_3\); obliczono 279.08954).

Czystość HPLC: 99,65%.

Temperatura topnienia: 273° C.

cLogP: 3.43.

(E)-2-[2-(2,4,6-triacetoksyfenylo)winylo]-8-acetoksychinolina (19)
Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0,4 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,770 g (5 mmol) aldehydu 2,4,6-trihydroksybenzoesowego. Produkt reakcji otrzymano w postaci beżowego osadu, który krystalizowano z chlorku metylenu. Wydajność reakcji wynosiła 41%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.44 (d, $J = 8.6$ Hz, 1H), 7.95 – 7.85 (m, 2H), 7.57 (qd, $J = 7.5$, 3.0 Hz, 3H), 7.38 (d, $J = 16.5$ Hz, 1H, winyl), 7.13 (s, 2H), 2.45 (s, 3H, CH$_3$), 2.37 (s, 6H, CH$_3$), 2.30 (s, 3H, CH$_3$).

13C NMR (100 MHz, DMSO-d_6), δ: 169.60, 169.16, 169.12, 155.05, 150.43, 149.91, 147.58, 140.65, 137.51, 134.23, 128.96, 126.76, 126.17, 123.67, 122.16, 121.84, 120.98, 116.29, 115.65, 31.13, 21.26, 21.18, 21.01.

LR-MS (ESI): 465.98 [M+2H]$^+$, (C$_{25}$H$_{21}$N0$_8$; obliczono 463.13).

Analiza elementarna: C, 64.94; H, 4.21; N, 2.99; O, 27.97, (C$_{25}$H$_{21}$N0$_8$; obliczono C, 64.79; H, 4.57; N, 3.02; O, 27.62).

Czystość HPLC: 98,74%.

Temperatura topnienia: 189$^\circ$ C.

cLogP: 2.74.

(E)-2-[2-(2,4,6-trihydroksyfenylo)winylo]-8-hydroksychinolina (20)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.C, używając do reakcji 0,93 g (2 mmol) 2-[2-(2,4,6-triacetoksy-fenylo)-winylo]-8-acetoksychiloniny (19) oraz 1,01 g (8 mmol) K$_2$CO$_3$. Produkt reakcji otrzymano w postaci brązowego osadu. Wydajność reakcji wynosiła 93%.

1H NMR (400 MHz, DMSO-d_6), δ: 11.92 (bs, 1H, OH), 10.02 (bs, 1H, OH), 9.65 (bs, 1H, OH), 8.79 (d, $J = 9.1$ Hz, 1H), 8.45 (d, $J = 9.2$ Hz, 1H), 8.27 (d, $J = 16.2$ Hz, 1H, winyl), 7.96 (d, $J = 16.3$ Hz, 1H, winyl), 7.64 – 7.55 (m, 2H), 7.50-7.43 (m, 1H), 7.04 (d, $J = 8.7$ Hz, 1H), 6.53 (t, $J = 10.0$ Hz, 1H).
$$^{13}\text{C NMR (100 MHz, DMSO-}d_6\text{), } \delta: 154.07, 150.56, 148.35, 148.28, 143.97, 141.88, 133.57, 129.33, 128.51, 127.89, 120.97, 118.85, 118.80, 116.80, 115.84, 115.37, 109.12.$$

LR-MS (ESI): 318.24 [M+Na]^+, (C_{17}H_{13}NO_4; obliczono 295.08).

Analiza elementarna: C, 69.15; H, 4.44; N, 4.74; O, 21.67, (C_{17}H_{13}NO_4; obliczono C, 68.78; H, 4.23; N, 4.52; O, 21.90).

Czystość HPLC: 97.87%.

Temperatura topnienia: 279° C (rozkład).

cLogP: 2.77.

(E)-2-[[2-(2,3,4-triacetokszyfenylo)winylo]-8-acetoksychinolina (21)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0.4 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,770 g (5 mmol) aldehydu 2,3,4-trihydroksybenzoewego. Produkt reakcji otrzymano w postaci białego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 88%.

$$^1\text{H NMR (400 MHz, DMSO-}d_6\text{), } \delta: 8.44 (d, J = 8.6 Hz, 1H), 7.97 – 7.85 (m, 3H), 7.71 (d, J = 16.3 Hz, 1H, winyl), 7.62 – 7.49 (m, 3H), 7.36 – 7.31 (m, 1H), 2.47 (s, 3H, CH_3), 2.44 (s, 3H, CH_3), 2.35 (s, 3H, CH_3), 2.31 (s, 3H, CH_3).$$

$$^{13}\text{C NMR (100 MHz, DMSO-}d_6\text{), } \delta: 169.69, 168.60, 168.43, 167.65, 155.10, 147.57, 143.69, 142.04, 140.76, 137.40, 135.70, 131.95, 128.89, 128.61, 126.71, 126.64, 126.16, 124.27, 122.22, 121.94, 121.86, 21.08, 20.85, 20.59, 20.32.$$

LR-MS (ESI): 466.03 [M+2H]^+, (C_{25}H_{21}NO_8; obliczono 463.13).
Analiza elementarna: C, 64.87; H, 4.24; N, 3.12; O, 27.78, (C_{25}H_{21}NO_{8}; obliczono C, 64.79; H, 4.57; N, 3.02; O, 27.62).

Czystość HPLC: 98.64%.

Temperatura topnienia: 194° C.

cLogP: 2.04.

(E)-2-[2-(3,4,5-trihydroksyfenylo)winylo]-8-hydroksychinolina (22)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0,4 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,86 g (5 mmol) aldehydu 3,4,5-trihydroksybenzoesowego. Po odparowaniu bezwodnika octowego stosowano ogólne procedury opisane w punkcie 5.2.1.C, używając do reakcji 1,14 g (9 mmol) węglanu potasu. Produkt reakcji otrzymano w postaci ceglasto-czerwonego osadu. Wydajność reakcji wynosiła 9%.

^1H NMR (400 MHz, DMSO-d6), δ: 11.92 (bs, 1H, OH), 10.02 (bs, 1H, OH), 9.65 (bs, 1H, OH), 8.79 (d, J = 9.1 Hz, 1H), 8.45 (d, J = 9.2 Hz, 1H), 8.27 (d, J = 16.2 Hz, 1H, winyl), 7.96 (d, J = 16.3 Hz, 1H, winyl), 7.64 – 7.55 (m, 2H), 7.50 – 7.43 (m, 1H), 7.04 (d, J = 8.7 Hz, 1H), 6.53 (t, J = 10.0 Hz, 1H).

^13C NMR (100 MHz, DMSO-d6), δ: 154.07, 150.56, 148.35, 148.28, 143.97, 141.88, 133.57, 129.33, 128.51, 127.89, 120.97, 118.85, 118.80, 116.80, 115.84, 115.37, 109.12.

LR-MS (ESI): 318.20 [M+Na]^+, (C_{17}H_{13}NO_{4}; obliczono 295.08).

Czystość HPLC: 96,45%.

