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Summary: We focused on applying parallel computing technique to the bulk loading of 
X-tree in other to improve the performance of DBSCAN clustering algorithm. We have 
given a full description of how the system can be archived. We proposed a new parallel 
algorithm for DBSCAN and another algorithm to extend the X-tree spatial indexing struc-
ture. Spatial database systems incorporate space in database systems, they support non-
traditional data types and more complex queries, therefore in order to optimise such sys-
tems for efficient information processing and retrieval, appropriate techniques must be 
adopted to facilitate the construction of suitable index structures. 
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database, clustering. 
 
 
Introduction 
 

According to Lungu and Velicanu [1], spatial objects consisting of lines, 
surfaces, volumes and higher dimensions objects are frequently used in applica-
tions such as computer-aided design, cartography, geographic information sys-
tems etc. A single spatial data contains observations with locations, they iden-
tify features and positions of objects on the earth’s surface and they present us  
a framework for putting our observations on the map [2]. In this paper, we de-
scribe the design of a system for spatial query processing (suitable for managing 
large datasets) that fully exploits the parallelism that is typical of modern multi-
core CPU. The notion is to design a system that parallelises the indexing of spa-
tial data and spatial query execution. We base this work on the shared-nothing 
platform as a platform to solve the problem of parallel bulk loading of X-tree in 
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a parallel spatial database context. We assume that an adjusted X-tree (aX-tree − 
which we proposed) access method is constructed, from a spatial relation that is 
distributed to a number of processors. The main intension is to exploit parallel-
ism in order to achieve both high quality of produced index and efficient index 
generation. As such, we did a deep study of parallel techniques for bulk-loading 
while assuming that the environment is composed of a number of processors 
based on a shared-nothing architecture, in which each processor manages its 
own disk(s) and main memory. We have assumed that there would be no reor-
ganization of the data taking place after the completion of the index construction 
process, that is to say, the data remain assigned to the same processor. It is im-
portant that some processors need to transmit the spatial information of the ob-
jects to other processors, without transmitting the whole record (i.e., the objects’ 
detailed geometry). This approach would guarantee load balance during index 
construction. Most research on spatial databases focuses on either the perfor-
mance or the space utilization therefore, by dividing large problems into smaller 
ones, big problems can be solved concurrently saving time and resources with an 
improved performance. Parallel computing describes a process where computa-
tion involving many calculations or the execution of multiple processes are car-
ried out simultaneously [3]. This kind of computing (in the form of multi-core 
processors) has become the dominant paradigm in computer architecture. In this 
work, we have focused on applying parallel computing technique to the bulk 
loading of X-tree. 
 
 
1. Spatial database systems  
 

According to Güting [4] Spatial Database Systems (SDBS) are database 
systems for the management of spatial data, including point objects or spatially 
extended objects in a 2D or 3D space or in some high-dimensional feature space. 
In Velicanu Belciu and Olaru [5], spatial database is described as a collection of 
spatial and non-spatial data that is made up of data descriptions and links be-
tween data. Spatial databases incorporate space in database systems, they support 
non-traditional data types and more complex queries, therefore in other to opti-
mise such systems for efficient information processing and retrieval in a large 
multidimensional spatial dataset environment, appropriate techniques must be 
adopted to facilitate the construction of suitable index structure for these data-
base systems. A number of spatial access methods have been proposed because 
the idea of improving large spatial databases is a way to empower them to effi-
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ciently support applications that require non-conventional data. The most im-
portant distinguishing factor of SDBSs s their ability to answer in answering 
queries (involving spatial relationships between objects efficiency).  
 
 
2. Clustering 
 

Clustering real world data sets according to Kailing et al. [6], Verma and 
Jain [7], J. Liu [8] and T. Liu [9], is often hampered by the so-called curse of 
dimensionality and it is a fact that many real world data sets consists of very high 
dimensional feature space. According to Han and Kamber [10], different types 
of clustering methods exist including hierarchical, partition, Density Based method 
and Grid based method. The DBSCAN algorithm discussed below is an example 
of a density based clustering method. In Fayyad et al. [11], clustering is de-
scribed as a data mining technique that groups data into meaningful subclasses, 
known as clusters, such that it minimizes the intra-differences and maximizes 
inter-differences of these subclasses. Several clustering algorithms including:  
K-means, K-medoids, BIRCH, DBSCAN, STING, Wave-Cluster, etc. [12].  
 
 
2.1. DBSCAN algorithm 
 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is 
an effective clustering algorithm for Spatial Database Systems, which has the 
ability to detect noise and outlier, cluster arbitrary shaped point dataset and (con-
trary to some other clustering algorithm like the k-means), does not require the 
number of clusters a priori. Notwithstanding the performance of the algorithm 
deteriorates when the data size becomes too large and the algorithm may not 
perform optimally if the wrong values are chosen for minpts and eps (i.e., radius 
neighbourhood), which are two vital components of the algorithm. In this paper, 
we propose a new algorithm that can improve the efficiency of the DBSCAN 
clustering algorithm. The motivation is to improve the performance of the algo-
rithm in terms of analysing huge spatial databases and in its process of choosing 
the right minpts and eps values. Density based algorithms reserve the notion that 
two objects in space are similar to each other, if the space between them is small. 
The DBSCAN algorithm proposed by Ester et al. [13] is described below: 
1. The algorithm takes as an input: 

