Uniwersytet Studia Ekonomiczne. Zeszyty Naukowe

<
) . . .
§ Ekonomiczny Uniwersytetu Ekonomicznego w Katowicach
a\p\é w Katowicach ISSN 2083-8611 Nr 296 - 2016
Informatyka i Ekonometria 6
Grace L. Samson Joan Lu
University of Huddersfield, UK, University of Huddersfield, UK,
Department of Computer Science, Department of Computer Science,
gracedyk@yahoo.com jlu@hud.ac.uk

PaX-DBSCAN: A PROPOSED ALGORITHM
FOR IMPROVED CLUSTERING

Summary: We focused on applying parallel computing technique to the bulk loading of
X-tree in other to improve the performance of DBSCAN clustering algorithm. We have
given a full description of how the system can be archived. We proposed a new parallel
algorithm for DBSCAN and another algorithm to extend the X-tree spatial indexing struc-
ture. Spatial database systems incorporate space in database systems, they support non-
traditional data types and more complex queries, therefore in order to optimise such sys-
tems for efficient information processing and retrieval, appropriate techniques must be
adopted to facilitate the construction of suitable index structures.

Keywords: X-tree, spatial index, partition, parallel computing, bulk-loading, spatial
database, clustering.

Introduction

According to Lungu and Velicanu [1], spatial objects consisting of lines,
surfaces, volumes and higher dimensions objects are frequently used in applica-
tions such as computer-aided design, cartography, geographic information sys-
tems etc. A single spatial data contains observations with locations, they iden-
tify features and positions of objects on the earth’s surface and they present us
a framework for putting our observations on the map [2]. In this paper, we de-
scribe the design of a system for spatial query processing (suitable for managing
large datasets) that fully exploits the parallelism that is typical of modern multi-
core CPU. The notion is to design a system that parallelises the indexing of spa-
tial data and spatial query execution. We base this work on the shared-nothing
platform as a platform to solve the problem of parallel bulk loading of X-tree in

PaX-DBSCAN: A proposed algorithm for improved clustering 87

a parallel spatial database context. We assume that an adjusted X-tree (aX-tree —
which we proposed) access method is constructed, from a spatial relation that is
distributed to a number of processors. The main intension is to exploit parallel-
ism in order to achieve both high quality of produced index and efficient index
generation. As such, we did a deep study of parallel techniques for bulk-loading
while assuming that the environment is composed of a number of processors
based on a shared-nothing architecture, in which each processor manages its
own disk(s) and main memory. We have assumed that there would be no reor-
ganization of the data taking place after the completion of the index construction
process, that is to say, the data remain assigned to the same processor. It is im-
portant that some processors need to transmit the spatial information of the ob-
jects to other processors, without transmitting the whole record (i.e., the objects’
detailed geometry). This approach would guarantee load balance during index
construction. Most research on spatial databases focuses on either the perfor-
mance or the space utilization therefore, by dividing large problems into smaller
ones, big problems can be solved concurrently saving time and resources with an
improved performance. Parallel computing describes a process where computa-
tion involving many calculations or the execution of multiple processes are car-
ried out simultaneously [3]. This kind of computing (in the form of multi-core
processors) has become the dominant paradigm in computer architecture. In this
work, we have focused on applying parallel computing technique to the bulk
loading of X-tree.

1. Spatial database systems

According to Gliting [4] Spatial Database Systems (SDBS) are database
systems for the management of spatial data, including point objects or spatially
extended objects in a 2D or 3D space or in some high-dimensional feature space.
In Velicanu Belciu and Olaru [5], spatial database is described as a collection of
spatial and non-spatial data that is made up of data descriptions and links be-
tween data. Spatial databases incorporate space in database systems, they support
non-traditional data types and more complex queries, therefore in other to opti-
mise such systems for efficient information processing and retrieval in a large
multidimensional spatial dataset environment, appropriate techniques must be
adopted to facilitate the construction of suitable index structure for these data-
base systems. A number of spatial access methods have been proposed because
the idea of improving large spatial databases is a way to empower them to effi-

88 Grace L. Samson, Joan Lu

ciently support applications that require non-conventional data. The most im-
portant distinguishing factor of SDBSs s their ability to answer in answering
queries (involving spatial relationships between objects efficiency).

2. Clustering

Clustering real world data sets according to Kailing et al. [6], Verma and
Jain [7], J. Liu [8] and T. Liu [9], is often hampered by the so-called curse of
dimensionality and it is a fact that many real world data sets consists of very high
dimensional feature space. According to Han and Kamber [10], different types
of clustering methods exist including hierarchical, partition, Density Based method
and Grid based method. The DBSCAN algorithm discussed below is an example
of a density based clustering method. In Fayyad et al. [11], clustering is de-
scribed as a data mining technique that groups data into meaningful subclasses,
known as clusters, such that it minimizes the intra-differences and maximizes
inter-differences of these subclasses. Several clustering algorithms including:
K-means, K-medoids, BIRCH, DBSCAN, STING, Wave-Cluster, etc. [12].

2.1. DBSCAN algorithm

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is
an effective clustering algorithm for Spatial Database Systems, which has the
ability to detect noise and outlier, cluster arbitrary shaped point dataset and (con-
trary to some other clustering algorithm like the k-means), does not require the
number of clusters a priori. Notwithstanding the performance of the algorithm
deteriorates when the data size becomes too large and the algorithm may not
perform optimally if the wrong values are chosen for minpts and eps (i.e., radius
neighbourhood), which are two vital components of the algorithm. In this paper,
we propose a new algorithm that can improve the efficiency of the DBSCAN
clustering algorithm. The motivation is to improve the performance of the algo-
rithm in terms of analysing huge spatial databases and in its process of choosing
the right minpts and eps values. Density based algorithms reserve the notion that
two objects in space are similar to each other, if the space between them is small.
The DBSCAN algorithm proposed by Ester et al. [13] is described below:

1. The algorithm takes as an input:
o A set of points P in space (2d).
e A neighbourhood N and a neighbourhood value eps (see figure 1 below).

PaX-DBSCAN: A proposed algorithm for improved clustering 89

e And a parameter minpts, which determine when a cluster can be taken as
dense.

2. The algorithm starts with an arbitrary unvisited starting point.

3. Then extracts the neighbourhood of that point using the eps value.
// all points within the eps distance are in the same neighbourhood.

4. Clustering process begins when enough points (minpts) are found around the
neighbourhood with a distance not more than eps between each points.

5. For all points that belongs to the cluster (including its eps neighbourhood),
repeat steps 3 through 5.

6. Then new unvisited points are extracted and processed (this might lead to the
discovery of further clusters or even noise).

7. The process terminates only when all points are visited.

Figure 1. Diagram showing DBSCAN core point border point, noise point
and eps neighbourhood (N)

¥ MNoise Point T
' P ~
Eps=1_= ., ~
- e ~
- - ’
N
o) @ @
- I/ AY
\
t
o [® g N
=) - I Core Pojnt
- Border Point “ '
\ ® /
= g Y O 7
MinPts = 4 < ,
- - <

2.2. DBSCAN characteristics

The characteristics are as follows:
1. Directly Density Reachable. A point p is directly density reachable from
another point q, if p is within the eps (Figure 2a) neighbourhood of q and q is
a core point (core because it has at least minpts within its neighbourhood —
see Figure 2b).

90 Grace L. Samson, Joan Lu

Figure 2. DBSCAN directly density reachable points

@ (b)
°

e B
/ \
/ \
P s N e
. RN ey - . N .
AR MinPts = 5
S AR L% H \ mnris
' € ‘ (O A ')
: e g\ Py i (Q
1 A ® ¢8 91 sop H
\ Ve NN e ;
\ § vsaa E el o
\ \ / 2 ;e
N S d by -

2. Density reachable. A point p is density reachable from q, if there exist a se-
quence of points pq....pn, P1 = q and p, = p so that p;; is directly density
reachable from p; (see Figure 3).

Figure 3. DBSCAN reachable

3. Density connected. A point p is density connected to point q if there is an-
other point O so that both p and q are density reachable from O. It is also
worthy to note that the shape of the eps neighbourhood can be derived by the
choice of a distance function for two any points p and q, denoted by distance
(p, q) and in each case, this shape appears different. Using the Manhattan dis-
tance in 2D space for example, the shape of the eps neighbourhood is rectan-
gular. The description of the DBSCAN (expressed in 2D space using the Eu-
clidean distance) in Ester et al. [13] indicates that the algorithm works with
any distance function and so an appropriate function can be chosen for any
given application.