Temperatura topnienia: 281° C (rozkład) (lit. 195° C [155]).

cLogP: 2.77.
Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0,40 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,84 g (5 mmol) aldehydu 3,4-dihydroksy-5-metoksybenzosowego. Produkt reakcji otrzymano w postaci jasnożółtego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 72%.

\[\text{1H NMR (400 MHz, DMSO-d6), } \delta: 8.44 \text{ (d, } J = 8.7 \text{ Hz, } 1H), 7.87 \text{ (dd, } J = 10.6, 4.9 \text{ Hz, } 2H), 7.79 \text{ (d, } J = 16.2 \text{ Hz, } 1H, \text{ winyl}), 7.58 \text{ (t, } J = 7.7 \text{ Hz, } 1H), 7.51 \text{ (ddd, } J = 18.0, 5.2, 1.5 \text{ Hz, } 2H), 7.44 \text{ (d, } J = 1.5 \text{ Hz, } 1H), 7.27 \text{ (d, } J = 1.5 \text{ Hz, } 1H), 3.91 \text{ (s, } 3H, \text{ OCH}_3), 2.32 \text{ (s, } 3H, \text{ CH}_3), 2.30 \text{ (s, } 3H, \text{ CH}_3). \]

\[\text{13C NMR (100 MHz, DMSO-d6), } \delta: 169.88, 168.69, 168.05, 155.57, 152.79, 147.53, 143.85, 140.88, 137.29, 135.14, 133.85, 132.29, 130.23, 128.74, 126.34, 122.31, 121.22, 114.79, 109.28, 56.87, 21.23, 20.81. \]

\[\text{LR-MS (ESI): } 395.70 [M+2H]^+, (C}_{22}\text{H}_{19}\text{NO}_6; \text{ obliczono } 393.12). \]

\[\text{Analiza elementarna: } C, 67.02; \text{ H, 4.52; N, 3.24; O, 24.79, (C}_{22}\text{H}_{19}\text{NO}_6; \text{ obliczono } C, 67.17; \text{ H, 4.87; N, 3.56; O, 24.40).} \]

\[\text{Czystość HPLC: 96,65\%.} \]

\[\text{Temperatura topnienia: 172\° C.} \]

\[\text{cLogP: 2.93.} \]
Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0,40 g (2 mmol) 8-hydroksy-7-karboksychinaldyny oraz 0,67 g (4 mmol) aldehydu 3,4-dihydroksy-5-metoksybenzoesowego. Po odparowaniu bezwodnika octowego do mieszaniny poreakcyjnej dodano 3 M H2SO4 i ogrzewano jeszcze przez 3 godziny w 100°C. Mieszanię po ochłodzeniu do 0°C neutralizowano 6 M NaOH, wytrącony osad przesączono, przemyto wodą i krystalizowano z etanolu. Otrzymano bordowy osad z wydajnością 50%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.70 (d, $J=8.9$ Hz, 1H), 8.39 (d, $J=8.9$ Hz, 1H), 8.02 (d, $J=16.2$ Hz, 1H, winyl), 7.93 (d, $J=8.5$ Hz, 1H), 7.67 (d, $J=16.2$ Hz, 1H, winyl), 7.40 (d, $J=8.5$ Hz, 1H), 6.87 (d, $J=17.6$ Hz, 2H), 3.87 (s, 3H, OCH3).

13C NMR (100 MHz, DMSO-d_6), δ: 171.44, 157.02, 153.80, 149.05, 146.47, 143.36, 142.24, 138.35, 132.19, 130.77, 128.07, 126.17, 121.42, 118.74, 116.23, 113.68, 110.38, 104.13, 56.31.

Czystość HPLC: 93.82%.

Temperatura topnienia: 235°C (lit. 215-217°C [112]).

cLogP: 4.16.

(E)-2-[2-(2-etoksyfenylo)winylo]-8-hydroksychinolina (25)
Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0,40 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,75 g (5 mmol) aldehydu 2-etoksybenzosowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:4. Otrzymano produkt w postaci żółtego osadu z wydajnością 57%.

\(^{1}H\) NMR (400 MHz, DMSO-\(d_{6}\), \(\delta\): 9.53 (s, 1H, OH), 8.28 (d, \(J = 8.6\) Hz, 1H), 8.12 (d, \(J = 16.5\) Hz, 1H, winyl), 7.78 (d, \(J = 8.6\) Hz, 1H), 7.72 (t, \(J = 4.1\) Hz, 1H), 7.52 (d, \(J = 16.5\) Hz, 1H, winyl), 7.42 – 7.30 (m, 3H), 7.12 – 7.06 (m, 2H), 7.02 (t, \(J = 7.5\) Hz, 1H), 4.17 (q, \(J = 6.9\) Hz, 2H, \(\text{CH}_{2}\)-etoksy), 1.46 (t, \(J = 7.0\) Hz, 3H, \(\text{CH}_{3}\)-etoksy).

\(^{13}C\) NMR (100 MHz, DMSO-\(d_{6}\), \(\delta\): 157.12, 154.48, 153.38, 138.69, 136.92, 130.37, 130.13, 129.53, 128.50, 128.14, 127.41, 125.44, 121.13, 120.94, 118.09, 113.02, 111.79, 64.15, 15.13.

EI-HRMS: 291.12606 (C\(_{19}\)H\(_{17}\)NO\(_{2}\); obliczono 291.12593).

Czystość HPLC: 90,83%.

Temperatura topnienia: 100° C.

cLogP: 5.22.

\((E)-2-[2-(4-etoksyfenylo)winylo]-8-hydroksychinolina\) (26)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0,40 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,75 g (5 mmol) aldehydu 4-etoksybenzosowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:4. Otrzymano produkt w postaci żółtego osadu z wydajnością 20%.

\(^{1}H\) NMR (400 MHz, DMSO-\(d_{6}\), \(\delta\): 8.37 (d, \(J = 8.7\) Hz, 1H), 7.87 – 7.82 (m, 2H), 7.77 (d, \(J = 16.3\) Hz, 1H, winyl), 7.68 (d, \(J = 8.7\) Hz, 2H), 7.57 – 7.47 (m, 2H), 7.30
(d, J = 16.3 Hz, 1H, winyl), 6.99 (d, J = 8.7 Hz, 2H), 4.13 – 4.04 (q, 2H, CH₂-etoksy), 1.35 (t, J = 7.0 Hz, 3H, CH₃-etoksy).

¹³C NMR (100 MHz, DMSO-d₆), δ: 191.71, 159.52, 154.28, 153.28, 138.60, 136.83, 134.61, 132.28, 129.44, 129.11, 127.96, 127.31, 126.06, 121.25, 118.02, 115.29, 111.56, 64.20, 15.10.

EI-HRMS: 291.12481 (C₁₉H₁₇N₂0₂; obliczono 291.12593).

Czystość HPLC: 97.18%.

Temperatura topnienia: 130° C.

cLogP: 5.22.

(E)-2-[2-(3-metoksyfenylo) winylo]-8-hydroksychinolina (27)

![Structure of (E)-2-[2-(3-metokxyfenylo) winylo]-8-hydroksychinolina](image)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0.40 g (2,5 mmol) 8-hydroksychinaldyny oraz 0.68 g (5 mmol) aldehydu 3-metoksybenzoesowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:2. Otrzymano produkt w postaci żółtego osadu z wydajnością 54%.

¹H NMR (400 MHz, DMSO-d₆), δ: 9.55 (bs, 1H, OH), 8.30 (d, J = 8.6 Hz, 1H), 8.10 (d, J = 16.2 Hz, 1H, winyl), 7.78 (d, J = 8.6 Hz, 1H), 7.50 (d, J = 16.2 Hz, 1H, winyl), 7.40 – 7.34 (m, 3H), 7.32 – 7.28 (m, 2H), 7.10 (dd, J = 7.0, 1.8 Hz, 1H), 6.94 (dd, J = 8.1, 1.5 Hz, 1H), 3.84 (s, 3H, OCH₃).

¹³C NMR (100 MHz, DMSO-d₆), δ: 160.15, 153.82, 153.42, 138.63, 138.42, 136.98, 134.76, 130.37, 128.76, 128.17, 127.47, 121.45, 120.23, 118.04, 115.05, 112.46, 111.59, 55.59.

LR-MS (ESI): 302.42 [M+Na+2H]+, (C₁₈H₁₅NO₂; obliczono 277.11).

Analiza elementarna: C, 77.61; H, 4.96; N, 5.26; O, 11.18, (C₁₈H₁₅NO₂; obliczono C, 77.96; H, 5.45; N, 5.05; O, 11.54).
Czystość HPLC: 98,78%.
Temperatura topnienia: 115°C.
cLogP: 4.69.