• A set of points P in space (2d). 
• A neighbourhood N and a neighbourhood value eps (see figure 1 below). 
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ters, b) discovery of clusters with arbitrary shape, and c) having a good efficien-
cy on large databases. Despite all the abilities of the existing DBSCAN algo-
rithm, it is well known to possess some major limitations, which include high 
time consumption for finding neighbourhood (eps) of a given data point [14], 
performance degeneration with increase in dataset size [15]. The DBSCAN algo-
rithm clusters data points based on density and the underlying idea of density is 
based on the two parameters (Eps and Minpts). According to Berkhin [16], for  
a spatial database, clustering algorithms can easily be improved for fast nearest 
neighbour search if they are indexed, because the indexes serve as good substitu-
tions for poor performance caused by dimensionality. Spatial index structures 
like the R-trees Ester et al. [17] are normally used in a spatial database manage-
ment system to speed up the processing of queries such as region queries or 
nearest neighbour queries. When the SDBSs is indexed by an R-tree (or any 
other indexing structure), then the R-tree nodes helps to accelerate the search 
operations [18]. Notwithstanding, the basic limitations of the existing DBSCAN 
algorithm is compounded by the fact that though the R-tree based index structure 
do not require point transformation in other to store spatial data and also proves 
efficient for spatial clustering which is a vital issue in the performance of tree 
based indexing structures according to Berchtold et al. [19], they are not ade-
quate for high-dimensional data sets as the index structures supports high over-
lap of the bounding boxes in the directory, which increases with growing dimen-
sion. The problem with this is that most large spatial databases are often 
represented using high-dimension feature vectors, thus because feature spaces 
most often tend to contain multiple instances of similar objects (Samet, 2006), 
then the database built using such a feature space is bound to be clustered thus if 
the database is indexed with an R-tree there would be cases of redundant search 
of rectangles due to the high overlap between MBRs of the R-tree nodes. Ac-
cording to Mamoulis [18] several new index structures (including the A-tree, 
VA-tree and the X-tree) have been proposed that outperforms the R-tree for 
indexing high dimensional data but most of them show degraded performance as 
dimension increases [16], [19], [18]. Thus based on these premises we propose 
an improved DBSCAN algorithm that is accelerated using an adjusted X-tree 
(aX-tree) and scalable for large datasets through the power of parallel computing 
technology.  
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3. Parallel programming 
 
3.1. Parallel programming architecture 
 

According to Taniar et al. [21], the whole essence of parallelism is to be 
able to reduce data size by partitioning the data into a number of processors, 
whereby each focuses on processing its partition of the data. By the completion 
of these individual task by the various processors, then all the results are com-
bined to form the final result. Due to the increase in the amount of data accumu-
lated daily nowadays, single processor database management systems are be-
coming inefficient in data management, thus the diversion to parallel databases 
[22]. A parallel database is equipped to manage data in 1012 bytes or above in  
a very short period of time. According to Papadopoulos and Manolopoulos [23], 
the benefits of parallel database management systems can easily be understood 
by taking into consideration the large computational power and the huge 
amounts of data that modern applications require.  
 
Figure 4. A parallel database system architecture  
 

 
 

Source: [23]. 
 

Figure 4 shows a parallel database system architecture [23] with three pro-
cessors with range partitioning of cities relation with respect to attribute popula-
tion. In Qin et al. [24], there are basically two standard architecture for con-
structing a parallel computing architecture for processing big spatial including 
the shared-memory and distributed-memory systems (shared nothing) both of 
which are adopted to achieve higher availability and better computing perfor-
mance, and also take advantage of the GIS resource-hungry application domain 
that still makes good use of parallel techniques for processing spatial data attrib-
utes. Among these frameworks, the shared nothing architecture according to 
Achakeev et al. [25] tends to outperform the rest in terms of low cost data pro-
cessing. Even Hadoop, one of the MapReduce frameworks that allows for deve-
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adopted for this work) and the other is based on Hadoop cluster (that implements 
Mapreduce). In support of this, Maitrey and Jha [35] has established that 
MapReduce has emerged as the most prevalent computing paradigm for parallel, 
batch-style and analysis of large amount of data. VegaGiStore was proposed by 
Zhong et al. [36] as an advanced tool that provides efficient spatial query pro-
cessing over big spatial data and numerous concurrent user queries. The system 
creates a geography-aware module to organise spatial data in terms of geograph-
ic proximity, then designs a two tier distributed spatial index for efficient prun-
ing of the search space in order to improve data retrieval efficiency, finally the 
system builds an “indexing + MapReduce” data processing architecture to im-
prove the computation capability of spatial query. Tang and Feng [37] proposed 
a map projection cloud based parallel framework that possesses a coupling of the 
capabilities of cloud and high performance computing that is GPU-enabled for 
managing large spatial databases. Their system is a parallel paradigm for map 
projection of vector-based big spatial data that couples cloud computing with 
graphics processing units. Tan et al. [38] established an efficient mechanism 
which stands as a general framework for parallel R-tree packing using MapRe-
duce. Other advanced techniques have also been proposed and designed and we 
have provided a detailed description of these systems under parallel bulk-loading 
techniques for managing large spatial databases in a later section. Li et al. [39] 
gave an overview of the most recent literature and technologies on the manage-
ment of large spatial databases. 
 
 
3.6. Parallel DBSCAN existing systems 
 

Though a little bit different from the scope of this work but of interest to 
our line of discussion, Ogden et al [40] proposed the AT-GIS which is a highly 
parallel spatial query processing association mining system (which operates on 
raw spatial datasets) that can scales linearly to a large number of CPU cores by 
integrating the parsing and querying of spatial data using a new computational 
abstraction called associative transducers (ATs). The new system has the ability 
to form a single data-parallel pipeline for computation without requiring the 
spatial input data to be split into logically independent blocks. The AT-GIS also 
has the ability to execute in parallel, spatial query operators from raw input data 
in multiple formats without any pre-processing. The interesting thing about their 
work is that it does not build an index for spatial query which is a little bit away 
from the general assertion that a databases not indexed normally perform very 
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poorly for query processing. Never-the-less, Chen et al [41] proposed the  
P-DBSCAN, a novel parallel version of the existing DBSCAN algorithm which 
is applied in a distributed environment by implementing a priority R-tree. In Wel-
ton et al. [42] the extended CUDA-DClust algorithm was applied, the system 
implements a block tree indexing structure to extend the functionality of the 
existing DBSCAN. Their DBSCAN clustering algorithm version (Mr. SCAN) is 
designed to handle extreme cases in density based clustering using a hybrid par-
allel tree-based implementation to combine a network of GPGPU-equipped 
nodes with an MRNet tree-based distribution network. MR-IDBSCAN was pro-
posed by Noticewala and Vaghela [43] as an efficient parallel and incremental 
method that improves the existing DBSCAN Algorithm using MapReduce. Xu 
et al. [44] proposed a fast parallel clustering algorithm for large spatial databases 
called PartDBSCAN based on a dR*-tree indexing structure. Their system modi-
fies the DBSCAN algorithm by finding clusters w.r.t. a given space constraint S. 
the main highlight of their system is that it has a very good performance w.r.t. 
speedup, scale-up and size-up and most of all could be applied to extend other 
spatial access methods of the R-tree family (such as the X-tree) to distribute 
spatial index structures for high-dimensional data. A new scalable parallel 
DBSCAN algorithm using the disjoint-set data structure (PDSDBSCAN) was 
proposed by Patwary et al. [12]. The algorithm uses a tree-based bottom-up ap-
proach to construct clusters with a better-balanced workload distribution and it is 
implemented on both a shared and a distributed memory architecture. 
 