2.3. Problems of the existing DBSCAN algorithm

Clustering algorithms for spatial databases according to Ester et al. [13]
specifically deals with task of class identification, however, it does not come
cheap as such an algorithm must satisfy the three basic requirements of a) hav-
ing a basic domain specific knowledge to be able to determine the input parame-

PaX-DBSCAN: A proposed algorithm for improved clustering 91

ters, b) discovery of clusters with arbitrary shape, and ¢) having a good efficien-
cy on large databases. Despite all the abilities of the existing DBSCAN algo-
rithm, it is well known to possess some major limitations, which include high
time consumption for finding neighbourhood (eps) of a given data point [14],
performance degeneration with increase in dataset size [15]. The DBSCAN algo-
rithm clusters data points based on density and the underlying idea of density is
based on the two parameters (Eps and Minpts). According to Berkhin [16], for
a spatial database, clustering algorithms can easily be improved for fast nearest
neighbour search if they are indexed, because the indexes serve as good substitu-
tions for poor performance caused by dimensionality. Spatial index structures
like the R-trees Ester et al. [17] are normally used in a spatial database manage-
ment system to speed up the processing of queries such as region queries or
nearest neighbour queries. When the SDBSs is indexed by an R-tree (or any
other indexing structure), then the R-tree nodes helps to accelerate the search
operations [18]. Notwithstanding, the basic limitations of the existing DBSCAN
algorithm is compounded by the fact that though the R-tree based index structure
do not require point transformation in other to store spatial data and also proves
efficient for spatial clustering which is a vital issue in the performance of tree
based indexing structures according to Berchtold et al. [19], they are not ade-
quate for high-dimensional data sets as the index structures supports high over-
lap of the bounding boxes in the directory, which increases with growing dimen-
sion. The problem with this is that most large spatial databases are often
represented using high-dimension feature vectors, thus because feature spaces
most often tend to contain multiple instances of similar objects (Samet, 2006),
then the database built using such a feature space is bound to be clustered thus if
the database is indexed with an R-tree there would be cases of redundant search
of rectangles due to the high overlap between MBRs of the R-tree nodes. Ac-
cording to Mamoulis [18] several new index structures (including the A-tree,
VA-tree and the X-tree) have been proposed that outperforms the R-tree for
indexing high dimensional data but most of them show degraded performance as
dimension increases [16], [19], [18]. Thus based on these premises we propose
an improved DBSCAN algorithm that is accelerated using an adjusted X-tree
(aX-tree) and scalable for large datasets through the power of parallel computing
technology.

92 Grace L. Samson, Joan Lu

3. Parallel programming
3.1. Parallel programming architecture

According to Taniar et al. [21], the whole essence of parallelism is to be
able to reduce data size by partitioning the data into a number of processors,
whereby each focuses on processing its partition of the data. By the completion
of these individual task by the various processors, then all the results are com-
bined to form the final result. Due to the increase in the amount of data accumu-
lated daily nowadays, single processor database management systems are be-
coming inefficient in data management, thus the diversion to parallel databases
[22]. A parallel database is equipped to manage data in 10'* bytes or above in
a very short period of time. According to Papadopoulos and Manolopoulos [23],
the benefits of parallel database management systems can easily be understood
by taking into consideration the large computational power and the huge
amounts of data that modern applications require.

Figure 4. A parallel database system architecture

(@) (b) CITIES
Interconnection Name Population Location
Athens 4,000,000 400, 400 >E’ Pl
TOCESSOr
Thessaloniki | 1,000,000 500, 1000
Larissa 300,000 300, 700
Processor P2
o e e Patras 200,000 100, 400 >

Heraklion 150,000 100, 500
Kavala 100,000 600, 1000 > Processor P3
D2 D3 Drama 50,000 700, 1000

Source: [23].

Figure 4 shows a parallel database system architecture [23] with three pro-
cessors with range partitioning of cities relation with respect to attribute popula-
tion. In Qin et al. [24], there are basically two standard architecture for con-
structing a parallel computing architecture for processing big spatial including
the shared-memory and distributed-memory systems (shared nothing) both of
which are adopted to achieve higher availability and better computing perfor-
mance, and also take advantage of the GIS resource-hungry application domain
that still makes good use of parallel techniques for processing spatial data attrib-
utes. Among these frameworks, the shared nothing architecture according to
Achakeev et al. [25] tends to outperform the rest in terms of low cost data pro-
cessing. Even Hadoop, one of the MapReduce frameworks that allows for deve-

PaX-DBSCAN: A proposed algorithm for improved clustering 93

loping conceptually simple and scalable algorithms for processing big data, uses
this architecture. For a wide range of application domains such as environmental
assessments and medical imaging, time-consuming computational geometry
algorithms make the applications very slow, in addition there is a rapid expan-
sion in available processing cores, through multicore machines and cloud com-
puting, therefore, the combination of these trends demands effective paralleliza-
tion of spatial query processing. Parallel databases present the opportunity to
solve variety of problems and they are very useful in a wide range of fields in-
cluding bioinformatics (e.g., protein folding and sequence analysis). The main
differences between parallel and traditional (serial) programming given by Bar-
ney [26] are illustrated below.

3.2. Serial/traditional programming

In serial programming (computation) software are basically written by:
e Dbraking a problem into discrete series of instructions,
e cxecuting instructions sequentially one after another,
e using a single processor,
e executing only one instruction any moment in time.

Figure 5. Diagram of a serial mode of computation/programming

problem

instructions

o~ = 2 o1

For example:

do_payroll()

instructions

5] = o1

w

Source: [26].

3.3. Parallel technology

In parallel computing, multiple computer resources are used to solve a com-
putational problem simultaneous this techniques involve:
e breaking a problem into discrete parts that can be solved concurrently with
each part further broken down into a series of instructions,

94 Grace L. Samson, Joan Lu

e executing instructions from each part simultaneously on different processors,
o the use of overall coordination mechanism.

Figure 6. Diagram of a parallel mode of data processing

problem instructions

do_payroli(emp1)

|
[nsrucy
st |
v |

do_payroll(emp2)

|
| SN
instruc7

do_payroll(emp3)

do_payroll(empN)

[nsiucy §
Ly rerict ez 3 Srsrice 3 siice

Source: [26].

3.4. Parallel programming present state

In recent times, parallel systems has become the order of the day in terms of
managing large multidimensional databases. According to Provost and Fawcett
[27] Big Data are datasets that are too large for traditional data-processing sys-
tems, that requires new technologies, like Hadoop, Hbase, MapReduce, Mon-
goDB or Couch-DB. Notwithstanding, the obvious challenges militating against
the success of spatial database management, is almost becoming a thing of the
past with the evolution of the Hadoop [28] one of the implementations of
MapReduce [29]. This trend hoped to provide analyst with the opportunity to
efficiently process large scale data sets by exploiting parallelization. Recent
research [30], [31], [32], [33] has indicated that the importance and significance
of parallel and distributed programming for handling big data sets in the general
context or even in the geospatial context cannot be over emphasized. A signifi-
cant aim of parallel DBMS according to Zhao et al. [34] is to provide in-
put/output parallelism so as to get a high performance parallel data processing.

3.5. Parallel programming for big spatial data

According to Zhao et al. [34], there are two main parallel GIS design archi-
tectures for efficient management of large spatial databases: the one is a frame-
work based on high performance computing cluster (which is what we have

PaX-DBSCAN: A proposed algorithm for improved clustering 95

adopted for this work) and the other is based on Hadoop cluster (that implements
Mapreduce). In support of this, Maitrey and Jha [35] has established that
MapReduce has emerged as the most prevalent computing paradigm for parallel,
batch-style and analysis of large amount of data. VegaGiStore was proposed by
Zhong et al. [36] as an advanced tool that provides efficient spatial query pro-
cessing over big spatial data and numerous concurrent user queries. The system
creates a geography-aware module to organise spatial data in terms of geograph-
ic proximity, then designs a two tier distributed spatial index for efficient prun-
ing of the search space in order to improve data retrieval efficiency, finally the
system builds an “indexing + MapReduce” data processing architecture to im-
prove the computation capability of spatial query. Tang and Feng [37] proposed
a map projection cloud based parallel framework that possesses a coupling of the
capabilities of cloud and high performance computing that is GPU-enabled for
managing large spatial databases. Their system is a parallel paradigm for map
projection of vector-based big spatial data that couples cloud computing with
graphics processing units. Tan et al. [38] established an efficient mechanism
which stands as a general framework for parallel R-tree packing using MapRe-
duce. Other advanced techniques have also been proposed and designed and we
have provided a detailed description of these systems under parallel bulk-loading
techniques for managing large spatial databases in a later section. Li et al. [39]
gave an overview of the most recent literature and technologies on the manage-
ment of large spatial databases.

3.6. Parallel DBSCAN existing systems

Though a little bit different from the scope of this work but of interest to
our line of discussion, Ogden et al [40] proposed the AT-GIS which is a highly
parallel spatial query processing association mining system (which operates on
raw spatial datasets) that can scales linearly to a large number of CPU cores by
integrating the parsing and querying of spatial data using a new computational
abstraction called associative transducers (ATs). The new system has the ability
to form a single data-parallel pipeline for computation without requiring the
spatial input data to be split into logically independent blocks. The AT-GIS also
has the ability to execute in parallel, spatial query operators from raw input data
in multiple formats without any pre-processing. The interesting thing about their
work is that it does not build an index for spatial query which is a little bit away
from the general assertion that a databases not indexed normally perform very

96 Grace L. Samson, Joan Lu

poorly for query processing. Never-the-less, Chen et al [41] proposed the
P-DBSCAN, a novel parallel version of the existing DBSCAN algorithm which
is applied in a distributed environment by implementing a priority R-tree. In Wel-
ton et al. [42] the extended CUDA-DClust algorithm was applied, the system
implements a block tree indexing structure to extend the functionality of the
existing DBSCAN. Their DBSCAN clustering algorithm version (Mr. SCAN) is
designed to handle extreme cases in density based clustering using a hybrid par-
allel tree-based implementation to combine a network of GPGPU-equipped
nodes with an MRNet tree-based distribution network. MR-IDBSCAN was pro-
posed by Noticewala and Vaghela [43] as an efficient parallel and incremental
method that improves the existing DBSCAN Algorithm using MapReduce. Xu
et al. [44] proposed a fast parallel clustering algorithm for large spatial databases
called PartDBSCAN based on a dR*-tree indexing structure. Their system modi-
fies the DBSCAN algorithm by finding clusters w.r.t. a given space constraint S.
the main highlight of their system is that it has a very good performance w.r.t.
speedup, scale-up and size-up and most of all could be applied to extend other
spatial access methods of the R-tree family (such as the X-tree) to distribute
spatial index structures for high-dimensional data. A new scalable parallel
DBSCAN algorithm using the disjoint-set data structure (PDSDBSCAN) was
proposed by Patwary et al. [12]. The algorithm uses a tree-based bottom-up ap-
proach to construct clusters with a better-balanced workload distribution and it is
implemented on both a shared and a distributed memory architecture.