\((E)-2-[2-(3-metylofenylo)winylo]-8-hydroksychinolina \(28\)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0,4 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,6 g (5 mmol) aldehydu 3-metylobenzoesowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:4. Otrzymano produkt w postaci jasno żółtego osadu z wydajnością 24%.

\(^1\)H NMR \((400 \text{ MHz, DMSO-}d_6\)), \(\delta\): 9.55 (s, 1H, OH), 8.29 (d, \(J = 8.5 \text{ Hz}, 1\H\)), 8.10 (d, \(J = 16.2 \text{ Hz}, 1\H, \text{ winył}\)), 7.78 (d, \(J = 8.6 \text{ Hz}, 1\H\)), 7.57 – 7.29 (m, 6H), 7.18 (d, \(J = 7.5 \text{ Hz}, 1\H\)), 7.10 (dd, \(J = 7.0, 1.5 \text{ Hz}, 1\H\)), 2.37 (s, 3H, CH₃).

\(^13\)C NMR \((100 \text{ MHz, DMSO-}d_6\)), \(\delta\): 153.91, 153.40, 138.62, 138.44, 136.96, 136.90, 134.89, 129.79, 129.26, 128.27, 128.27, 127.49, 124.90, 121.42, 118.03, 111.65, 21.48.

LR-MS (ESI): 263.28 [M+2H]⁺, \((\text{C}_{18}\text{H}_{15}\text{NO}; \text{obliczono } 261.11)\).

Czystość HPLC: 99,68%.

Temperatura topnienia: 72°C (rozkład) (lit. 60-61°C [156]).
cLogP: 5.27.
Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0,40 g (2,5 mmol) 8-hydroksychinaldyny oraz 0,83 g (5 mmol) aldehydu 3,5-dimetoksyzbenzoesowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:4. Otrzymano produkt w postaci żółtego osadu z wydajnością 57%.

1H NMR (400 MHz, DMSO-d$_6$), δ: 9.55 (s, 1H, OH), 8.31 (t, $J = 6.9$ Hz, 1H), 8.07 (d, $J = 16.2$ Hz, 1H, winyl), 7.77 (d, $J = 8.6$ Hz, 1H), 7.50 (d, $J = 16.2$ Hz, 1H, winyl), 7.44 – 7.32 (m, 2H), 7.13 – 7.05 (m, 1H), 6.90 (d, $J = 2.2$ Hz, 2H), 6.51 (t, $J = 2.1$ Hz, 1H), 3.82 (s, 6H, OCH$_3$).

13C NMR (100 MHz, DMSO-d$_6$), δ: 161.41, 161.22, 153.77, 153.43, 138.98, 138.63, 136.99, 134.87, 128.97, 128.18, 127.55, 121.48, 118.03, 111.66, 105.51, 101.41, 55.73.

LR-MS (ESI): 309.47 [M+2H]$^+$, (C$_{19}$H$_{17}$NO$_3$; obliczono 307.12).

Analiza elementarna: C, 73.93; H, 5.35; N, 4.53, (C$_{19}$H$_{17}$NO$_3$; obliczono C, 74.25; H, 5.58; N, 4.56).

Czystość HPLC: 96.28%.

Temperatura topnienia: 122°C.

cLogP: 4.78.
(E)-2-[2-(2-chlorofenylo)winylo]-5,7-dichloro-8-hydroksychinolina (30)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.D, używając do reakcji 0,23 g (1 mmol) 5,7-dichloro-8-hydroksychinaldyny oraz 0,56 g (4 mmol) aldehydu 2-chlorobenzoesowego. Produkt reakcji otrzymano w postaci beżowego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 47%.

1H NMR (400 MHz, DMSO-d_6), δ: 8,48 (d, $J=8,7$ Hz, 1H), 8,36 (d, $J=16,2$ Hz, 1H, winyl), 7,98 (d, $J=8,8$ Hz, 1H), 7,94 (dd, $J=7,6$; 2,0 Hz, 1H); 7,77 (s, 1H); 7,58-7,50 (m, 2H); 7,47-7,36 (m, 2H).

13C NMR (100 MHz, DMSO-d_6), δ: 155.17, 149.33, 139.39, 134.81, 133.99, 133.57, 132.06, 131.14, 130.83, 130.44, 128.27, 128.17, 127.85, 124.37, 123.01, 119.63, 116.28.

EI-HRMS: 348.98262 (C$_{17}$H$_{10}$Cl$_3$NO; obliczono 348.98262).

Czystość HPLC: 98,74%.

Temperatura topnienia: 205-210°C.

cLogP: 6.74.

(E)-2-[2-(4-hydroksyfenylo)winylo]-5,7-dichloro-8-hydroksychinolina (31)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0,57 g (2,5 mmol) 5,7-dichloro-8-hydroksychinaldyny oraz 0,61 g (5 mmol)
aldehydu 4-hydroksybenzoesowego. Surowy produkt oczyszczał na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:4. Otrzymano produkt w postaci beżowego osadu z wydajnością 86%.

1H NMR (400 MHz, DMSO-d_6), δ: 10.30 (bs, 1H, OH), 9.84 (s, 1H, OH), 8.40 (dd, $J = 1.3$ Hz, $J = 8.8$ Hz, 1H), 8.18 (d, $J = 16.1$ Hz, 1H, winyl), 7.86 (dd, $J = 1.2$ Hz, $J = 8.8$ Hz, 1H), 7.69 (d, $J = 1.7$ Hz, 1H), 7.56 (d, $J = 7.3$ Hz, 2H), 7.28 (d, $J = 16.0$ Hz, 1H, winyl), 6.85 (d, $J = 7.2$ Hz, 2H, phenyl).

13C NMR (100 MHz, DMSO-d_6), δ: 158.52, 155.67, 148.36, 138.66, 136.53, 132.97, 128.97, 127.14, 126.41, 123.41, 123.19, 122.07, 119.02, 115.73, 115.17.

Analiza elementarna: C 61.54, H 3.32, N 4.28, (C$_{17}$H$_{11}$Cl$_2$NO$_2$; obliczono C 61.47, H 3.34, N 4.22).

Czystość HPLC: 98,52%.

Temperatura topnienia: 198°C (lit. 198°C [110]).

cLogP: 5.36.

(E)-2-[2-(2-hydroksyfenylo)winylo]-5,7-dichloro-8-hydroksychinolinina (32)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.B, używając do reakcji 0,57 g (2,5 mmol) 5,7-dichloro-8-hydroksychinaldyny oraz 0,61 g (5 mmol) aldehydu 2-hydroksybenzoesowego. Surowy produkt oczyszczał na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:4. Otrzymano produkt w postaci beżowego osadu z wydajnością 87%.

1H NMR (400 MHz, DMSO-d_6), δ: 10.07 (bs, 1H, OH), 8.43 (d, $J = 8.8$ Hz, 1H), 8.28 – 8.20 (m, 1H), 7.97 (d, $J = 8.8$ Hz, 1H), 7.73 (s, 1H), 7.65 – 7.62 (m, 1H), 7.59 (d, $J = 16.4$ Hz, 1H, winyl), 7.24 – 7.16 (m, 1H), 6.95 (d, $J = 7.6$ Hz, 1H), 6.90 (t, $J = 7.5$ Hz, 1H).
13C NMR (100 MHz, DMSO-d_6), δ: 156.74, 156.57, 149.11, 139.35, 133.55, 133.06, 130.56, 129.10, 127.84, 127.22, 123.94, 123.40, 122.19, 119.93, 119.63, 116.66, 116.01.

Analiza elementarna: C 61.87, H 3.05, N 4.12, (C$_{17}$H$_{11}$Cl$_2$NO$_2$; obliczono C 61.47, H 3.34, N 4.22).

Czystość HPLC: 98.10%.