 
4. Big spatial data management 
 

In spatial database management, objects are not single-valued and in most 
cases, they range from points in a multidimensional space to complex polygons. 
New technologies are evolving for the management and manipulation of large 
datasets, so some improvements and advancement benefitting large spatial data-
bases include the presented below solutions. 
 
 
4.1. Cloud computing technologies  
 

Cloud computing is a necessity for big spatial data management and the ef-
ficiency of spatial indexing for huge datasets at cloud computing environment 
cannot be over emphasized [45]. According to Song et al. [46], the main goal of 
implementing the cloud based platform is to solve the issues faced by traditional 
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geospatial information platform, such as data-intensive, computing-intensive, 
and concurrent-intensive problems, this would in turn enhance the implementa-
tion of big geo-data analytics and management, provide geospatial information 
services for multi-departments of government, and facilitate information sharing. 
Cloud computing according to Wang et al. [33] is the use of resources that are 
delivered as a service over a network and due to the flexibility and scalability in 
cloud computing, now cloud computing plays an important role to handle  
a large-scale data analysis.  
 
 
4.2. Spark technology  
 

The spark technology Zaharia et al. [47] is designed to exploit large main 
memory capacities, it is built on the notion of Resilient Distributed Dataset and 
implemented using Scala, it utilizes built-in data parallel functions for vec-
tors/collections (such as map, sort and reduce), which not only makes the pro-
grams more concise but also makes them parallelization friendly. You et al. [48] 
proposed the SpatialSpark which supports indexed spatial joins based on point-
in-polygon test and point-to-polyline distance computation and has been de-
signed for large-scale spatial join query processing in cloud.  
 
 
4.3. Indexing spatial data 
 

Spatial data objects in most cases often cover areas in multidimensional or 
high dimensional spaces. They are often not well represented by point location 
thus; an indexing method that can support N-Dimensional range queries based 
on the object’s spatial location is required. The main goal of indexing is to opti-
mize the speed of query according to Singh and Garg [49]. When needing to 
represent large spatial data, it normally requires a lot of resources in terms of 
storage and time costs therefore, optimizing the database is one of the most im-
portant aspects when working with such large volumes of data [5]. Notwith-
standing, Akkaya and Yazici [50] stated that a number of multi-dimensional 
access methods have been proposed by various researchers in order to support 
spatial search operations in databases. These methods are used to store and re-
trieve extended and complex objects. In Velicanu Belciu and Olaru [5], spatial 
indexes are the best way to improve the optimization of spatial databases. Ac-
cording to Mamoulis [18], when a spatial relation is not indexed there would be 
need for the nearest neighbour algorithm (for clustering purpose) to access all 
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objects in the relation, in order to find the nearest neighbour to a query object q. 
Building an indexing structure for spatial data is a mechanism that decreases the 
number of searches, and a spatial index (considered logic) is used to locate ob-
jects in the same area of data (window query) or from different locations [1]. In 
Gaede and Günther [51], Lee and Lee [52] it is established that since spatial data 
object are composed of a single point or several thousands of polygons randomly 
distributed across space, constructing a spatial index is very important. General-
ly, data mining tasks (e.g., clustering algorithms) for a spatial database can easi-
ly be enhanced for fast nearest neighbour search if they are indexed, because the 
indexes serve as good substitutions for poor performance caused by dimension-
ality [16]. There are basically two approaches for building a spatial access meth-
od. In the first technique individual insertion of the spatial objects is applied, 
meaning that the access method must be equipped to handle insertions. However, 
the second technique involves building the access method based on the 
knowledge of the original dataset (bulk-loading), which means that the data must 
be available in advance. Fundamentally, the availability of data a priori occur 
quite frequently in various application environments for instance, data can be 
archived for many days in data warehouses and in order to answer queries effi-
ciently, access methods must be constructed. According to [18] good bulk load-
ing method would build fast for static objects and will ensure a lesser amount of 
wasted empty spaces on the tree page.  

Data mining tasks like clustering require the spatial relation to be indexed 
otherwise there would be need for certain procedures (like neighbourhood find-
ing for clustering purpose) to access all objects in the relation in order to find the 
nearest neighbour to a query object. The DBSCAN clustering algorithm is an 
effective clustering algorithm for Spatial Database Systems, which has the abil-
ity to detect noise and outlier, cluster arbitrary shaped point dataset and does not 
require the number of clusters a priori, but the performance of the algorithm 
begins deteriorate when the data size becomes too large and the algorithm may 
not perform optimally if the wrong values are chosen for minpts and eps. There-
fore the new algorithm is geared toward overcoming these limitations. 
 
 
4.4. Bulk loading  
 

Another way forward for managing large spatial dataset is by the use of 
bulk loading methods. Since most spatial applications are based on write once 
read many access model according to Liu et al. [53], the large amounts of spatial 
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data could be quickly imported into storage systems for rapid deployment of 
spatial information services. However, bulk-loading of spatial data is time-
consuming and cannot satisfy the desire of the applications dealing with massive 
spatial data as such, the parallel technique of bulk loading proposed by Qin et al. 
[24], is designed to accelerate the processing of spatial data bulk loading for 
building tree-based in parallel. Bulk-loading spatial data using the popular 
MapReduce framework is intended to overcome the problems associated with 
parallel bulk-loading of tree-based indexes which have the disadvantage that the 
quality of produced spatial index decrease considerably as the parallelism in-
creases [54]. In You et al. [48] bulk loading methods have been described as 
being more suitable for static read-only data in OLAP (Online Analytic Pro-
cessing) settings in many applications, where it is assumed that the MBRs of 
geospatial data can fit into processor memory (which is increasingly becoming 
practical due to the decreasing prices of memories), the cost of bulk loading is 
largely determined by in-memory sorting in the order of O (nlogn). The study 
identified that sorting for bulk loading can be significantly accelerated on GPUs 
by utilizing the parallel computing power which makes GPU implementations 
attractive. However, for MBRs with variable sizes of degrees of overlapping, the 
qualities of constructed R-Trees through bulk loading can be very different 
which may significantly affect query performance on both CPUs and GPUs.  
 