4. Big spatial data management

In spatial database management, objects are not single-valued and in most
cases, they range from points in a multidimensional space to complex polygons.
New technologies are evolving for the management and manipulation of large
datasets, so some improvements and advancement benefitting large spatial data-
bases include the presented below solutions.

4.1. Cloud computing technologies

Cloud computing is a necessity for big spatial data management and the ef-
ficiency of spatial indexing for huge datasets at cloud computing environment
cannot be over emphasized [45]. According to Song et al. [46], the main goal of
implementing the cloud based platform is to solve the issues faced by traditional

PaX-DBSCAN: A proposed algorithm for improved clustering 97

geospatial information platform, such as data-intensive, computing-intensive,
and concurrent-intensive problems, this would in turn enhance the implementa-
tion of big geo-data analytics and management, provide geospatial information
services for multi-departments of government, and facilitate information sharing.
Cloud computing according to Wang et al. [33] is the use of resources that are
delivered as a service over a network and due to the flexibility and scalability in
cloud computing, now cloud computing plays an important role to handle
a large-scale data analysis.

4.2. Spark technology

The spark technology Zaharia et al. [47] is designed to exploit large main
memory capacities, it is built on the notion of Resilient Distributed Dataset and
implemented using Scala, it utilizes built-in data parallel functions for vec-
tors/collections (such as map, sort and reduce), which not only makes the pro-
grams more concise but also makes them parallelization friendly. You et al. [48]
proposed the SpatialSpark which supports indexed spatial joins based on point-
in-polygon test and point-to-polyline distance computation and has been de-
signed for large-scale spatial join query processing in cloud.

4.3. Indexing spatial data

Spatial data objects in most cases often cover areas in multidimensional or
high dimensional spaces. They are often not well represented by point location
thus; an indexing method that can support N-Dimensional range queries based
on the object’s spatial location is required. The main goal of indexing is to opti-
mize the speed of query according to Singh and Garg [49]. When needing to
represent large spatial data, it normally requires a lot of resources in terms of
storage and time costs therefore, optimizing the database is one of the most im-
portant aspects when working with such large volumes of data [5]. Notwith-
standing, Akkaya and Yazici [50] stated that a number of multi-dimensional
access methods have been proposed by various researchers in order to support
spatial search operations in databases. These methods are used to store and re-
trieve extended and complex objects. In Velicanu Belciu and Olaru [5], spatial
indexes are the best way to improve the optimization of spatial databases. Ac-
cording to Mamoulis [18], when a spatial relation is not indexed there would be
need for the nearest neighbour algorithm (for clustering purpose) to access all

98 Grace L. Samson, Joan Lu

objects in the relation, in order to find the nearest neighbour to a query object g.
Building an indexing structure for spatial data is a mechanism that decreases the
number of searches, and a spatial index (considered logic) is used to locate ob-
jects in the same area of data (window query) or from different locations [1]. In
Gaede and Giinther [51], Lee and Lee [52] it is established that since spatial data
object are composed of a single point or several thousands of polygons randomly
distributed across space, constructing a spatial index is very important. General-
ly, data mining tasks (e.g., clustering algorithms) for a spatial database can easi-
ly be enhanced for fast nearest neighbour search if they are indexed, because the
indexes serve as good substitutions for poor performance caused by dimension-
ality [16]. There are basically two approaches for building a spatial access meth-
od. In the first technique individual insertion of the spatial objects is applied,
meaning that the access method must be equipped to handle insertions. However,
the second technique involves building the access method based on the
knowledge of the original dataset (bulk-loading), which means that the data must
be available in advance. Fundamentally, the availability of data a priori occur
quite frequently in various application environments for instance, data can be
archived for many days in data warehouses and in order to answer queries effi-
ciently, access methods must be constructed. According to [18] good bulk load-
ing method would build fast for static objects and will ensure a lesser amount of
wasted empty spaces on the tree page.

Data mining tasks like clustering require the spatial relation to be indexed
otherwise there would be need for certain procedures (like neighbourhood find-
ing for clustering purpose) to access all objects in the relation in order to find the
nearest neighbour to a query object. The DBSCAN clustering algorithm is an
effective clustering algorithm for Spatial Database Systems, which has the abil-
ity to detect noise and outlier, cluster arbitrary shaped point dataset and does not
require the number of clusters a priori, but the performance of the algorithm
begins deteriorate when the data size becomes too large and the algorithm may
not perform optimally if the wrong values are chosen for minpts and eps. There-
fore the new algorithm is geared toward overcoming these limitations.

4.4. Bulk loading

Another way forward for managing large spatial dataset is by the use of
bulk loading methods. Since most spatial applications are based on write once
read many access model according to Liu et al. [53], the large amounts of spatial

PaX-DBSCAN: A proposed algorithm for improved clustering 99

data could be quickly imported into storage systems for rapid deployment of
spatial information services. However, bulk-loading of spatial data is time-
consuming and cannot satisfy the desire of the applications dealing with massive
spatial data as such, the parallel technique of bulk loading proposed by Qin et al.
[24], is designed to accelerate the processing of spatial data bulk loading for
building tree-based in parallel. Bulk-loading spatial data using the popular
MapReduce framework is intended to overcome the problems associated with
parallel bulk-loading of tree-based indexes which have the disadvantage that the
quality of produced spatial index decrease considerably as the parallelism in-
creases [54]. In You et al. [48] bulk loading methods have been described as
being more suitable for static read-only data in OLAP (Online Analytic Pro-
cessing) settings in many applications, where it is assumed that the MBRs of
geospatial data can fit into processor memory (which is increasingly becoming
practical due to the decreasing prices of memories), the cost of bulk loading is
largely determined by in-memory sorting in the order of O (nlogn). The study
identified that sorting for bulk loading can be significantly accelerated on GPUs
by utilizing the parallel computing power which makes GPU implementations
attractive. However, for MBRs with variable sizes of degrees of overlapping, the
qualities of constructed R-Trees through bulk loading can be very different
which may significantly affect query performance on both CPUs and GPUs.

4.4.1. Serial bulk loading

Roussopoulos and Leifker [55] proposed the first sort-based bulk-loading
algorithm for R-trees, the method use similar B+-trees methods to build R-trees
bottom-up from scratch. The rectangles used as input are first sorted according
to one of the dimensions and then the sorted data is scanned and a fixed number
of elements is then repeatedly assigned to a node. Kamel and Faloutsos [56]
proposed a double-transformation technique which extends the method dis-
cussed above. In their approach, a rectangle is mapped to a multidimensional
point, and then using a space-filling curve (i.e., the Hilbert-curve) a sorting order
is specified. Other serial bulk loading methods include Leutenegger et al. [57]
the sort-tile-recursive algorithm which applies a sort and partitioning step for
each dimension and Achakeev et al. [58] an optimal query-adaptive algorithms
for building R-trees designed for a given query profile.

100 Grace L. Samson, Joan Lu

4.4.2. Parallel bulk-loading

Undoubtedly many bulk-loading algorithm for R-tree has surfaced whether
sort-based and non-sort based, nevertheless, our quest in this study is on the
improvement of some of these existing technologies for bulk-loading of spatial
data by taking advantage of parallel technology. For massive spatial (or none
spatial) data, serial/sequential bulk-loading techniques has proven highly ineffi-
cient due to being too time-consuming and therefore may not satisfy the compu-
tational need of many applications dealing with it. Qin et al. [24] proposed the
TGS-based (Top-Down Greedy Split) parallel technique for accelerating the
processing of spatial data bulk-loading, by adopting the DCSO (Decompose —
Conquer — Stitch — Output) strategy to build the R-tree in parallel. Papadopoulos
and Manolopoulos [23], gave a proper description of how to solve the problem
of R-tree parallel bulk-loading. Their description is for a generic framework for
R-tree bulk-loading on a parallel architecture. In their work, the input rectangles
are distributed among the computing nodes so that every machine receives an
approximately equal amount of data. This phase utilizes parallel random sam-
pling where a single coordinator machine computes a kd-tree for partitioning the
data space into regions, each associated with a computing node. The regions are
then used for rectangles-to-nodes allocation, and then following the above im-
plementation, a local R-tree is bulk-loaded for every node. Lastly, the root en-
tries of local R-trees are sent back to the coordinator where a global root node is
then created. Papadopoulos and Manolopoulos [23] also presented various strat-
egies for dealing with R-trees of different heights, in which case an additional
post-processing by the coordinator machine is needed in order to obtain the final
R-tree. Liu et al. [54] proposed a novel method of bulk-loading spatial data
using MapReduce framework, which combines Hilbert curve and random sam-
pling method to parallel partition and sort spatial data. Their technique applies
the bottom-up method to simplify and accelerate the sub-index construction in
each parallel partition. In Achakeev [25], the problem of parallel loading of
R-trees on a shared nothing platform was addressed and a novel scalable parallel
loading algorithm for MapReduce was proposed based on a state of the art se-
quential sort-based query-adaptive R-tree loading algorithm which builds a lev-
el-wise R-tree (In contrast to individual R-tree loading, they created each level
of the R-tree in parallel, allowing the scheme to avoid the problem merging lo-
cal R-tree — see Figure 7), optimized according to a commonly used cost model.
A similar MapReduce technique was adopted by Zhong et al. [36], but in their
own case, they implemented a two-tier distributed spatial index for efficient