Temperatura topnienia: 141°C (lit. 141°C [110]).

cLogP: 5.36.

$^{(E)}$-2-[2-(4-etoksyfenylo)winylo]-5,7-dichloro-8-hydroksychinolina (33)

![structure](image)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.D, używając do reakcji 0,23 g (1 mmol) 5,7-dichloro-8-hydroksychinaldyny oraz 0,60 g (4 mmol) aldehydu 4-etoksybenzosowego. Produkt reakcji otrzymano w postaci beżowego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 9%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.43 (d, J = 8.76 Hz, 1H), 8.24 (d, J = 16.1 Hz, 1H, winył), 7.89 (d, J = 8.81 Hz, 1H), 7.72 (s, 1H), 7.67 (d, J = 8.70 Hz, 2H), 7.36 (d, J = 16.1 Hz, 1H, winył), 7.02 (d, J = 8.73 Hz, 2H), 4.09 (q, J = 6.97, 6.95, 6.95 Hz, 2H, CH$_2$-etoksy), 1.36 (t, J = 6.96, 6.96 Hz, 3H, CH$_3$-etoksy).

13C NMR (100 MHz, DMSO-d_6), δ: 159.88, 156.11, 149.02, 139.26, 136.72, 133.68, 129.44, 129.15, 127.15, 124.92, 123.89, 122.79, 119.64, 115.80, 115.38, 100.00, 63.68, 15.11.

EI-HRMS: 359.04723 (C$_{19}$H$_{15}$N$_2$O$_2$; obliczono 359.04798).

Czystość HPLC: 96.79%.

Temperatura topnienia: 156-158°C.
cLogP: 6.48.

(E)-2-[2-(2-etoksyfenylo)winylo]-5,7-dichloro-8-hydroksychinolina (34)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.D, używając do reakcji 0,23 g (1 mmol) 5,7-dichloro-8-hydroksychinaldyny oraz 0,60 g (4 mmol) aldehydu 2-etoksybenzoesowego. Produkt reakcji otrzymano w postaci beżowego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 26%.

1H NMR (400 MHz, DMSO-d$_6$), δ: 8.44 (d, $J = 8.83$ Hz, 1H), 8.14 (d, $J = 16.4$ Hz, 1H, winył), 7.79 (d, $J = 8.84$ Hz, 1H), 7.71 (dd, $J = 7.71$, 1.53 Hz, 1H), 7.52 (s, 1H), 7.46 (d, $J = 16.4$ Hz, 1H, winył), 7.34 (t, $J = 7.82$, 7.82 Hz, 1H), 7.03 (t, $J = 7.50$, 7.50 Hz, 1H), 6.96 (d, $J = 8.27$ Hz, 1H), 4.18 (q, $J = 6.96$, 6.96, 6.95 Hz, 2H, CH$_2$-etoksy), 1.56 (t, $J = 6.97$, 6.97 Hz, 3H, CH$_3$-etoksy).

13C NMR (100 MHz, DMSO-d$_6$), δ: 157.40, 156.29, 149.13, 139.36, 133.75, 132.51, 130.87, 129.11, 128.55, 127.39, 125.12, 124.06, 122.51, 121.17, 119.64, 116.09, 113.08, 64.21, 15.15.

EI-HRMS: 359.04682 (C$_{19}$H$_{15}$N$_2$O$_2$; obliczono 359.04798).

Czystość HPLC: 98.24%.

Temperatura topnienia: 100-102°C.

cLogP: 6.48.
(E)-2-[2-(4-butylofenylo)winylo]-5,7-dichloro-8-acetoksychinolina (35)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0,575 g (1 mmol) 5,7-dichloro-8-hydroksychinaldyny oraz 0,810 g (5 mmol) aldehydu 4-butylobenzoesowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ chloroform/heksan w stosunku 1:3. Otrzymano produkt w postaci żółtego osadu z wydajnością 3%.

\[\text{H NMR (400 MHz, CDCl}_3\text{-d}, \delta: 8.48 (d, J = 8.7 \text{ Hz}, 1\text{H}), 7.79 - 7.70 (m, 2\text{H}), 7.63 (s, 1\text{H}), 7.56 (d, J = 7.8 \text{ Hz}, 2\text{H}), 7.44 (d, J = 16.2 \text{ Hz}, 1\text{H, winyl}), 7.25 (d, J = 7.7 \text{ Hz}, 2\text{H}), 2.69 - 2.65 (m, 2H, butylo), 2.63 (s, 3\text{H, CH}_3\text{-acetoksy}), 1.69-1.61 (m, 2H, butylo), 1.40 (m, 2H), 0.97 (t, J = 7.4 \text{ Hz}, 3\text{H, butylo}). }\]

\[\text{C NMR (100 MHz, DMSO}_6\text{-d}, \delta: 168.54, 157.40, 145.05, 134.53 - 134.37, 133.20, 129.04, 127.87, 126.84, 124.77, 120.77, 35.59, 33.44, 22.38, 20.90, 13.96. }\]

LR-MS (ESI): 371.08 [M-Ac]^+, (C\text{23H}_\text{21Cl}_\text{2NO}_2; obliczono 413.10).
Temperatura topnienia: 101-103°C.
cLogP: 7.69.

(E)-2-[2-(2-etoksyfenylo)winylo]-5-chloro-8-hydroksychinolina (36)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.D, używając do reakcji 0,19 g (1 mmol) 5-chloro-8-hydroksychinaldyny oraz 0,60 g (4 mmol)
aldehydu 2-etoxybenzoesowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:8. Otrzymano produkt w postaci żółtego osadu z wydajnością 7%.

1H NMR (400 MHz, DMSO-d$_6$), δ: 9.90 (s, 1H, OH), 8.44 (d, $J = 8.8$ Hz, 1H), 8.19 (d, $J = 16.4$ Hz, 1H, winyl), 7.93 (d, $J = 8.8$ Hz, 1H), 7.73 (dd, $J = 7.7$, 1.5 Hz, 1H), 7.55 (dd, $J = 12.3$, 10.7 Hz, 2H), 7.38 – 7.32 (m, 1H), 7.10 (t, $J = 7.7$ Hz, 2H), 7.03 (t, $J = 7.4$ Hz, 1H), 4.19 (q, $J = 7.0$ Hz, 2H, etoksy), 1.47 (t, $J = 6.9$ Hz, 3H, etoksy).

13C NMR (100 MHz, DMSO-d$_6$), δ: 157.24, 155.25, 153.04, 139.34, 133.39, 131.32, 130.67, 128.90, 128.78, 127.26, 125.29, 125.20, 122.20, 121.16, 119.15, 113.06, 112.14, 64.18, 15.14.

Temperatura topnienia: 56°C.

cLogP: 6.05.

(E)-2-{2-[4-(3,3-dimetylo-1-butyn-1-ylo)fenylo]winylo}chinolina (43)

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0,353 g (2,5 mmol) chinaldyny oraz 0,930 g (5 mmol) 4-{(3,3-dimetylo)-1-butyn-1-ylo}benzaldehydu (41). Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:4. Otrzymano produkt w postaci żółtego osadu z wydajnością 60%.