 
4.4.1. Serial bulk loading  
 

Roussopoulos and Leifker [55] proposed the first sort-based bulk-loading 
algorithm for R-trees, the method use similar B+-trees methods to build R-trees 
bottom-up from scratch. The rectangles used as input are first sorted according 
to one of the dimensions and then the sorted data is scanned and a fixed number 
of elements is then repeatedly assigned to a node. Kamel and Faloutsos [56] 
proposed a double-transformation technique which extends the method dis-
cussed above. In their approach, a rectangle is mapped to a multidimensional 
point, and then using a space-filling curve (i.e., the Hilbert-curve) a sorting order 
is specified. Other serial bulk loading methods include Leutenegger et al. [57] 
the sort-tile-recursive algorithm which applies a sort and partitioning step for 
each dimension and Achakeev et al. [58] an optimal query-adaptive algorithms 
for building R-trees designed for a given query profile.  
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4.4.2. Parallel bulk-loading 
 

Undoubtedly many bulk-loading algorithm for R-tree has surfaced whether 
sort-based and non-sort based, nevertheless, our quest in this study is on the 
improvement of some of these existing technologies for bulk-loading of spatial 
data by taking advantage of parallel technology. For massive spatial (or none 
spatial) data, serial/sequential bulk-loading techniques has proven highly ineffi-
cient due to being too time-consuming and therefore may not satisfy the compu-
tational need of many applications dealing with it. Qin et al. [24] proposed the 
TGS-based (Top-Down Greedy Split) parallel technique for accelerating the 
processing of spatial data bulk-loading, by adopting the DCSO (Decompose – 
Conquer – Stitch − Output) strategy to build the R-tree in parallel. Papadopoulos 
and Manolopoulos [23], gave a proper description of how to solve the problem 
of R-tree parallel bulk-loading. Their description is for a generic framework for 
R-tree bulk-loading on a parallel architecture. In their work, the input rectangles 
are distributed among the computing nodes so that every machine receives an 
approximately equal amount of data. This phase utilizes parallel random sam-
pling where a single coordinator machine computes a kd-tree for partitioning the 
data space into regions, each associated with a computing node. The regions are 
then used for rectangles-to-nodes allocation, and then following the above im-
plementation, a local R-tree is bulk-loaded for every node. Lastly, the root en-
tries of local R-trees are sent back to the coordinator where a global root node is 
then created. Papadopoulos and Manolopoulos [23] also presented various strat-
egies for dealing with R-trees of different heights, in which case an additional 
post-processing by the coordinator machine is needed in order to obtain the final 
R-tree. Liu et al. [54] proposed a novel method of bulk-loading spatial data 
using MapReduce framework, which combines Hilbert curve and random sam-
pling method to parallel partition and sort spatial data. Their technique applies 
the bottom-up method to simplify and accelerate the sub-index construction in 
each parallel partition. In Achakeev [25], the problem of parallel loading of  
R-trees on a shared nothing platform was addressed and a novel scalable parallel 
loading algorithm for MapReduce was proposed based on a state of the art se-
quential sort-based query-adaptive R-tree loading algorithm which builds a lev-
el-wise R-tree (In contrast to individual R-tree loading, they created each level 
of the R-tree in parallel, allowing the scheme to avoid the problem merging lo-
cal R-tree – see Figure 7), optimized according to a commonly used cost model. 
A similar MapReduce technique was adopted by Zhong et al. [36], but in their 
own case, they implemented a two-tier distributed spatial index for efficient 
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pruning of the search space instead of the level-wise (level by level parallel  
R-tree) used in the former method. In the work of Tan et al. [38], the design and 
implementation of a general framework for parallel R-tree packing using 
MapReduce was introduced. The framework sequentially packs each R-tree 
level from bottom up and further presents a partition based algorithm for parallel 
packing lower levels that have a large number of rectangles. Hua et al. [59] pro-
poses an R-tree bulk loading algorithm that uses the STR strategy (based on the 
parallel computing powers of GPGPU systems) but applied an overall instead of 
the usual sorting technique constantly used. You et al. [46] also applied the mas-
sive data parallel technologies of graphic processing units (GPUs) to index and 
query geospatial data based on R-trees. Their paper investigated on the potential 
of accelerating both R-tree bulk loading construction and R-tree based spatial 
window query on GPUs. Other works on GPGPU based R-tree indexing of spa-
tial data include: Ogden et al. [40]. According to Ogden et al. [40], current solu-
tions for largescale spatial query processing either rely on extensions to RDBMS 
(which has to do with expensive loading and indexing phases when the data 
changes) or distributed map/reduce frameworks (which runs on resource-hungry 
compute clusters). Both solutions of which according to them struggle with the 
sequential bottleneck of parsing complex, hierarchical spatial data formats, 
which frequently dominates query execution time.  
 
Figure 7. Level by level parallel R-tree  
 

 
 

Source: [25]. 
 

For efficient query processing in large spatial databases, the R-tree has 
proven to be a key element, though its creation is costly [25]. Moreover, the R-tree 
spatial index built by the sort-tile-recursive (STR) techniques has excellent query 
performance, but low efficiency when building [59]. Notwithstanding, Giao and 
Anh [60] argues that the Sort-Tile-Recursive (STR) algorithm which is a sort-
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based loading method for managing spatial and multidimensional data remains 
one of the simple and efficient bulk-loading strategy. Numerous parallel R-Tree 
construction and query processing algorithms have also been proposed includ-
ing: Kamel and Faloutsos [61], Hoel and Samet [62], Schnitzer and Leutenegger 
[63], Apostolos and Yannis [64], Luo et al. [65],You et al. [48]; Hua et al. [59], 
etc. Most of these algorithms focus on the shared-nothing computer architecture, 
though some of the recent works implemented R-Tree based construction and 
query processing on GPUs based on the General Purpose computing on GPUs 
(GPGPU) technologies. Notwithstanding, in general, though the distributed 
frameworks with indexing support can offer good query performance, they re-
quire substantially more computational resources than single machine deploy-
ments [40]. Obviously, a very distinctive characteristics of most of all the exist-
ing systems above is that they have all focused on R-Tree based spatial indexing 
and query processing, in this work we have looked extensively into the design of 
a different spatial indexing technique the X-tree; which we try to achieve by 
exploiting the parallelism offered by modern multicore CPUs for parsing and 
query execution, thereby improving the performance of a computer cluster with-
in a distributed resource environment. In essence, we consider the possibility of 
benefiting from the influence of parallelism in accelerating the performance of 
spatial access methods most specifically the X-trees.  