PaX-DBSCAN: A proposed algorithm for improved clustering 101

pruning of the search space instead of the level-wise (level by level parallel
R-tree) used in the former method. In the work of Tan et al. [38], the design and
implementation of a general framework for parallel R-tree packing using
MapReduce was introduced. The framework sequentially packs each R-tree
level from bottom up and further presents a partition based algorithm for parallel
packing lower levels that have a large number of rectangles. Hua et al. [59] pro-
poses an R-tree bulk loading algorithm that uses the STR strategy (based on the
parallel computing powers of GPGPU systems) but applied an overall instead of
the usual sorting technique constantly used. You et al. [46] also applied the mas-
sive data parallel technologies of graphic processing units (GPUs) to index and
query geospatial data based on R-trees. Their paper investigated on the potential
of accelerating both R-tree bulk loading construction and R-tree based spatial
window query on GPUs. Other works on GPGPU based R-tree indexing of spa-
tial data include: Ogden et al. [40]. According to Ogden et al. [40], current solu-
tions for largescale spatial query processing either rely on extensions to RDBMS
(which has to do with expensive loading and indexing phases when the data
changes) or distributed map/reduce frameworks (which runs on resource-hungry
compute clusters). Both solutions of which according to them struggle with the
sequential bottleneck of parsing complex, hierarchical spatial data formats,
which frequently dominates query execution time.

Figure 7. Level by level parallel R-tree

_______ 8-
) -
A :
_______ e
. ,n
mpE O
- Data E

Source: [25].

For efficient query processing in large spatial databases, the R-tree has
proven to be a key element, though its creation is costly [25]. Moreover, the R-tree
spatial index built by the sort-tile-recursive (STR) techniques has excellent query
performance, but low efficiency when building [59]. Notwithstanding, Giao and
Anh [60] argues that the Sort-Tile-Recursive (STR) algorithm which is a sort-

102 Grace L. Samson, Joan Lu

based loading method for managing spatial and multidimensional data remains
one of the simple and efficient bulk-loading strategy. Numerous parallel R-Tree
construction and query processing algorithms have also been proposed includ-
ing: Kamel and Faloutsos [61], Hoel and Samet [62], Schnitzer and Leutenegger
[63], Apostolos and Yannis [64], Luo et al. [65],You et al. [48]; Hua et al. [59],
etc. Most of these algorithms focus on the shared-nothing computer architecture,
though some of the recent works implemented R-Tree based construction and
query processing on GPUs based on the General Purpose computing on GPUs
(GPGPU) technologies. Notwithstanding, in general, though the distributed
frameworks with indexing support can offer good query performance, they re-
quire substantially more computational resources than single machine deploy-
ments [40]. Obviously, a very distinctive characteristics of most of all the exist-
ing systems above is that they have all focused on R-Tree based spatial indexing
and query processing, in this work we have looked extensively into the design of
a different spatial indexing technique the X-tree; which we try to achieve by
exploiting the parallelism offered by modern multicore CPUs for parsing and
query execution, thereby improving the performance of a computer cluster with-
in a distributed resource environment. In essence, we consider the possibility of
benefiting from the influence of parallelism in accelerating the performance of
spatial access methods most specifically the X-trees.

The X-tree proposed by Berchtold et al. [66] provides a suitable structure
for indexing point and spatial data in high-dimensional space. It is a method for
indexing large amounts of point and spatial data in high- dimensional space.
Berchtold et al. [19] states that index structures such as the R*-tree are not ade-
quate for indexing high-dimensional data set. X-tree, according to Berchtold et al.
[19] and M-tree according to Ciaccia et al. [67], are typically other variants of the
R-tree used for multidimensional data. According to the authors of the M-tree
article, the construction of M-tree is fully parametric based on some distance
function (d) and triangle inequality for efficient queries. The M-tree has overlap
of regions but no strategy to avoid overlap. Each node there is of radius 7, every
node n and leaf node / residing in node N is at most distance » from N. The
M-tree is balanced tree and does not requires periodical reorganization. The X-tree
prevents overlapping of bounding boxes which is problem in high dimensionali-
ty. Any node that is not split will then result into “super-nodes” and in some
extreme cases the tree will linearize. The X-tree may be seen as a hybrid of
a linear array-like and a hierarchical R-tree-like directory [19]. According to
Candan and Sapino [68], an increase in the fan-out of the X-tree is the main
positive side effect of the super-node strategy. Some advantages of X-tree, as

PaX-DBSCAN: A proposed algorithm for improved clustering 103

given by Manolopoulos et al. [69] besides Candan and Sapino [68] shows that
the X-tree is a heterogeneous access method because it is composed of nodes of
different types. In most cases, whereby it has become impossible to overcome or
avoid overlap, super-nodes are created during the processes of inserting new
entries into an X-tree. These super nodes account for the advantage of X-trees
over all other access methods. Some of the benefits of the super-nodes include:

e increase in average storage utilisation due to fewer splits taking place,

e reduction in height of tree due to increase in average tree fan-out,

e in cases where it is impossible to construct a hierarchical access method with
minimised overlap between node bounding regions, then sequential scanning
of the dataset is facilitated for very high-dimensional spaces. A diagram of
a typical X-tree structure is given in Figure 8 below.

Figure 8. Typical structure of the X-tree

CNormal Directory Nodes @ Supernodes © Duata Nodes

Source: [19].

For low dimensionality, it means that there is no overlap between the trian-
gles, and at first, the X-tree tries to choose an overlap-free (or at least overlap
minimal) split axis. When splitting a new node will cause an overlap in rectan-
gles, then the super-node is extended with an additional disk page. A super-node
of [pages will have / times more children than a regular node. A super-node
consisting of multiple disk pages may require multiple disk accesses (or at least
one disk seek operation followed by multiple rotations) therefore, when a given
query does not cover the entire MBR of the Super-node, the extra disk accesses
result in unnecessary overhead. Nevertheless, this approach diminishes problems
with scalability, but cannot solve the problem totally, as in high dimensional
data, overlap problem grips the index eventually. The X-tree has also proven
very efficient for query processing in large spatial database. We proposed this
new scalable parallel loading algorithm for implementing DBSCAN clustering
algorithm in parallel. The proposed system would provide a better query perfor-
mance than R-trees build and other competitive bulk-loading algorithms.

104 Grace L. Samson, Joan Lu

5. Constructing PaX-DBSCAN clustering algorithm

Basically, the approach we have adopted for parallelizing the DBSCAN by
implementing the aX-tree is very simple and it involves the simple logical steps
below:

1) Given a large spatial dataset;

2) Store them in a parallel spatial database;

3) Build an aX-tree index on it;

4) Implement the DBSCAN clustering algorithm;
5) Combine the result to get one final output.

We propose to implement the DBSCAN algorithm by applying it on ma-
chines that are located at different site individually with a local cluster on each
client node (Nc; _for iy = I to the total number of ¢ clients). These clusters are
then sent to the master node (N,,) from the entire site. On the Master Node we
build a global cluster which will synchronise the entire local clusters. The master
node takes the job from the different site and aggregates the result for the final
output cluster.

The proposed algorithm PaX-DBSCAN which is another novel parallel ver-
sion of the known DBSCAN clustering algorithm is presented and described in
detail. It applies in a distributed computing environment by implementing an
adjusted X-tree spatial indexing structure. Different from the existing methods
we have reviewed above, the algorithm is enhanced by the implementation of the
aX-tree which has proven to be efficient in high dimensional cases of large spa-
tial data. Apart from the adjusted indexing structure, we have also proposed
a new algorithm for the DBSCAN which does not depend on the values of the
Eps — neighbourhood (as this is the main factor behind the delayed computational
time of the original algorithm). The choice of an adjusted X-tree instead of the
regular R-tree used as the underlying index structure for DBSCAN, is to im-
prove the algorithm in the terms of managing large spatial dataset. First, we ap-
ply a partition technique which provides a paradigm to manage data in database
by initially decomposing data into smaller chunks. Secondly, we store the de-
composed dataset into different partitions. Thirdly, we derive a function to con-
struct a static X-tree in a parallel modes (so as to compress the construction
time). By following this simple procedure, updating the structure or reconstruct-
ing the index will be achieved by referencing the partition in the index and not
the entire system.