1H NMR (400 MHz, DMSO-d$_6$), δ: 8.13 (d, $J = 8.6$ Hz, 1H), 8.10 (d, $J = 8.5$ Hz, 1H), 7.80 (dd, $J = 6.5$, 2.7 Hz, 1H), 7.75 – 7.69 (m, 1H), 7.68 – 7.63 (m, 2H), 7.57 (d, $J = 8.2$ Hz, 2H), 7.51 (ddd, $J = 8.1$, 6.9, 1.1 Hz, 1H), 7.43 (dd, $J = 8.1$, 1.4 Hz, 2H), 7.38 (s, 1H), 1.36 (s, 9H).
\[^{13}\text{C NMR (100 MHz, DMSO-}d_6, \delta: 155.73, 148.26, 136.21, 135.58, 133.60, 131.85, 129.61, 129.23, 127.72, 126.82, 126.06, 124.23, 119.20, 99.97, 78.88, 30.98, 27.99. \]

\[\text{LR-MS (ESI): 312.17 [M+H]^+}, (C_{23}H_{21}N; \text{obliczono } 311.18). \]

Temperatura topnienia: 153°C.

\[\text{cLogP: 6.85.} \]

\((E)-2-[2-(4-benzacetylenofenylo)winylo]chinolina (46)\]

![Chemical structure of (E)-2-[2-(4-benzacetylenofenylo)winylo]chinolina (46)]

Związek otrzymano wg ogólnej procedury opisanej w punkcie 5.2.1.A, używając do reakcji 0,353 g (2,5 mmol) chinaldyny oraz 1,030 g (5 mmol) 4-fenyloetynylbenzaldehydu (45). Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano dichlorometan. Otrzymano produkt w postaci jasno żółtego osadu z wydajnością 50%.

\[^1\text{H NMR (400 MHz, CDCl}_3-d), \delta: 8.15 (d, J = 8.6 \text{ Hz}, 1H), 8.12 (d, J = 8.5 \text{ Hz}, 1H), 7.81 (d, J = 8.1 \text{ Hz}, 1H), 7.77 - 7.71 \text{ (m, } 1H), 7.67 \text{ (dd, } J = 13.7, 8.4 \text{ Hz}, 4H), 7.61 - 7.56 \text{ (m, } 4H), 7.53 \text{ (t, } J = 7.5 \text{ Hz}, 1H), 7.45 \text{ (d, } J = 16.3 \text{ Hz}, 1H, \text{ winyl), 7.41-7.35 \text{ (m, } 3H).} \]

\[^{13}\text{C NMR (100 MHz, CDCl}_3-d), \delta: 155.70, 148.29, 136.44, 133.65, 132.03, 131.65, 129.83, 129.74, 129.26, 128.39, 127.53, 127.43, 127.20, 126.31, 123.39, 123.23, 119.42, 90.84, 89.46. \]

\[\text{LR-MS (ESI): 332.33 [M+H]^+}, (C_{25}H_{17}N; \text{obliczono } 331.14). \]

Temperatura topnienia: 201-203°C.

\[\text{cLogP: 7.36.} \]
5.2.2. Otrzymywanie bliskich analogów terbinafiny i butenafiny, sprzęganie Sonogashiry (37-42, 44, 45).

Do 1,8 mmola bromku arylu dodano 10 mg katalizatora palladowego-Pd(PPh\(_3\))\(_2\)Cl\(_2\), 50 mg jodu miedzi (l) oraz 100 mg trifenyllofosfiny. Całość rozpuszczono w 3 ml świeżo przedestylowanej trietyloaminy i 1 ml dimetyloformamidu. Przez tak przygotowaną mieszaninę reakcyjną przepuszczono gaz obojętny, a następnie porcjami dodano 2 mmole alkinu terminalnego. Całość mieszano w temperaturze od 50°C do 90°C, w zależności od temperatury wrzenia alkinu terminalnego przez 18 godzin. Po ochłodzeniu mieszaniny poreakcyjnej dodano eteru dietylowego i odszczepiono grawitacyjnie substancje nieorganiczne. Do przesączu dodano 10 ml 0,1 M kwasu solnego. Mieszanię ekstrahowano 3 razy eterelem dietylowym, złączone warstwy organiczne przemyto stężonym roztworem NaHCO\(_3\) i wodą. Roztwór suszono nad MgSO\(_4\), po odszczepieniu środka suszącego odszczepiono rozpuszczalnik. Produkt oczyszczano przez krystalizację lub na kolumnie chromatograficznej.

\[\text{[(4-tert-butylofenylo)etynylo]trimetylosilan (37)} \] [157]

Związek otrzymano wg ogólnej procedury, używając do reakcji 0,38 g (1,8 mmol) 4-tert-butylobromobenzenu oraz 0,19 g (2 mmol) trimetylosililoacetylenu. Reakcję prowadzono w temperaturze 50°C. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano heksan. Otrzymano produkt w postaci żółtego oleju z wydajnością 50%.

\(^1\)H NMR (400 MHz, DMSO-\(d_6\)), \(\delta\): 7.39 (s, 4H), 1.27 (s, 9H), 0.23 (s, 9H).
13C NMR (100 MHz, DMSO-d_6), δ: 152.20, 131.83, 125.91, 119.78, 105.84, 93.76, 35.01, 31.31, 0.49.

LR-MS (ESI): 231.54 [M+H]$^+$, (C$_{15}$H$_{22}$Si; obliczono 230.15).

cLogP: 6.46.

4-tert-butylofenyloacetylen (38) [157]

\[
\text{[4-tert-butylofenyl]etynylo]trimetylosilanu (37) rozpuszczono w 6 ml metanolu i dodano 0,20 g (1,6 mmol) K$_2$CO$_3$. Całość mieszano w temperaturze pokojowej przez 2 h w atmosferze gazu obojętnego. Następnie roztwór zagęszczono do połowy objętości i wytrząsano z 15 ml wody destylowanej, mieszaninę trzykrotnie ekstrahowano eterem dietylowym. Złączone warstwy organiczne przemyto wodą, a następnie solanką i suszono nad MgSO$_4$. Odsączono środek suszący i odparowano rozpuszczalnik. Otrzymano żółty olej z wydajnością 99%.
\]

1H NMR (400 MHz, DMSO-d_6), δ: 7.41 (s, 4H), 4.09 (s, 1H), 1.27 (s, 9H).

13C NMR (100 MHz, DMSO-d_6), δ: 152.10, 131.91, 125.96, 119.32, 84.00, 80.48, 34.97, 31.34.

LR-MS (ESI): 181.35 [M+Na]$^+$, (C$_{12}$H$_{14}$; obliczono 158,11).

2-[(4-tert-butylofenylo)etynylo]chinolina (39)

Związek otrzymano wg ogólnej procedury, używając do reakcji 0,41 g (1,8 mmol) 2-bromochinoliny oraz 0,31 g (2 mmol) 4-tert-butylofenyloacetylenu. Reakcję prowadzono w temperaturze 70°C. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano heksan. Wstępnie oczyszczony produkt krystalizowano z mieszaniny octanu etylu i heksanu. Otrzymano produkt w postaci kremowego osadu z wydajnością 22%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.43 (d, $J = 8.4$ Hz, 1H), 8.06 – 7.99 (m, 2H), 7.87 – 7.79 (m, 1H), 7.73 (d, $J = 8.4$ Hz, 1H), 7.69 – 7.65 (m, 1H), 7.62 (d, $J = 8.5$ Hz, 2H), 7.52 (d, $J = 8.5$ Hz, 2H), 1.31 (s, 9H).

13C NMR (100 MHz, DMSO-d_6), δ: 153.03, 148.16, 143.28, 137.14, 132.19, 130.83, 129.04, 128.43, 127.79, 127.31, 126.26, 124.77, 118.76, 89.83, 89.53, 35.16, 31.31.

LR-MS (ESI): 286.41 [M+H]$^+$, (C$_{21}$H$_{19}$N; obliczono 285.15).

Temperatura topnienia: 99°C.

2-(3,3-dimetylobutyn-1-yl)chinolina (40)

Związek otrzymano wg ogólnej procedury, używając do reakcji 0,41 g (1,8 mmol) 2-bromochinoliny oraz 0,16 g (2 mmol) 3,3-dimetylo-1-butynu. Reakcję
prowadzono w temperaturze 50°C. Surowy produkt oczyszczano trzykrotnie na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:4. Otrzymano produkt w postaci kremowego oleju z wydajnością 86%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.33 (d, $J = 8.4$ Hz, 1H), 7.96 (t, $J = 8.2$ Hz, 2H), 7.81 - 7.75 (m, 1H), 7.63 - 7.57 (m, 1H), 7.51 (d, $J = 8.4$ Hz, 1H), 1.35 (s, 9H).