The X-tree proposed by Berchtold et al. [66] provides a suitable structure 
for indexing point and spatial data in high-dimensional space. It is a method for 
indexing large amounts of point and spatial data in high- dimensional space. 
Berchtold et al. [19] states that index structures such as the R*-tree are not ade-
quate for indexing high-dimensional data set. X-tree, according to Berchtold et al. 
[19] and M-tree according to Ciaccia et al. [67], are typically other variants of the 
R-tree used for multidimensional data. According to the authors of the M-tree 
article, the construction of M-tree is fully parametric based on some distance 
function (d) and triangle inequality for efficient queries. The M-tree has overlap 
of regions but no strategy to avoid overlap. Each node there is of radius r, every 
node n and leaf node l residing in node N is at most distance r from N. The  
M-tree is balanced tree and does not requires periodical reorganization. The X-tree 
prevents overlapping of bounding boxes which is problem in high dimensionali-
ty. Any node that is not split will then result into “super-nodes” and in some 
extreme cases the tree will linearize. The X-tree may be seen as a hybrid of  
a linear array-like and a hierarchical R-tree-like directory [19]. According to 
Candan and Sapino [68], an increase in the fan-out of the X-tree is the main 
positive side effect of the super-node strategy. Some advantages of X-tree, as 
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given by Manolopoulos et al. [69] besides Candan and Sapino [68] shows that 
the X-tree is a heterogeneous access method because it is composed of nodes of 
different types. In most cases, whereby it has become impossible to overcome or 
avoid overlap, super-nodes are created during the processes of inserting new 
entries into an X-tree. These super nodes account for the advantage of X-trees 
over all other access methods. Some of the benefits of the super-nodes include:  
• increase in average storage utilisation due to fewer splits taking place,  
• reduction in height of tree due to increase in average tree fan-out,  
• in cases where it is impossible to construct a hierarchical access method with 

minimised overlap between node bounding regions, then sequential scanning 
of the dataset is facilitated for very high-dimensional spaces. A diagram of  
a typical X-tree structure is given in Figure 8 below. 

 
Figure 8. Typical structure of the X-tree  
 

 
 

Source: [19]. 
 

For low dimensionality, it means that there is no overlap between the trian-
gles, and at first, the X-tree tries to choose an overlap-free (or at least overlap 
minimal) split axis. When splitting a new node will cause an overlap in rectan-
gles, then the super-node is extended with an additional disk page. A super-node 
of l pages will have l times more children than a regular node. A super-node 
consisting of multiple disk pages may require multiple disk accesses (or at least 
one disk seek operation followed by multiple rotations) therefore, when a given 
query does not cover the entire MBR of the Super-node, the extra disk accesses 
result in unnecessary overhead. Nevertheless, this approach diminishes problems 
with scalability, but cannot solve the problem totally, as in high dimensional 
data, overlap problem grips the index eventually. The X-tree has also proven 
very efficient for query processing in large spatial database. We proposed this 
new scalable parallel loading algorithm for implementing DBSCAN clustering 
algorithm in parallel. The proposed system would provide a better query perfor-
mance than R-trees build and other competitive bulk-loading algorithms. 
 



Grace L. Samson, Joan Lu 104 

5. Constructing PaX-DBSCAN clustering algorithm 
 

Basically, the approach we have adopted for parallelizing the DBSCAN by 
implementing the aX-tree is very simple and it involves the simple logical steps 
below:  
1) Given a large spatial dataset; 
2) Store them in a parallel spatial database; 
3) Build an aX-tree index on it; 
4) Implement the DBSCAN clustering algorithm; 
5) Combine the result to get one final output. 

We propose to implement the DBSCAN algorithm by applying it on ma-
chines that are located at different site individually with a local cluster on each 
client node (Nci - for is = 1 to the total number of c clients). These clusters are 
then sent to the master node (Nm) from the entire site. On the Master Node we 
build a global cluster which will synchronise the entire local clusters. The master 
node takes the job from the different site and aggregates the result for the final 
output cluster.  

The proposed algorithm PaX-DBSCAN which is another novel parallel ver-
sion of the known DBSCAN clustering algorithm is presented and described in 
detail. It applies in a distributed computing environment by implementing an 
adjusted X-tree spatial indexing structure. Different from the existing methods 
we have reviewed above, the algorithm is enhanced by the implementation of the 
aX-tree which has proven to be efficient in high dimensional cases of large spa-
tial data. Apart from the adjusted indexing structure, we have also proposed  
a new algorithm for the DBSCAN which does not depend on the values of the 
Eps – neighbourhood (as this is the main factor behind the delayed computational 
time of the original algorithm). The choice of an adjusted X-tree instead of the 
regular R-tree used as the underlying index structure for DBSCAN, is to im-
prove the algorithm in the terms of managing large spatial dataset. First, we ap-
ply a partition technique which provides a paradigm to manage data in database 
by initially decomposing data into smaller chunks. Secondly, we store the de-
composed dataset into different partitions. Thirdly, we derive a function to con-
struct a static X-tree in a parallel modes (so as to compress the construction 
time). By following this simple procedure, updating the structure or reconstruct-
ing the index will be achieved by referencing the partition in the index and not 
the entire system. 
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5.1. Partitioning 
 

Unlike relational databases, where the data space can be partitioned using 
methods like hash partition, list partition, compound partition etc., spatial objects 
are different from these common databases in the sense that they are multi-
dimensional and are co-relational in the space meaning that the longer the dis-
tance between two objects, the lesser the influence is [24]. Based on the heuris-
tics above, some of the partitioning techniques for classical data have proven 
unsuitable. Therefore, we group the spatial data by their spatial locality on the  
n-dimensional (we have used 2-dimensions for simplicity) space by implement-
ing the str partitioning strategy and we store different parts of data in different 
spaces or disks with that grouping. With this, it will be easy to get the Minimum 
Boundary Rectangle (MBR) of the spatial objects in database. Thus, in other to 
management storage, the partitioned data set can easily be updated or deleted in 
a relatively small bits without having to rearrange the entire system. The parti-
tioning strategy we have employed ensures that nearby spatial objects are stored 
unto close partitions and not into different storage partitions which destroys the 
spatial co-relationship. Sort-tile-recursive algorithm (str) splits the space bottom-up 
recursively, i.e., it partitions the indexing tree recursively to the m MBRs of P 
spatial objects where equal amount of m are placed in each partition. In this 
work, this means that the datasets are shared among C processors and each has 
its own PC collection. Where PC is the total number of points in each processor, 
grouped into m MBRs. 