PaX-DBSCAN: A proposed algorithm for improved clustering 105

5.1. Partitioning

Unlike relational databases, where the data space can be partitioned using
methods like hash partition, list partition, compound partition etc., spatial objects
are different from these common databases in the sense that they are multi-
dimensional and are co-relational in the space meaning that the longer the dis-
tance between two objects, the lesser the influence is [24]. Based on the heuris-
tics above, some of the partitioning techniques for classical data have proven
unsuitable. Therefore, we group the spatial data by their spatial locality on the
n-dimensional (we have used 2-dimensions for simplicity) space by implement-
ing the str partitioning strategy and we store different parts of data in different
spaces or disks with that grouping. With this, it will be easy to get the Minimum
Boundary Rectangle (MBR) of the spatial objects in database. Thus, in other to
management storage, the partitioned data set can easily be updated or deleted in
a relatively small bits without having to rearrange the entire system. The parti-
tioning strategy we have employed ensures that nearby spatial objects are stored
unto close partitions and not into different storage partitions which destroys the
spatial co-relationship. Sort-tile-recursive algorithm (sz) splits the space bottom-up
recursively, i.e., it partitions the indexing tree recursively to the m MBRs of P
spatial objects where equal amount of m are placed in each partition. In this
work, this means that the datasets are shared among C processors and each has
its own Pc collection. Where P is the total number of points in each processor,
grouped into m MBRs.

Figure 9 shows a simple description of how the partitioning is achieved.
The algorithm starts by initially splitting the objects into some sub-sets vertically
in y direction and then horizontally in the x direction (and does same for all other
dimensions) with the splitting satisfying two conditions as below:

e nearby objects are placed in the same vertical or horizontal partition
e cach partition contains equal amount (or size) of spatial objects.

Figure 9. A typical example of partitioning of spatial data

=

o

Source: [24].

106 Grace L. Samson, Joan Lu

5.2. Storage

In order to preserve the spatial proximity that exist between the spatial ob-
jects, the data objects are stored using methods that improves physical cluster-
ing, this will ensure an improved efficiency for data access. Dimension reduction
methods like Morton curves and Hilbert curves typically perform certain func-
tions to map multidimensional data into one dimension while preserving locality
of the data points. Following this mapping structure, any one-dimensional data
structure such as B-tree can then be used to store the data. In this case we are
using the sort-tile-recursive [60] sorting technique. Once the data are sorted into
this ordering, we construct a bulk loaded static X-tree to store the data, without
needing to do the one dimensional transformation like in the case of Morton and
Hilbert curves. Though several researches has gone into storing spatial object by
computing an improved natural clustering arithmetic for example, they all focus
on dimension reduction and point transformation before applying a general in-
dex method into the encoded spatial objects in other to improve performance.
We have decided to apply the s¢r partitioning technique for large spatial data set
storage to reduce index and storage time complexity.

5.3. Architecture

Our choice of the ‘shared-nothing’ architecture is based on the fact that the
framework has high scalability which can go up to hundreds and possibly thou-
sands of computers. Figure 10 is an example overview of the underlying archi-
tecture.

Figure 10. Proposed hardware architecture

___|—__| r— T — /1
<—master—| CPU _* MEMORYJ ' cpu | mEMORY Hclient 3+

< NETWORK >
r— - - | l_____L____—l

<—client — CcPU :MEMORY: ' cpu H_I'u'IEI'u'IORY Felients 2—>

5.4. Problem identification (PaX-DBSCAN)

The setup consists of a set of computers C connected via a high speed net-
work, thus a typical problem can be seen as in Figures 11-13.

PaX-DBSCAN: A proposed algorithm for improved clustering 107

Figure 11. Problem statement

Initial Problem Statement

Given:
A set of points (n-dimensional) in a database say P
such that P = {P1, P2,...,P,}

A set of computers N such that N = (N1, N2,...,Nn}

connected via a high performance computing infra-

structural network

Find the clusters (density-based) which obeys a given
Eps and MinPts constraint.

Figure 12. Sort — tile — recursive algorithm

Sort-Tile-recursive Pseudocode:

P = the count of high dimensional objects in a 2d
Cartesian plane.

Let N = the total number of available computer.

Let m = the maximum capacity of a node (number of node
entries that can fit leaf or non-leaf node).

Let n = dimension
// J =P / m = the estimated total number of leaves
required.

Step 1: by using the x-coordinate as a key; sort the
objects (rectangles) based on the x-coordinate of their
centre.
Step 2: Determine the maximum node entries.
Step 3: Order the sorted rectangle into J =[P / m].
Step 4: Divide the sorted rectangles into r groups of
vertical slices.
- For two dimensions r = VJ.
- For dimensions more than two, let p = dimension,

r = JUp,
step 5: Sort the new group r groups again based on y -
coordinate of the rectangles centre into

Output:
After loading the r groups of rectangles into nodes
(pages) the output = (MBR, Node Id) for each leaf level

node that loaded into a temporary file to be processed
in the second phase two of the aX-tree algorithm.

108 Grace L. Samson, Joan Lu

Figure 13. Proposed steps for clustering

Basic clustering steps:

Divide the input (P) into rpartitions such that k = k1,
k2.., k: and distribute these partitions to the N available
computers.

Run the proposed DBSCAN clustering algorithm in each
partitions concurrently

//the input parameter for the DBSCAN deduced from
section 3.1 is (k;, EPS, minpts).

Finally combine or merge the clusters from the partitions
into a global cluster for the entire database.

5.5. Building distributed index

The X-tree (as review in Section 5.5.2) has proven performance measure on
high dimensional data and has shown to be robust therefore, we have chosen the
X-tree structure as our database link. Access to distributed data on the network can
be achieved efficiently by replicating the aX-tree index on all the index nodes
(computers) based on the assumption that all nodes contains equal amount of
points, depending on the value of m (maximum capacity of each storage block).

According to Zhao et al. [34], there are several techniques for data parti-
tioning in parallel DBMS. Assuming that data will be partitioned onto N disks,
such as DO, DI, ... , Dn-1, then the partitioning procedure is such that a map
layer like the one shown in section 6.1.A (ml) or region (rn) or a set of data
points (P) like the one in Figure 12b is entered onto the server and then the size
of objects including the real data size is computed in addition, the required indi-
ces size is also computed after the partitioning. In this work, we adopted the
range partitioning strategy. A significant sample of the dataset is selected and
the midpoints of complex objects is computed to further reduce data size. We
distribute each vertical segment (global leaf node g/) of the partitioning dimen-
sion onto different (r) disk. We partition the space (according to the available
dataset, the storage size and cluster scale — typically set to 64MB) and each rep-
resents one sub-region (srn). Initially we create the global index GI in four (4)
simple steps. The first step is to sort the rectangles based on the partitioning
dimension then secondly we calculate the maximum node entry for each disk by
computing j = P/m. Thirdly, we compute the value of r using sort-tile-recursive
(str) partitioning strategy and then partition the data space into r slices. Then we
associates each of these sub-region to one of the available computing resource

PaX-DBSCAN: A proposed algorithm for improved clustering 109

(node). In each partitions the local index (LI) is created, the rectangles are fur-
ther sorted based on the other dimension (or dimensions) and packed in groups
of m into their minimum bounding rectangles (MBR). The MBRs are further
packed into the index or parent nodes in the sizes of 64MB, 128 Mb or whatever
the available block of each node. The idea is such that geographically contiguous
neighbouring data should be stored into the same node (block). The partitioning
allocates ach of the regions to a processor.

Figure 14. Proposed system

(a) partitioning the data into tree nodes

| |
Tree mde | I:l I(—\ ! Root, server
) I ~— ! node (N)
wperns [) : |Z| = - : . e
oe =5 | Odo—

OOCOOpCOOO@OOCOG’—*w

nodes
l suéer—nnde
5

L
partition 1 partition 2 partition 3
k1 k2 k3

(b) distrusting the tree among the data nodes

o T

T

The distributed indexing structure adopted for this work see Figure 14, is
similar to what is described in the work of Kamel and Faloutsos [61]. Here the
rectangles (data) are distributed by assigning them to the different nodes using
a range function obtained by simply comparing the vertices of the new data as
against the stored leaf of the global index. The space is divided into k; partitions,
where i = 1 ... r. The tree is guaranteed to be balanced because there would be
equal number of rectangles in each node. The root node remains in main
memory of the server while other nodes are distributed across N nodes. At the

110 Grace L. Samson, Joan Lu

first instance, we take a sample of the data and the CenterPoint for complex ob-
jects, with the record values (spatial attributes and references) taken into con-
sideration. The partitions of the rectangles are then distributed onto the comput-
ers C1, C2, ..., CN (in the case of N computers).

Figure 15. Partitioning

(a) data points (b) vertical partitions of r slices
[
1 ° ’ L : ¢ ’ ‘ ‘ o ° ° ¢l e ‘ .'
° ° o . ™ o L []] ° ° .
[] L J
® . ! o ‘e ° * @ ¢ o o * e ®
. ¢ % . * e y . ¢ % . . .I- °
L] [] - -
¥ . o] o * e ° ° *+ ° ° : e *®
¢ e ¢ ¢ . [X] [] ® ° ¢ ° [X]
e o4 . ¢ ‘ ° ° °l e . ° ° g
[] ... [] o ... [] —>

The MBRs of the leaf nodes are partitioned so that nearby rectangles are in

the same partition with almost same size for each partition. This partitioning
strategy is achieved through the sort tile recursive (s#r) partition algorithm. The
str algorithm according to [60] is a sort-based loading method for manage spatial
and multidimensional data. It is simple and efficient bulk-loading strategy. The
algorithm was proposed by Leutenegger et al. [57] and is described below:

Super-node: After we partition the area to slices, we group the objects ac-
cording to the maximum node entries. If the last group is less than the mini-
mum allowed, then we extend to super node. But this is only on the leaf level.
Note, the justification for creating the super node is to handle cases of highly
skewed distributed data (which is very typical of spatial data), because in the
case of uniformly distributed data the MBRs are guaranteed to contains same
amount of data.