13C NMR (100 MHz, DMSO-d_6), δ: 148.02, 143.72, 136.90, 130.60, 128.91, 128.32, 127.43, 124.69, 99.35, 80.28, 30.88, 28.06.

LR-MS (ESI): 210.40 [M+H]$^+$, (C$_{15}$H$_{15}$N; obliczono 209.12).

cLogP: 4.15.

4-[(3,3-dimetylo-1-butyn-1-ylo)benzaldehyd (41) [158]

Związek otrzymano wg ogólnej procedury, używając do reakcji 0,33 g (1,8 mmol) aldehydu 4-bromobenzoesowego oraz 0,16 g (2 mmol) 3,3-dimetylo-1-butynu. Reakcję prowadzono w temperaturze 50°C. Produkt reakcji otrzymano w postaci beżowego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 40%.

1H NMR (400 MHz, DMSO-d_6), δ: 10.00 (s, 1H, CHO), 7.91-7.83 (m, 2H), 7.60-7.53 (m, 2H), 1.31 (s, 9H, CH$_3$).

13C NMR (100 MHz, DMSO-d_6), δ: 192.92, 135.47, 132.35, 130.02, 129.64, 103.22, 79.03, 30.98, 28.35.

Temperatura topnienia: 99°C.

cLogP: 3.62.
4-((trimetylosilylo)etynylo)benzaldehyd (42)

Związek otrzymano wg ogólnej procedury, używając do reakcji 0,33 g (1,8 mmol) aldehydu 4-bromobenzoesowego oraz 0,19 g (2 mmol) trimetylosililoacetenu. Reakcję prowadzono w temperaturze 50°C. Produkt reakcji otrzymano w postaci jasno brązowego osadu, który oczyszczano na kolumnie chromatograficznej, jako eluent stosowano mieszaninę chlorek metylenu : heksan w stosunku 1:3. Wydajność reakcji wynosiła 77 %.

1H NMR (400 MHz, DMSO-d_6), δ: 10,02 (s, 1H, CHO); 7,90 (d, $J = 8,55$ Hz, 2H, Ar-H); 7,67 (d, $J = 8,10$ Hz, 2H, Ar-H); 0,26 (s, 9H, CH$_3$).

13C NMR (100 MHz, DMSO-d_6), δ: 192,34; 136,20; 132,74; 130,04; 127,83; 104,57; 99,21; 0,18.

Temperatura topnienia: 65-69°C (lit. 66°C [159]).

cLogP: 3,99.

4-etynylobenzaldehyd (44)

0,18 g (0,9 mmol) 4-((trimetylosilylo)etynylo)benzaldehyd u (42) rozpuszczono w 6 ml metanolu i dodano 0,20 g (1,6 mmol) K$_2$CO$_3$. Całość mieszano w temperaturze pokojowej przez 2 h w atmosferze gazu obojętnego. Następnie roztwór zagęszczono do połowy objętości i wytrząsano z 15 ml wody destylowanej, mieszaninę trzykrotnie ekstrahowano eterem dietyłowym. Złączone warstwy organiczne przemyto wodą, a następnie solanką i suszono nad MgSO$_4$. Odsączono
środek suszący i odparowano rozpuszczalnik. Otrzymano żółty olej z wydajnością 95%.

1H NMR (400 MHz, DMSO-d$_6$), δ: 10.03 (s, 1H, CHO); 7.92 (d, $J = 8.46$ Hz, 2H, Ar-H); 7.70 (d, $J = 8.22$ Hz, 2H, Ar-H); 4.54 (s, 1H, CH).

13C NMR (100 MHz, DMSO-d$_6$), δ: 192.96; 136.28; 132.89; 130.04; 128.00; 85.00; 83.16.

Temperatura topnienia: 86°C (lit. 87°C [160]).

cLogP: 1.76.

4-fenyloetynylobenzaldehyd (45)

Związek otrzymano wg ogólnej procedury, używając do reakcji 0,33 g (1,8 mmol) aldehydu 4-bromobenzoesowego oraz 0,24 g (2 mmol) fenyloacetylenu. Reakcję prowadzono przez 6 godzin w temperaturze 90°C. Produkt reakcji otrzymano w postaci jasno brązowego osadu, który krystalizowano z etanolu. Wydajność reakcji wynosiła 77%.

1H NMR (400 MHz, DMSO-d$_6$), δ: 10.40 (s, 1H), 7.89 (d, $J = 8.2$ Hz, 2H), 7.70 (d, $J = 8.10$ Hz, 2H), 7.58 (m, 2H), 7.40 (m, 3H).

13C NMR (100 MHz, DMSO-d$_6$), δ: 191.41, 135.44, 132.12, 131.81, 129.59, 128.98, 128.49, 122.52, 93.47, 88.53.

Temperatura topnienia: 95-98°C (lit. 96-97°C [159]).

cLogP: 3.37.
5.2.3. Otrzymywanie 1,2,3-triazoli opartych na pierścieniu chinoliny.

5.2.3.1. Bromowanie 8-chlorochinaldyny (47-48).

0.59 g (3,30 mmol) NBS rozpuszczono w 10 ml CCl₄, do roztworu dodano 0.53 g (3,00 mmol) 8-chloro-2-metylochinoliny oraz 25 mg (0,09 mmol) AIBN. Całość ogrzewano w atmosferze gazu obojętnego w 77°C przez 24 h. Mieszanię poreakcyjną ochładzano do temperatury pokojowej i przesączano na lejku przemywając porcję CCl₄. Po odparowaniu rozpuszczalnika otrzymano mieszaninę produktów 2-(bromometylo)-8-chlorochinoliny (47) oraz 2,2-(dibromometylo)-8-chlorochinoliny (48). Produkty rozdzielano na kolumnie chromatograficznej, jako eluent stosowano układ cykloheksan/chloroform w stosunku 1:1.

2-(bromometylo)-8-chlorochinolina (47)

Produkt otrzymano w postaci białych igieł z wydajnością 50%.

1H NMR (400 MHz, DMSO-d₆), δ: 8.51 (d, J = 8.34 Hz, 1H), 7.99 (dt, J = 1.39, 7.52 Hz, 2H), 7.80 (d, J = 8.59 Hz, 1H), 7.58 - 7.66 (m, 1H), 4.91 (s, 2H, CH₂).

13C NMR (100 MHz, DMSO-d₆), δ: 158.67, 143.27, 138.65, 132.51, 130.64, 128.97, 127.88, 127.78, 123.17, 35.48.

LR-MS (ESI): 256.11 [M+H]⁺, (C₁₀H₇BrClN; obliczono 254.94).

Temperatura topnienia: 112°C.

cLogP: 3.59.
2,2-(dibromometylo)-8-chlorochinolina (48)

Produkt otrzymano w postaci białych igieł z wydajnością 20%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.63 (d, $J = 8.59$ Hz, 1H), 8.00 - 8.09 (m, 3H), 7.67 (t, $J = 7.96$ Hz, 1H), 7.43 (s, 1H, CH).

13C NMR (100 MHz, DMSO-d_6), δ: 159.3, 142.0, 139.8, 132.7, 131.3, 129.5, 128.7, 127.9, 120.8, 44.12.

LR-MS (ESI): 330.24 [M-2H]$^+$, $(C_{10}H_6Br_2ClN; \text{obliczono } 332.86)$.

Temperatura topnienia: 166-167°C.

cLogP: 4.32.