Figure 9 shows a simple description of how the partitioning is achieved. 
The algorithm starts by initially splitting the objects into some sub-sets vertically 
in y direction and then horizontally in the x direction (and does same for all other 
dimensions) with the splitting satisfying two conditions as below: 
• nearby objects are placed in the same vertical or horizontal partition 
• each partition contains equal amount (or size) of spatial objects. 
 
Figure 9. A typical example of partitioning of spatial data  
 

 
 

Source: [24]. 
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5.2. Storage  
 

In order to preserve the spatial proximity that exist between the spatial ob-
jects, the data objects are stored using methods that improves physical cluster-
ing, this will ensure an improved efficiency for data access. Dimension reduction 
methods like Morton curves and Hilbert curves typically perform certain func-
tions to map multidimensional data into one dimension while preserving locality 
of the data points. Following this mapping structure, any one-dimensional data 
structure such as B-tree can then be used to store the data. In this case we are 
using the sort-tile-recursive [60] sorting technique. Once the data are sorted into 
this ordering, we construct a bulk loaded static X-tree to store the data, without 
needing to do the one dimensional transformation like in the case of Morton and 
Hilbert curves. Though several researches has gone into storing spatial object by 
computing an improved natural clustering arithmetic for example, they all focus 
on dimension reduction and point transformation before applying a general in-
dex method into the encoded spatial objects in other to improve performance. 
We have decided to apply the str partitioning technique for large spatial data set 
storage to reduce index and storage time complexity. 
 
 
5.3. Architecture 
 

Our choice of the ‘shared-nothing’ architecture is based on the fact that the 
framework has high scalability which can go up to hundreds and possibly thou-
sands of computers. Figure 10 is an example overview of the underlying archi-
tecture. 
 
Figure 10. Proposed hardware architecture 
 

 
 
 
5.4. Problem identification (PaX-DBSCAN) 
 

The setup consists of a set of computers C connected via a high speed net-
work, thus a typical problem can be seen as in Figures 11-13. 
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Figure 11. Problem statement 
 

Initial Problem Statement 
Given: 
A set of points (n-dimensional) in a database say P 
such that P = {P1, P2,...,Pn} 
A set of computers N such that N = {N1, N2,...,Nn} 
connected via a high performance computing infra-
structural network 
Find the clusters (density-based) which obeys a given 
Eps and MinPts constraint.  

 
 
Figure 12. Sort – tile – recursive algorithm 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sort-Tile-recursive Pseudocode: 
P = the count of high dimensional objects in a 2d  
Cartesian plane.  
Let N = the total number of available computer. 
Let m = the maximum capacity of a node (number of node 
entries that can fit leaf or non-leaf node).  
Let n = dimension 
// J = P / m = the estimated total number of leaves  
required.  
Step 1: by using the x-coordinate as a key; sort the 
objects (rectangles) based on the x-coordinate of their 
centre.  
Step 2: Determine the maximum node entries.  
Step 3: Order the sorted rectangle into J = ⌈ P / m ⌉.  
Step 4: Divide the sorted rectangles into r groups of 
vertical slices. 
- For two dimensions r = √J.  
- For dimensions more than two, let p = dimension,  
  r = / .  
step 5: Sort the new group r groups again based on y –
coordinate of the rectangles centre into  
Output:  
After loading the r groups of rectangles into nodes 
(pages) the output = (MBR, Node Id) for each leaf level 
node that loaded into a temporary file to be processed 
in the second phase two of the aX-tree algorithm. 
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Figure 13. Proposed steps for clustering 
 

Basic clustering steps: 
Divide the input (P) into r partitions such that k = k1, 
k2…, kr and distribute these partitions to the N available 
computers.  
Run the proposed DBSCAN clustering algorithm in each 
partitions concurrently  
//the input parameter for the DBSCAN deduced from  
section 3.1 is (kj, EPS, minpts).  
Finally combine or merge the clusters from the partitions 
into a global cluster for the entire database.  

 
 
 
5.5. Building distributed index 
 

The X-tree (as review in Section 5.5.2) has proven performance measure on 
high dimensional data and has shown to be robust therefore, we have chosen the 
X-tree structure as our database link. Access to distributed data on the network can 
be achieved efficiently by replicating the aX-tree index on all the index nodes 
(computers) based on the assumption that all nodes contains equal amount of 
points, depending on the value of m (maximum capacity of each storage block). 

According to Zhao et al. [34], there are several techniques for data parti-
tioning in parallel DBMS. Assuming that data will be partitioned onto N disks, 
such as D0, D1, … , Dn-1, then the partitioning procedure is such that a map 
layer like the one shown in section 6.1.A (ml) or region (rn) or a set of data 
points (P) like the one in Figure 12b is entered onto the server and then the size 
of objects including the real data size is computed in addition, the required indi-
ces size is also computed after the partitioning. In this work, we adopted the 
range partitioning strategy. A significant sample of the dataset is selected and 
the midpoints of complex objects is computed to further reduce data size. We 
distribute each vertical segment (global leaf node gl) of the partitioning dimen-
sion onto different (r) disk. We partition the space (according to the available 
dataset, the storage size and cluster scale − typically set to 64MB) and each rep-
resents one sub-region (srn). Initially we create the global index GI in four (4) 
simple steps. The first step is to sort the rectangles based on the partitioning 
dimension then secondly we calculate the maximum node entry for each disk by 
computing j = P/m. Thirdly, we compute the value of r using sort-tile-recursive 
(str) partitioning strategy and then partition the data space into r slices. Then we 
associates each of these sub-region to one of the available computing resource 
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(node). In each partitions the local index (LI) is created, the rectangles are fur-
ther sorted based on the other dimension (or dimensions) and packed in groups 
of m into their minimum bounding rectangles (MBR). The MBRs are further 
packed into the index or parent nodes in the sizes of 64MB, 128 Mb or whatever 
the available block of each node. The idea is such that geographically contiguous 
neighbouring data should be stored into the same node (block). The partitioning 
allocates ach of the regions to a processor. 
 