PaX-DBSCAN: A proposed algorithm for improved clustering

e Leaf node entry — (O, MBR): Oy, is the tuple identifier for referring to an
object in the database. MBR describes the smallest bounding #» dimensional
region around the data objects (for a 2d - space, the value of MBR will be of
the form — xlow, xhigh, ylow, yhigh, and for 3d space — xlow, xhigh, ylow,

yhigh, zlow, zhigh).

Non-leaf node entry — (Cp, MBR, Py;): Cp is a (child) pointer to a lower
level node and MBR is the he rectangle that enclosing it (which covers all re-
gions in child node). Py, identifies the partition (computing node) where the

object is stored.

Figure 16. Pre-processing step

Algorithm 1: Pre-processing

Start:

1. Take a sample of data from the large dataset
// the sample can be chosen as a percentage (1, 2
or any percentage of the data, though 1 is a good
choice) of the given dataset for point data P, but
in the case of spatial object (objects with extent),
we could convert shapes (lines, regions, areas) to
points by obtaining their mid-points.

2. Find the centroid of the complex shapes (regions,
rectangles, lines etc.), from the sample using the
simple equation below. Note the formula considers
the bounding rectangle of the spatial object only.

x2—-x1 y2 -yl
o (2522, 2227

//In other cases, getting the centroid on a polygon
based on the number of j-vertices will generally
require a different formula.

. Calculate r.

.Divide the sample space into r vertical slices.

. Bulk load the aX-tree into main memory of the server
// the extended node (super-node) is applied only
in the first 1level (the Dbottom of the tree) to
avoid the problems of hyper rectangles overlap.

Step 1: by using the x-coordinate as a key; sort
the objects (rectangles) based on the x-coordinate
of their centre for complex objects.

Step 2: Sort the new group r groups again based on
y —coordinate of the rectangles centre into.

6. Output:

After loading the r groups of rectangles into nodes
(pages) the output = (MBR, Node Id) for each leaf
level node that loaded into a temporary file to be
processed in phase two of the aX-tree algorithm.

g Ww

112 Grace L. Samson, Joan Lu

Assumptions are as follows:

1) The sample data (and their extracted centroids for extended complex objects,
e.g. lines, polygons regions, etc.) reduces the size of available data therefore
making it possible for a single machine (the master to managing the indexing
and partitioning);

2) The data is bulk loaded into an in-memory sort-tile — recursively (str) loaded
X-tree for creating the global partitioning — i.e. data block location.

Figure 17. Loading the tree

Algorithm 2: Loading

/l loading the collection of the MBRs of sorted spatial
objects from the temporary file in phase one.

Start:
Step 1. Create leaf nodes the basement level (level 1=0)
While (there are more rectangles) Generate a new X-tree
node, Assign the next m rectangles to this node.
//During node creation prevents any split that cause
overlapping, by extend one super-node in the current level.
Step 2. Create nodes at higher level (1 + 1) While (there
are > 1 nodes at level 1) Sort nodes at level 120 on
ascending creation time Repeat.
Step 3. Return Root.

Figure 18. Distributing data to various partitions

Algorithm 3: Partitioning

Start

// Using the boundaries of each leaf node as the boundary

of the MBR of the leave nodes, then scan the data in

parallel and assign each record to its overlapping
partition.

i. Store the location of each partition (gl) and their
range in a file in the server in the form(Or4, MBR,
Nzg)and call it Ng. (i.e. k partition in N computer)
// Ozg is a (child) pointer to a lower level node.

// MBR is the he rectangle enclosing it (which covers
all regions or points in child node).

//Niqg identifies the partition (computing node) where
the object is stored.

ii. Partition the data into the N number of computers by
computing r and mapping out its horizontal range for
partitions ki (i = 1...r).

iii. For each new entry point (from the new dataset) the
server compares the range its spatial attribute to
the range of the MBR of the global leaf (gl), and
sends it to the right node partition as shown in
figure 18.

Step iv is repeated until the entire dataset has been

fully distributed.

PaX-DBSCAN: A proposed algorithm for improved clustering 113

Figure 19. Points grouped into rectangles based on the value of the leaf node
capacity (m) which could be 64mb or higher

il

5.6. Point clustering (PaX-DBSCAN algorithm)

Figure 20. The aX-tree

Tree node

seperncde [:t>P
» O L N
alslelelelclslelololelolelala)o)

Figure 21. Finding k-nearest neighbour (€)

Algorithm 4: How to find the neighbourhood (€)

A point spatial database P partitioned into N nodes
{assuming that records consists of real number values}
Let

s and q be any two point nodes on the tree

k = an arbitrary number

Let s; be the query object (spatial).

Then:

For all aX-tree node say v.

The distance between the minimum bounding rectangles of
v (MBRv) and the query object s; given by Distance (sj,
MBRv) is < distance between the query point and any
other object S indexed under v i.e. distance (s;, Pj)
for all j indexed under the node wv.

Thus:

If we call the calculated distance between p and another
object b indexed under node q distance (s;, b) and Dis-
tance (s;, MBRv) = t.

Then
If t > distance (s;, b)
1. Then
2. Stop search for v
3. Take a different path
4. Else
5. Return closest distanced neighbours (E)

114 Grace L. Samson, Joan Lu

Figure 22. aX-DBSCAN

Algorithm 5: Clustering (aX-DBSCAN AGORITHM)
For each node
1. Find a neighbourhood value (say € > 0).
2. Determine ¢ > 0.
// & is the parameter that determines which cluster
is dense.
// value of & = (at least) m +1 so as to avoid clusters
that has only one object.
// m is the maximum capacity of an aX-tree node.
3. Compute the value of €.
// the value of €& (nearest neighbour to point p) is
deducted from the aX-tree as follows as in step 1
above:
i Find Bi = {p € S: d(pi, p) <€ }
// (d = distance between p and p; for all i =1,
2...m)
ii. If | Bi | £ &, THEN
iii. REJECT B;
// B; is an outlier

ELSE
iv. Find the relationship (B; U By # @)
v. Repeat iv until there is no more union

4. Return cluster to the master (cl, Nid, Py, P,).

For algorithm 5, a temporary file is initially created that stores all the calcu-
lated distance between all the points from the distance function: Distance
(s, q) > distance (MBR (s), MBR (q)) for any point between and q in the tree.
Thus, for any two points in s, the nearest neighbour of t in s is defined by ¢;: V
e i€ s, distance (t, e) < distance (t, ei;;) and The K-nearest neighbour (E)
of t in s, is all e with distances < kth distance from t; where k = m = maximum
points capacity of a node. This procedure will make it faster to build the clusters
by merely comparing distances from the distance table in when processing Bi at
each iteration. At the end of each computation, all the node directs the sub-result
to the master node in other to process the final result and presents the PaX-
-DBSCAN cluster. This process takes the description below: Each process of
DBSCAN executes concurrently on the parameter (P; , E, ®@), forj =1, 2, ...,
N,) and finishes at the same time. Then each local task identifier (TID) is read
by the master which extracts each unique values. The values are then compared.
For each processor C, each point p € P¢is a local point, thus other points not
found in P¢ are referred to as remote points. Being a distributed memory, any
other partition Ki #Kj, 1 <j <N, 1 <j <N is not directly visible to the processor C.

Each client reports the new local cluster likely with noise through the TID
to the master from their previous iteration, the server stores unto a temporary

PaX-DBSCAN: A proposed algorithm for improved clustering 115

file. The server then broadcasts the value of the points at the border and the
noise points. Using this information, each processor processes the new data with
their existing cluster, by this means the border points may form new clusters
with the other unvisited points in each of the processor (P¢) merge with existing
cluster. The process continues until all points are visited for all P¢,. At the end of
the iteration process, the server compiles the result and filter out noise.

The system is designed in such a way that data within a partitioned region
are stored on one of the computer nodes on the network, and all spatial data are
then distributed across the different local cluster according to their geographical
space. At this point, the original tree has K data pages. The pages (nodes) are
distributed onto the N computers with m data pages on each computer. Querying
starts on the master node and request is sent across the client computers for any
impending task. For each query, the master computes a cost model to know
which client node contains the required triangle, and sends the query to that
node.is performed by starting at the root and computing all entries whose rectan-
gle qualifies. In the underlying architecture adopted for this project, all the net-
work task are identified by an integer task identifier (TID) — described fully in
Geist et al. [70] — and messages are sent to and received from these TIDs across
the network. TIDs are supplied by the local node and are not user chosen must
be unique across the entire virtual machine. Although system encodes infor-
mation into each TID, the user is expected to treat the TID as opaque integer
identifiers. The system contains several routines that return TID values so that
the user application can identify other tasks in the system Geist et al. [70].