B) Azydkowanie 2-(bromometylo)-8-chlorochinoliny (49)

2-(azydometylo)-8-chlorochinolina (49)

0,51 g (2 mmol) 2-(bromometylo)-8-chlorochinoliny (47) rozpuszczono w 15 ml acetonitrylu, do roztworu dodano 0,26 g (4 mmol) NaN$_3$ oraz 40 mg (0,16 mmol) eteru koronowego 18-korona-6. Całość mieszano w temperaturze pokojowej przez 24 h. Mieszanię poreakcyjną ochładzono do temperatury pokojowej i przesączono na lejkę. Po odparowaniu rozpuszczalnika surowy produkt krystalizowano z acetonitrylu. Otrzymano produkt w postaci białego osadu z wydajnością 96%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.51 (d, $J = 8.59$ Hz, 1H), 8.00 (dd, $J = 7.96$, 10.23 Hz, 2H), 7.67 (d, $J = 8.34$ Hz, 1H), 7.61 (t, $J = 7.83$ Hz, 1H), 4.78 (s, 2H, CH$_2$).
13C NMR (100 MHz, DMSO-d_6), δ: 158.0, 143.4, 138.4, 132.5, 130.5, 129.0, 127.9, 127.4, 121.7, 54.9.

LR-MS (ESI): 241.24 [M+Na]$^+$, (C$_{10}$H$_7$ClN$_4$; obliczono 218.04).

Temperatura topnienia: 39° C.

cLogP: 3.93.

C) 1,2,3-triazole (50-57).

0.22 g (1 mmol) 2-(azydometylo)-8-chlorochinoliny rozpuszczono w 6 ml tert-butanolu, do roztworu dodano 20 mg (0,1 mmol) askorbinianu sodu. Probówkę zamykano szczelnie aluminiowym kapslem zawierającym septę i przepłukiwano roztwór gazem obojętnym. Za pomocą strzykawki dodawano kroplami 0.2 ml wodnego roztworu Cu$_2$(OAc)$_4$(H$_2$O)$_2$ (10 mg, 0.025 mmol), a następnie 2 mmole alkinu terminalnego. Całość mieszano w temperaturze pokojowej przez 16 h. Produkt oczyszczano przez krystalizację lub na kolumnie chromatograficznej.

2-\{4-(trimetylosilylo)-1H-1,2,3-triazol-1-ylowo\}metylo-8-chlorochinolina (50)

Związek otrzymano wg ogólnej procedury opisanej w punkcie C, używając do reakcji 0.20 g (2 mmol) trimetylosililoacetylenu. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:1. Otrzymano produkt w postaci żółtego osadu z wydajnością 57%.
\(^1H \) NMR (400 MHz, DMSO-\(d_6 \)), \(\delta \): 8.20 (d, \(J = 8.5 \) Hz, 1H), 7.95 – 7.85 (m, 2H), 7.77 (dd, \(J = 8.2, 1.1 \) Hz, 1H), 7.51 (t, \(J = 7.8 \) Hz, 1H), 7.38 (d, \(J = 8.5 \) Hz, 1H), 5.97 (s, 2H, CH\(_2\)), 0.35 (s, 9H).

\(^13C \) NMR (100 MHz, DMSO-\(d_6 \)), \(\delta \): 155.64, 143.96, 137.95, 133.71, 130.18, 128.85, 126.92, 126.70, 120.48, 55.48, 1.19.

LR-MS (ESI): 317.24 [M+H]\(^+\), (C\(_{15}\)H\(_{17}\)ClN\(_4\)Si; obliczono 316.09).

Temperatura topnienia: 91°C.

cLogP: 4.48.

2-\{4-(tert-butylo)-1H-1,2,3-triazol-1-ylo\}metylo-8-chlorochinolina (51)

Związek otrzymano wg ogólnej procedury opisanej w punkcie C, używając do reakcji 0,16 g (2 mmol) 3,3-dimetylo-1-butynu. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ octan etylu/heksan w stosunku 1:1. Otrzymano produkt w postaci żółtego osadu z wydajnością 57%.

\(^1H \) NMR (400 MHz, DMSO-\(d_6 \)), \(\delta \): 8.19 (d, \(J = 8.5 \) Hz, 1H), 7.89 (dd, \(J = 7.5, 1.0 \) Hz, 1H), 7.77 (d, \(J = 8.2 \) Hz, 1H), 7.60 (s, 1H), 7.51 (t, \(J = 7.8 \) Hz, 1H), 7.36 (d, \(J = 8.5 \) Hz, 1H), 5.89 (s, 2H, CH\(_2\)), 1.37 (s, 9H).

\(^13C \) NMR (100 MHz, DMSO-\(d_6 \)), \(\delta \): 157.16, 156.96, 143.23, 138.66, 132.45, 130.61, 128.99, 127.92, 127.53, 121.62, 121.07, 55.23, 30.92, 30.77.

LR-MS (ESI): 301.30 [M+H]\(^+\), (C\(_{16}\)H\(_{17}\)ClN\(_4\); obliczono 300.11).

Temperatura topnienia: 125°C.

cLogP: 3.50.
Związek otrzymano wg ogólnej procedury opisanej w punkcie C, używając do reakcji 0,11 g (2 mmol) alkoholu propargylowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano dichlormetan. Otrzymano produkt w postaci białego osadu z wydajnością 69%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.49 (d, J = 8.5 Hz, 1H), 8.17 (s, 1H), 7.99 (dd, J = 7.9, 1.4 Hz, 2H), 7.61 (t, J = 7.8 Hz, 1H), 7.39 (d, J = 8.5 Hz, 1H), 5.96 (s, 2H, CH$_2$), 5.20 (t, J = 5.6 Hz, 1H, OH), 4.56 (d, J = 5.5 Hz, 2H, CH$_2$O).

13C NMR (100 MHz, DMSO-d_6), δ: 157.21, 148.91, 143.29, 138.74, 132.48, 130.67, 129.00, 127.93, 127.57, 124.31, 121.12, 55.53, 55.44.

LR-MS (ESI): 297.31 [M+Na]$^+$, (C$_{13}$H$_{11}$ClN$_4$O; obliczono 374.06).

Temperatura topnienia: 110°C.

cLogP: 0.86.

Związek otrzymano wg ogólnej procedury opisanej w punkcie C, używając do reakcji 0,22 g (2 mmol) eteru benzylowopropargylowego. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ
2-butanol/cykloheksan w stosunku 1:6. Otrzymano produkt w postaci białego osadu z wydajnością 81%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.50 (d, $J = 8.55$ Hz, 1H), 8.36 (s, 1H), 7.99 (t, $J = 8.55$ Hz, 2H), 7.61 (t, $J = 7.78$ Hz, 1H), 7.44 (d, $J = 8.24$ Hz, 1H), 7.29 - 7.35 (m, 5H), 5.99 (s, 2H, CH$_2$), 4.63 (s, 2H), 4.55 (s, 2H).

13C NMR (100 MHz, DMSO-d_6), δ: 157.3, 150.6, 143.3, 138.7, 132.5, 130.7, 129.0, 127.9, 127.6, 123.4, 121.1, 55.5, 49.1, 37.7.

LR-MS (ESI): 387.73 [M+Na]$^+$, (C$_{20}$H$_{17}$ClN$_4$O; obliczono 364.11).

Temperatura topnienia: 89-90° C.

cLogP: 3.06.

2-({4-[(amino)metylo]-1H-1,2,3-triazol-1-ylo}metylo)-8-chlorochinolina (54)

Związek otrzymano wg ogólnej procedury opisanej w punkcie C, używając do reakcji 0,11 g (2 mmol) aminy propargylowej. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ 2-butanol/cykloheksan w stosunku 1:6, a następnie metanol. Otrzymano produkt w postaci kremowego osadu z wydajnością 69%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.49 (d, $J = 8.55$ Hz, 1H), 8.09 (s, 1H), 7.96-8.03 (m, 2H), 7.61 (t, $J = 7.93$ Hz, 1H), 7.38 (d, $J = 8.54$ Hz, 1H), 5.94 (s, 2H, CH$_2$N$_3$), 3.79 (bs, 2H, NH$_2$), 3.17 (s, 2H, CH$_2$NH$_2$).