Figure 14. Proposed system  

 
(a) partitioning the data into tree nodes 

 
 

(b) distrusting the tree among the data nodes 

 
 

The distributed indexing structure adopted for this work see Figure 14, is 
similar to what is described in the work of Kamel and Faloutsos [61]. Here the 
rectangles (data) are distributed by assigning them to the different nodes using  
a range function obtained by simply comparing the vertices of the new data as 
against the stored leaf of the global index. The space is divided into ki partitions, 
where i = 1 … r. The tree is guaranteed to be balanced because there would be 
equal number of rectangles in each node. The root node remains in main 
memory of the server while other nodes are distributed across N nodes. At the 
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first instance, we take a sample of the data and the CenterPoint for complex ob-
jects, with the record values (spatial attributes and references) taken into con-
sideration. The partitions of the rectangles are then distributed onto the comput-
ers C1, C2, ... , CN (in the case of N computers).  
 
Figure 15. Partitioning 
 

(a) data points (b) vertical partitions of r slices 

          
 

(c) storing the partitions to the available data nodes  

 
 

The MBRs of the leaf nodes are partitioned so that nearby rectangles are in 
the same partition with almost same size for each partition. This partitioning 
strategy is achieved through the sort tile recursive (str) partition algorithm. The 
str algorithm according to [60] is a sort-based loading method for manage spatial 
and multidimensional data. It is simple and efficient bulk-loading strategy. The 
algorithm was proposed by Leutenegger et al. [57] and is described below: 
• Super-node: After we partition the area to slices, we group the objects ac-

cording to the maximum node entries. If the last group is less than the mini-
mum allowed, then we extend to super node. But this is only on the leaf level. 
Note, the justification for creating the super node is to handle cases of highly 
skewed distributed data (which is very typical of spatial data), because in the 
case of uniformly distributed data the MBRs are guaranteed to contains same 
amount of data. 
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• Leaf node entry → (OId, MBR): OId is the tuple identifier for referring to an 
object in the database. MBR describes the smallest bounding n dimensional 
region around the data objects (for a 2d - space, the value of MBR will be of 
the form – xlow, xhigh, ylow, yhigh, and for 3d space – xlow, xhigh, ylow, 
yhigh, zlow, zhigh). 

• Non-leaf node entry → (Cp, MBR, PId): Cp is a (child) pointer to a lower 
level node and MBR is the he rectangle that enclosing it (which covers all re-
gions in child node). PId identifies the partition (computing node) where the 
object is stored. 

 
Figure 16. Pre-processing step 
 

Algorithm 1: Pre-processing  
 Start: 
1. Take a sample of data from the large dataset 

// the sample can be chosen as a percentage (1, 2 
or any percentage of the data, though 1 is a good 
choice) of the given dataset for point data P, but 
in the case of spatial object (objects with extent), 
we could convert shapes (lines, regions, areas) to 
points by obtaining their mid-points.   

2. Find the centroid of the complex shapes (regions, 
rectangles, lines etc.), from the sample using the 
simple equation below. Note the formula considers 
the bounding rectangle of the spatial object only. 

, 	 − , 	 −
 

 
//In other cases, getting the centroid on a polygon 
based on the number of j-vertices will generally 
require a different formula.  

3. Calculate r.  
4. Divide the sample space into r vertical slices. 
5. Bulk load the aX-tree into main memory of the server 

// the extended node (super-node) is applied only 
in the first level (the bottom of the tree) to 
avoid the problems of hyper rectangles overlap. 
Step 1: by using the x-coordinate as a key; sort 
the objects (rectangles) based on the x-coordinate 
of their centre for complex objects.  
Step 2: Sort the new group r groups again based on 
y –coordinate of the rectangles centre into.  

6. Output:  
After loading the r groups of rectangles into nodes 
(pages) the output = (MBR, Node Id) for each leaf 
level node that loaded into a temporary file to be 
processed in phase two of the aX-tree algorithm. 
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Assumptions are as follows: 
1) The sample data (and their extracted centroids for extended complex objects, 

e.g. lines, polygons regions, etc.) reduces the size of available data therefore 
making it possible for a single machine (the master to managing the indexing 
and partitioning); 

2) The data is bulk loaded into an in-memory sort-tile − recursively (str) loaded 
X-tree for creating the global partitioning – i.e. data block location. 

 
Figure 17. Loading the tree  
 

Algorithm 2: Loading  
 

// loading the collection of the MBRs of sorted spatial  
objects from the temporary file in phase one. 

Start: 
Step 1. Create leaf nodes the basement level (level l=0) 
While (there are more rectangles) Generate a new X-tree 
node, Assign the next m rectangles to this node.  
//During node creation prevents any split that cause 
overlapping, by extend one super-node in the current level.  
Step 2. Create nodes at higher level (l + 1) While (there 
are > 1 nodes at level l) Sort nodes at level l≥0 on  
ascending creation time Repeat.  
Step 3. Return Root. 

 
Figure 18. Distributing data to various partitions  
 

Algorithm 3: Partitioning 
Start 
// Using the boundaries of each leaf node as the boundary 
of the MBR of the leave nodes, then scan the data in 
parallel and assign each record to its overlapping  
partition. 
i. Store the location of each partition (gl) and their 

range in a file in the server in the form (OId, MBR, 
NId)and call it Nk. (i.e. k partition in N computer) 
// OId is a (child) pointer to a lower level node. 
// MBR is the he rectangle enclosing it (which covers 
all regions or points in child node). 
//NId identifies the partition (computing node) where 
the object is stored. 

ii. Partition the data into the N number of computers by 
computing r and mapping out its horizontal range for 
partitions ki. (i = 1….r). 

iii. For each new entry point (from the new dataset) the 
server compares the range its spatial attribute to 
the range of the MBR of the global leaf (gl), and 
sends it to the right node partition as shown in  
figure 18. 