Summary covers the following comments:

o The indexing bulk-loads the x-tree and take only the leaf level.

e This procedure ends the global index with a flat partitioning, therefore new
records fall into any one of the partitions.

e The global index is stored in main memory (as the boundary of each parti-
tion), using this technique, only the partition covering the query point will be
processed.

e The second layer index partitions each of the index blocks to the maximum
capacity of each of the data node.

e The data is partitioned into processors (Nc¢).

e Each processor builds its own local cluster and sends each intermittent result
to the server.

e The server then rebroadcasts the border points and noise, using this infor-
mation, the clients compare the points and decide to either merge the clusters
if there core points and density reachable points or rather create a new cluster.

116 Grace L. Samson, Joan Lu

o The operation of our system can be described as intra-operational parallelism
where the aX-tree index is parallelized over the N processors. This can be
achieved by partitioning the data among the processors. After the initial local
processing, each processor returns its results to the host (master) then the re-
sult is combined for the eventual result.

Conclusions and future work

Spatial databases keep information about the location and the tasks of spa-
tial data mining need the spatial relation to be indexed before it can perform
optimally. In this work, we have studied the usefulness of parallelism in the im-
provement of clustering task in a spatial database. And we have looked into
building a parallel adjusted X-tree (PaX-tree) for this purpose. We discussed
indexing structure for large spatial datasets, bulk loading spatial structure and
applying the idea of parallelism to their improvement. We proposed an improved
algorithm for the DBSCAN clustering and we also proposed a new algorithm for
adjusting the existing X-tree.

Bulk-loading spatial data using the popular MapReduce framework is in-
tended to overcome the problems associated with parallel bulk-loading of tree-
based indexes which has the disadvantage that the quality of produced spatial
index decrease considerably as the parallelism increases. Therefore as our future
work, we intend to design an algorithm for parallel bulk loading of X-tree using
Hadoop technology. Secondly we have to also evaluate our current proposed
system in other to ascertain its efficiency.

References

[1] L Lungu, A. Velicanu, Spatial Database Technology Used in Developing Geographic
Information Systems, The 9" International Conference on Informatics in Economy —
Education, Research & Business Technologies, Academy of Economic Studies, Bu-
charest, 7-8 May 2009, pp. 728-734.

[2] GIS Geography, GIS Spatial Data Types: Vector vs Raster, 2016, http://gis
geography.com/spatial-data-types-vector-raster/ (accessed: 22.11.2016).

[3] A. Gottlieb & G.S. Almasi, Highly Parallel Computing, Benjamin-Cummings,
Redwood City, CA 1989.

[4] R.H. Giiting, C, “The VLDB Journal — The International Journal on Very Large
Data Bases” 1994, Vol. 3(4), pp. 357-399.

PaX-DBSCAN: A proposed algorithm for improved clustering 117

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Velicanu Belciu, S. Olaru, Optimizing Spatial Databases, 2011, https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=1800758 (accessed: 20.11.2016).

K. Kailing, H.P. Kriegel, P. Kroger, Density-Connected Subspace Clustering for
High-Dimensional Data [in:] Proceedings 4" SIAM International Conference on
Data Mining, Vol. 4, Lake Buena Vista, FL 2004, pp. 246-257.

P. Verma, Y.K. Jain, High Dimensional Object Analysis Using Rough-Set Theory
and Grey Relational Clustering Algorithm, “International Journal of Advanced Re-
search in Computer and Communication Engineering” 2016, Vol. 5(5), pp. 404-410.

J. Liu, New Approaches for Clustering High Dimensional Data, Doctoral disserta-
tion, University of North Carolina, Chapel Hill 2006.

T. Liu, Fast Nonparametric Machine Learning Algorithms for High-Dimensional
Massive Data and Applications, No. CMU-CS-06-124, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA 2006.

J. Han, M. Kamber, Data Mining Concepts and Techniques, Morgan Kaufmann
Publishers, San Francisco, CA 2001. pp. 335391.

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From Data Mining to Knowledge Dis-
covery in Databases, ” Al Magazine” 1996, Vol. 17(3), p. 37.

M.M.A. Patwary, D. Palsetia, A. Agrawal, W.K. Liao, F. Manne, A. Choudhary,
A New Scalable Parallel DBSCAN Algorithm Using the Disjoint-Set Data Struc-
ture [in:] International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Salt Lake City, UT, November, 2012, pp. 1-11.

M. Ester, H.P. Kriegel, J. Sander, X. Xu, 4 Density-Based Algorithm for Discover-
ing Clusters in Large Spatial Databases with Noise, “Kdd” August 1996, Vol. 96,
No. 34, pp. 226-231.

Rough Sets and Current Trends in Computing, M. Szczuka, M. Kryszkiewicz,
R. Jensen, Q. Hu (eds.), Proceedings of the 7™ International RSCTC Conference,
LNAI 6086, Springer Verlag, Berlin Heidelberg 2010, pp. 60-69.

S. Vijayalaksmi, M. Punithavalli, A Fast Approach to Clustering Datasets Using
DBSCAN and Pruning Algorithms, “International Journal of Computer Applica-
tions” 2012, Vol. 60(14).

P. Berkhin, 4 Survey of Clustering Data Mining Techniques [in:] Grouping Multi-
dimensional Data, J. Kogan, Ch. Nicholas, M. Teboulle (eds.), Springer Verlag,
Berlin-Heidelberg 2006, pp. 25-71.

M. Ester, H.P. Kriegel, J. Sander, Knowledge Discovery in Spatial Databases [in:]
Mustererkennung 1999, Springer Verlag, Berlin-Heidelberg 1999, pp. 1-14.

N. Mamoulis, Spatial Data Management, 1% ed., Morgan & Claypool Publishers,
UsS 2012.

S. Berchtold, D.A. Keim, H.P. Kriegel, An Index Structure for High-Dimensional
Data, “Readings in Multimedia Computing and Networking” 2001, pp 451-462.

H. Samet, Foundations of Multidimensional and Metric Data Structures, Morgan
Kaufmann, Burlington, MA 2006.

118

Grace L. Samson, Joan Lu

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]
[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

D. Taniar, C.H. Leung, W. Rahayu, S. Goel, High Performance Parallel Database
Processing and Grid Databases, Vol. 67, John Wiley & Sons, New York 2008.

D. Jagli, Parallel Database, 2013, http://www .slideshare.net/dhanajaglil/parallel-
database> (accessed: 26.10.2016).

A. Papadopoulos, Y. Manolopoulos, Parallel Bulk-Loading of Spatial Data, “Par-
allel Computing” 2003, Vol. 29(10), pp. 1419-1444.

Z. Qin, Z. Ershun, H. Yaohuan, Research on Parallel Bulk-Loading R-Trees Based on
Partition Technology of Database, “The International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences” 2008, Vol. 37, Part B4.

D. Achakeev, M. Seidemann, M. Schmidt, B. Seeger, Sort-Based Parallel Loading
of R-Trees [in:] Proceedings of the 1" ACM SIGSPATIAL International Workshop
on Analytics for Big Geospatial Data, ACM, Redondo Beach, CA 2012, pp. 62-70.

B. Barney, Introduction to Parallel Computing, “Lawrence Livermore National
Laboratory” 2010, Vol. 6(13), pp. 1-34.

F. Provost, T. Fawcett, Data Science for Business: What You Need To Know about
Data Mining and Data-Analytic Thinking, O’Reilly Media, Sevastopol, CA 2013.

Apache Hadoop, 2016, http://hadoop.apache.org/index.html (accessed: 28.10.2016).

R. Lammel, Google’s Mapreduce Programming Model — Revisited, “Science of
Computer Programming” 2008. Vol. 70, pp. 1-30.

K. Lee, R.K. Ganti, M. Srivatsa, L. Liu, Efficient Spatial Query Processing for Big
Data [in:] Proceedings of the 22" ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems — SIGSPATIAL, Dallas — Fort
Worth, TX 2014, pp. 469-472.

S. Shekhar, V. Gunturi, M.R. Evans, K. Yang, Spatial Big-Data Challenges Inter-
secting Mobility and Cloud Computing [in:] Proceedings of the 11" ACM Interna-
tional Workshop on Data Engineering for Wireless and Mobile Access — Mo-
biDE’12, Scottsdale, AZ 2012.

S. Shekhar, M.R. Evans, V. Gunturi, K. Yang, D.C. Cugler, Benchmarking Spatial
Big Data [in:] T. Rabl, M. Poess, C. Baru, H.-A. Jacobsen (eds.), Specifying Big
Data Benchmarks, Springer Verlag, Berlin-Heidelberg 2014, pp. 81-93.

Y. Wang, S. Wang, D. Zhou, Retrieving and Indexing Spatial Data in the Cloud
Computing Environment [in:] The First International Conference on Cloud Com-
puting, Springer Verlag, Berlin-Heidelberg 2009.

L. Zhao, L. Chen, R. Ranjan, K.K.R. Choo, J. He, Geographical Information Sys-
tem Parallelization for Spatial Big Data Processing: A Review, “Cluster Compu-
ting” 2016, Vol. 19(1), pp. 139-152.

Maitrey S., Jha, C.K. (2015). Handling Big Data Efficiently by Using Map Reduce
Technique, Paper presented at the The 2015 IEEE International Conference on
Computational Intelligence & Communication Technology (CICT), Ghaziabad, IN.