13C NMR (100 MHz, DMSO-d_6), δ: 157.3, 150.6, 143.3, 138.7, 132.5, 130.7, 129.0, 127.9, 127.6, 123.4, 121.1, 55.5, 37.7.

LR-MS (ESI): 272.63 [M-H]$^+$, (C$_{13}$H$_{12}$ClN$_5$; obliczono 273.08).

Temperatura topnienia: 100-101° C.

cLogP: 0.85.
2-({4-[(N,N-dimetyloamino)metylo]-1H-1,2,3-triazol-1-ylo}metylo)-8-chlorochinolina (55)

Związek otrzymano wg ogólnej procedury opisanej w punkcie C, używając do reakcji 0,17 g (2 mmol) NN-dimetyloaminy propargylowej. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano metanol. Otrzymano produkt w postaci bursztynowego wosku z wydajnością 70%.

1H NMR (400 MHz, DMSO-d_6), δ: 8.49 (d, $J = 8.5$ Hz, 1H), 8.18 (s, 1H), 7.98 (d, $J = 7.5$ Hz, 2H), 7.65 – 7.56 (m, 1H), 7.40 (d, $J = 8.5$ Hz, 1H), 5.97 (s, 2H, CH$_2$), 3.53 (s, 2H, CH$_2$NMe$_2$), 2.16 (s, 6H, 2CH$_3$).

13C NMR (100 MHz, DMSO-d_6), δ: 157.24, 144.56, 143.27, 138.69, 132.44, 130.64, 128.99, 127.94, 127.54, 125.36, 120.98, 55.26, 54.11, 45.05.

LR-MS (ESI): 302.43 [M+H]$^+$, (C$_{15}$H$_{16}$ClN$_5$; obliczono 301.11).

cLogP: 1.73.

2-({4-[(N-benzylo-N-metyloamino)metylo]-1H-1,2,3-triazol-1-ylo}metylo)-8-chlorochinolina (56)

Związek otrzymano wg ogólnej procedury opisanej w punkcie C, używając do reakcji 0,32 g (2 mmol) aminy N-metylo-N-propargyłowobenzylowej. Surowy produkt oczyszczano na kolumnie chromatograficznej, jako eluent stosowano układ
2-butanol/cykloheksan w stosunku 1:6, a następnie metanol. Otrzymano produkt w postaci bursztynowego wosku z wydajnością 96%.

1H NMR (400 MHz, DMSO-d_{6}), δ: 8.49 (d, $J = 8.55$ Hz, 1H), 8.25 (s, 1H), 7.97 (dd, 7.93, 11.60 Hz, 2H), 7.60 (t, $J = 7.78$ Hz, 1H), 7.43 (d, $J = 8.54$ Hz, 1H), 7.30-7.35 (m, 5H), 5.99 (s, 2H, CH$_2$N$_3$), 3.52 (s, 2H), 2.13 (s, 3H), 2.09 (s, 2H).

13C NMR (100 MHz, DMSO-d_{6}), δ: 155.55, 145.93, 143.85, 138.66, 138.10, 133.49, 130.26, 129.00, 128.80, 128.31, 128.25, 127.03, 127.00, 126.80, 123.60, 120.33, 61.36, 56.04, 52.01, 42.11.

LR-MS (ESI): 378.96 [M+H]$^+$, (C$_{21}$H$_{20}$ClN$_5$; obliczono 377.14).

cLogP: 3.50.

2-({4-[4-(N,N-dimetylo)fenylo]-1H,1,2,3-triazol-1-yl}metylo)-8-chlorochinolina (57)

Związek otrzymano wg ogólnej procedury opisanej w punkcie C, używając do reakcji 0,16 g (2 mmol) N,N-dimetylo-4-(prop-2-yn-1-yl)aniliny. Surowy produkt oczyszczano przez krystalizację w octanie etylu. Otrzymano produkt w postaci białego osadu z wydajnością 39%.

1H NMR (400 MHz, DMSO-d_{6}), δ: 8.55 (s, 1H), 8.50 (d, $J = 8.5$ Hz, 1H), 8.02-7.97 (m, 2H), 7.70 – 7.66 (m, 2H), 7.61 (t, $J = 7.8$ Hz, 1H), 7.46 (d, $J = 8.5$ Hz, 1H), 6.81 – 6.76 (m, 2H), 5.99 (s, 2H, CH$_2$), 2.93 (s, 6H, 2CH$_3$).

13C NMR (100 MHz, DMSO-d_{6}), δ: 157.16, 150.54, 147.79, 143.30, 138.77, 132.49, 130.66, 129.05, 127.95, 127.57, 126.60, 121.13, 119.06, 112.83, 55.61.

LR-MS (ESI): 386.58 [M+Na]$^+$, (C$_{20}$H$_{18}$ClN$_5$; obliczono 363.12).
Temperatura topnienia: 151° C.

cLogP: 4.22.
6. LITERATURA

7. DOROBEK NAUKOWY

7.1. Publikacje

Indeks Hirscha = 2
Sumaryczny impact factor = 14,463
Cytowania = 21

7.2. Patenty

1. Pochodne kwasu pirazynokarboksylowego, sposób ich otrzymywania oraz zastosowanie, P 217 165, M. Dolezal, R. Musioł, W. Cieśliak (Kowalczyk), 2013. (10%)

7.3. Zgłoszenia patentowe

7.4. Konferencje międzynarodowe (postery)

7.5. Konferencje krajowe (prezentacje)

7.6. Konferencje krajowe (postery)

8. CURRICULUM VITAE

Wioleta Cieślik (Kowalczyk)

Tel. 693 101 345
email wkowalczyk@us.edu.pl

Wykształcenie

2010 - 2015
Uniwersytet Śląski, Wydział Matematyki-Fizyki-Chemii, Instytut Chemii, studia doktoranckie, kierunek chemia.

2005 – 2010
Uniwersytet Śląski, jednolite studia magisterskie, Wydział Matematyki-Fizyki-Chemii, kierunek: chemia, specjalizacja: chemia organiczna.

Semestr letni 2009
Universität Bremen w Niemczech, udział w programie LLP/Erasmus.

Doświadczenie

X 2011 – II 2012
Staż na Wydziale Farmaceutycznym w Hradec Kralove, Uniwersytet Karola w Pradze, Hradec Kralove, Czechy, pod opieką Prof. Martina Dolezala.

VIII 2010
Miesięczny staż w Instytucie Chemii Organicznej, PAN w Warszawie

VIII 2008
Miesięczna praktyka w laboratorium fizykochemicznym, Browar w Jędrzejowie.

Nagrody i osiągnięcia

Grant badawczy Preludium
Kierownik projektu badawczego pt. „Synteza i aktywność przeciwgrzybicza wybranych pochodnych chinolin“), finansowanego w ramach konkursu Preludium przez Narodowe Centrum Nauki w okresie 29.08.2013-28.08.2015.

Stypendium CITTRFUŚ
Program stypendialny w ramach projektu „Współpraca drogą do innowacji”, rok 2014.

Stypendium UPGOW

Stypendium DoktoRIS
Program stypendialny na rzecz innowacyjnego Śląska współfinansowanego przez Unię Europejską w ramach Europejskiego Funduszu Społecznego, lata 2011/2013.

Znajomość języków obcych
Język angielski: dobry w mowie i piśmie (poziom B2)
Język niemiecki: podstawowy (poziom A2)
Kursy i szkolenia

Blok pedagogiczny Kurs został zrealizowany podczas studiów magisterskich, odbyto również okresowe i ciągłe praktyki pedagogiczne.

Zainteresowania Sport, taniec, żeglarstwo, podróże.