Y. Zhong, J. Han, T. Zhang, Z. Li, J. Fang, G. Chen, Towards Parallel Spatial
Query Processing for Big Spatial Data [in:] 2012 IEEE 26th International Parallel

PaX-DBSCAN: A proposed algorithm for improved clustering 119

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
IEEE, Piscataway, NJ 2012, pp. 2085-2094.

W. Tang, W. Feng, Parallel Map Projection of Vector-Based Big Spatial Data:
Coupling Cloud Computing with Graphics Processing Units, “Computers, Envi-
ronment and Urban Systems” 2014.

H. Tan, W. Luo, H. Mao, L.M. Ni, On Packing Very Large R-Trees [in:] IEEE 13"
International Conference on Mobile Data Management, Bengaluru, Karnataka
2012, pp. 99-104.

S. Li, S. Dragicevic, F.A. Castro, M. Sester, S. Winter, A. Coltekin, C. Pettit, Geo-
spatial Big Data Handling Theory and Methods: A Review and Research Chal-
lenges, ”ISPRS Journal of Photogrammetry and Remote Sensing” 2016, Vol. 115,
pp- 119-133.

P. Ogden, D. Thomas, P. Pietzuch, AT-GIS: Highly Parallel Spatial Query Pro-
cessing with Associative Transducers, SIGMOD’16, , San Francisco, CA June 26 —
July 1, 2016.

M. Chen, X. Gao, H. Li, Parallel DBSCAN with Priority R-Tree [in:] The 2" IEEE
International Conference on IEEE Information Management and Engineering
(ICIME), Chengdu 2010, pp. 508-511.

B. Welton, E. Samanas, B.P. Miller, Mr. Scan: Extreme Scale Density-Based Clus-
tering Using a Tree-Based Network of GPGPU Nodes [in:] Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage
and Analysis, ACM, Denver, CO November 2013, p. 84.

M. Noticewala, D. Vaghela, MR-IDBSCAN: Efficient Parallel Incremental
DBSCAN Algorithm using MapReduce, “International Journal of Computer Appli-
cations” 2014, Vol. 93(4).

X. Xu, J. Jager, H.P. Kriegel, 4 Fast Parallel Clustering Algorithm for Large Spa-
tial Databases [in:] High Performance Data Mining, Springer Verlag, US 1999,
pp- 263-290.

L.S. El-Sayed, H.M. Abdul-Kader, S.M. El-Sayed, Performance Analysis of Spa-
tial Indexing in the Cloud, “International Journal of Computer Applications”, 2015,
Vol. 118(4), pp. 1-4.

W.W. Song, B.X. Jin, S.H. Li, X.Y. Wei, D. Li, F. Hu, Building Spatiotemporal
Cloud Platform for Supporting GIS Application, “ISPRS Annals of the Photo-
grammetry, Remote Sensing and Spatial Information Sciences” 2015, Vol. 2(4),
pp- 55-62.

M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, 1. Stoica, Spark: Cluster
Computing with Working Sets, “HotCloud” 2010, Vol. 10, pp. 1-7.

S. You, J. Zhang, L. Gruenwald, GPU-Based Spatial Indexing and Query Pro-
cessing Using R-Trees [in:] BigSpatial'l3 Proceedings of the 2" ACM
SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, Or-
lando, FL 2013.

120

Grace L. Samson, Joan Lu

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

A. Singh, D. Garg, Implementation and Performance Analysis of Exponential Tree
Sorting, “International Journal of Computer Applications” June 2011, Vol. 24, No. 3,
pp. 34-38.

K. Akkaya, A. Yazici, An Indexing Method for Spatial Databases, “XIV. Interna-
tional Symposium on Computer and Information Sciences (ISCIS'99)”” April 1999.

V. Gaede, O. Glinther, Multidimensional Access Methods, “ACM Computing Sur-
veys (CSUR)” 1998,Vol. 30(2), pp. 170-231.

T. Lee, S. Lee, OMT: Overlap Minimizing Top-down Bulk Loading Algorithm for
R-Tree, “CAiSE Short Paper Proceedings” June 2003, Vol. 74, pp. 69-72.

X. Liu, J. Han, Y. Zhong, C. Han, X. He, Implementing Webgis on Hadoop: A Case
Study of Improving Small File 1/O Performance on HDF'S [in:] 2009 IEEE Interna-
tional Conference on Cluster Computing and Workshops 1IEEE, New Orleans, LA
August 2009, pp. 1-8.

Y. Liu, N. Jing, L. Chen et al., Parallel Bulk-Loading of Spatial Data with MapReduce:
An R-Tree Case, “Wuhan University Journal of Natural Science” 2011, 16, pp. 513.

N. Roussopoulos, D. Leifker, Direct Spatial Search on Pictorial Databases Using
Packed R-Trees, “ACM SIGMOD Record” May 1985, Vol. 14, No. 4, pp. 17-31.

I. Kamel, C. Faloutsos, On Packing R-Trees, “Proceedings of the Second Interna-
tional Conference on Information and Knowledge Management” December 1993,
pp. 490-499.

S.T. Leutenegger, M.A. Lopez, J. Edgington, STR: A Simple and Efficient Algo-
rithm for R-Tree Packing [in:] Proceedings of 13" International Conference on
Data Engineering, IEEE, Graz, Austra April 1997, pp. 497-506.

D. Achakeev, B. Seeger, P. Widmayer, Sort-Based Query-Adaptive Loading of
R-Trees [in:] Proceedings of the 21 ACM International Conference on Information
and Knowledge Management, ACM, Maui, HI October 2012, pp. 2080-2084.

S. Hua, J. Nan, H. Bin, L. Heng, Z. Jin, GPU-Based Parallel Bulk Loading R-Trees
Using STR Method on Fine-Grained Model[J], “Geomatics and Information Sci-
ence of Wuhan Universty” 2014. Vol. 39(9), pp. 1068-1073.

B.C. Giao, D.T. Anh, Improving Sort-Tile-Recusive algorithm for R-tree packing
in indexing time series, “2015 IEEE RIVF International Conference on IEEE
Computing & Communication Technologies-Research, Innovation, and Vision for
the Future (RIVF)” 2015, pp. 117-122.

I. Kamel, C. Faloutsos, Parallel R-Trees, “Research Showcase CMU” 1992, Vol. 21,
No. 2, pp. 195-204.

E.G. Hoel, H. Samet, Performance of Data-Parallel Spatial Operations, “Proceed-
ings of VLDB Conference” 1994, pp. 156-167.

B. Schnitzer, S.T. Leutenegger, Master-Client R-Trees: A New Parallel R-Tree
Architecture, “Proceedings of SSDBM Conference” 1999, pp. 68-77.

P. Apostolos, M. Yannis, Parallel Bulk-Loading of Spatial Data, “Journal of Parallel
Computing” 2003, Vol. 29(10), pp. 1419-1444.

PaX-DBSCAN: A proposed algorithm for improved clustering 121

[65] L. Luo, M.D.F. Wong, L. Leong, Parallel Implementation of R-Trees on the GPU
[in:] 17" Asia and South Pacific Design Automation Conference, Sydney 2012,
pp. 353-358.

[66] S. Berchtold, D. A. Keim, H.-P. Kriegel, The X-tree: An Index Structure for High-
-Dimensional Data [in:] Proceedings of the 22" VLDB Conference, Mumbai, India
1996, pp. 28-39.

[67] P. Ciaccia, M. Patella, P. Zezula, M-tree An Efficient Access Method for Similarity
Search in Metric Spaces [in:] Proceedings of the 13" International Conference on
Very Large Data Bases, Athens 1997.

[68] K.S. Candan, M.L. Sapino, Data Management for Multimedia Retrieval, Cam-
bridge University Press, Cambridge 2010.

[69] Y. Manolopoulos, A. Nanopoulos, A.N. Papadopoulos, Y. Theodoridis, R-Trees:
Theory and Applications, Springer Science and Business Media, Berlin-Heidelberg
2010.

[70] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM:
Parallel Virtual Machine — A User’s Guide and Tutorial for Networked Parallel
Computing, 3" ed., The MIT Press, Cambridge, MA — London, England 1996.

PaX-DBSCAN: PROPOZYCJA ALGORYTMU
DLA DOSKONALONEGO GRUPOWANIA

Streszczenie: W artykule autorzy skupiaja swoja uwage na zastosowaniu techniki prze-
twarzania réwnolegltego przy wykorzystaniu struktur drzewiastych X-tree i algorytmu
bulk loading. Zaproponowano nowy algorytm przetwarzania réwnolegtego DBSCAN
i drugi algorytm dla rozszerzania struktur indeksowania przestrzennego.

Algorytm grupowania DBSCAN jest efektywnym algorytmem grupowania dla Syste-
mow Przestrzennych Baz Danych, ktory ma mozliwos¢ wykrywania zaktocen i nie wy-
maga znacznej liczby skupien wcze$niej ustalonych, jednakze dziatanie algorytmu zmie-
nia si¢, gdy rozmiar danych jest duzy. Ten algorytm moze nie dziata¢ optymalnie, jesli
niewlasciwe wartosci sg wybrane dla minpts i eps. Dlatego nowy zaproponowany algo-
rytm powinien eliminowac¢ te ograniczenia.

Stowa kluczowe: struktura drzewiasta X-tree, indeks przestrzenny, rozdzielanie, prze-
twarzanie rownolegle, algorytm bulk loading, przestrzenne bazy danych, grupowanie.