Step iv is repeated until the entire dataset has been 
fully distributed. 
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Figure 19.  Points grouped into rectangles based on the value of the leaf node  
capacity (m) which could be 64mb or higher 

 

 
 
 
5.6. Point clustering (PaX-DBSCAN algorithm) 
 
Figure 20. The aX-tree 

 
 
Figure 21. Finding k-nearest neighbour (E) 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Algorithm 4: How to find the neighbourhood (E) 
A point spatial database P partitioned into N nodes 
{assuming that records consists of real number values} 
Let  
s and q be any two point nodes on the tree  
k = an arbitrary number 
Let si be the query object (spatial).  
Then:  
For all aX-tree node say v.  
The distance between the minimum bounding rectangles of 
v (MBRv) and the query object si given by Distance (si, 
MBRv) is ≤ distance between the query point and any 
other object S indexed under v i.e. distance (si, Pj) 
for all j indexed under the node v. 
Thus: 
If we call the calculated distance between p and another 
object b indexed under node q distance (si, b) and Dis-
tance (si, MBRv) = t. 
Then 
If t > distance (si, b) 

1. Then  
2. Stop search for v 
3. Take a different path 
4. Else 
5. Return closest distanced neighbours (E)
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Figure 22. aX-DBSCAN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For algorithm 5, a temporary file is initially created that stores all the calcu-
lated distance between all the points from the distance function: Distance  
(s, q) ≥ distance (MBR (s), MBR (q)) for any point between and q in the tree. 
Thus, for any two points in s, the nearest neighbour of t in s is defined by e  ∶ ∀  
e +1∈ s,  ( , e) ≤  ( , e +1) and The K-nearest neighbour (E) 
of  in s, is all e with distances ≤ kth distance from ; where k = m = maximum 
points capacity of a node. This procedure will make it faster to build the clusters 
by merely comparing distances from the distance table in when processing Bi at 
each iteration. At the end of each computation, all the node directs the sub-result 
to the master node in other to process the final result and presents the PaX- 
-DBSCAN cluster. This process takes the description below: Each process of 
DBSCAN executes concurrently on the parameter (Pj , E, Φ), for j = 1, 2, ... , 
N,) and finishes at the same time. Then each local task identifier (TID) is read 
by the master which extracts each unique values. The values are then compared. 
For each processor C, each point p ∈ PC is a local point, thus other points not 
found in PC are referred to as remote points. Being a distributed memory, any 
other partition Ki ≠ Kj, 1 ≤ j ≤ N, 1 ≤ j ≤ N is not directly visible to the processor C. 

Each client reports the new local cluster likely with noise through the TID 
to the master from their previous iteration, the server stores unto a temporary 

Algorithm 5: Clustering (aX-DBSCAN AGORITHM)  
For each node 

1. Find a neighbourhood value (say E > 0). 
2. Determine Φ > 0. 
// Φ is the parameter that determines which cluster 
is dense. 

 // value of Φ = (at least) m +1 so as to avoid clusters 
that has only one object. 
 // m is the maximum capacity of an aX-tree node. 

3. Compute the value of E. 
// the value of E (nearest neighbour to point p) is 
deducted from the aX-tree as follows as in step i 
above: 

i. Find Bi = {p ∈ S: d(pi, p) ≤ E } 
// (d = distance between p and pi for all i = 1, 
2….m) 
ii. If | Bi | ≤ Φ, THEN  
iii. REJECT Bi 
// Bi is an outlier 

ELSE 
iv. Find the relationship (Bi ∪ Bj ≠ Ø) 
v. Repeat iv until there is no more union 

4. Return cluster to the master (cl, Nid, Pb, Pn). 
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file. The server then broadcasts the value of the points at the border and the 
noise points. Using this information, each processor processes the new data with 
their existing cluster, by this means the border points may form new clusters 
with the other unvisited points in each of the processor (PC) merge with existing 
cluster. The process continues until all points are visited for all PCs. At the end of 
the iteration process, the server compiles the result and filter out noise. 

The system is designed in such a way that data within a partitioned region 
are stored on one of the computer nodes on the network, and all spatial data are 
then distributed across the different local cluster according to their geographical 
space. At this point, the original tree has K data pages. The pages (nodes) are 
distributed onto the N computers with m data pages on each computer. Querying 
starts on the master node and request is sent across the client computers for any 
impending task. For each query, the master computes a cost model to know 
which client node contains the required triangle, and sends the query to that 
node.is performed by starting at the root and computing all entries whose rectan-
gle qualifies. In the underlying architecture adopted for this project, all the net-
work task are identified by an integer task identifier (TID) – described fully in 
Geist et al. [70] – and messages are sent to and received from these TIDs across 
the network. TIDs are supplied by the local node and are not user chosen must 
be unique across the entire virtual machine. Although system encodes infor-
mation into each TID, the user is expected to treat the TID as opaque integer 
identifiers. The system contains several routines that return TID values so that 
the user application can identify other tasks in the system Geist et al. [70].  

Summary covers the following comments: 
• The indexing bulk-loads the x-tree and take only the leaf level. 
• This procedure ends the global index with a flat partitioning, therefore new 

records fall into any one of the partitions. 
• The global index is stored in main memory (as the boundary of each parti-

tion), using this technique, only the partition covering the query point will be 
processed. 

• The second layer index partitions each of the index blocks to the maximum 
capacity of each of the data node. 

• The data is partitioned into processors (Nc). 
• Each processor builds its own local cluster and sends each intermittent result 

to the server. 
• The server then rebroadcasts the border points and noise, using this infor-

mation, the clients compare the points and decide to either merge the clusters 
if there core points and density reachable points or rather create a new cluster. 
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• The operation of our system can be described as intra-operational parallelism 
where the aX-tree index is parallelized over the N processors. This can be 
achieved by partitioning the data among the processors. After the initial local 
processing, each processor returns its results to the host (master) then the re-
sult is combined for the eventual result. 

 
 
Conclusions and future work 
 

Spatial databases keep information about the location and the tasks of spa-
tial data mining need the spatial relation to be indexed before it can perform 
optimally. In this work, we have studied the usefulness of parallelism in the im-
provement of clustering task in a spatial database. And we have looked into 
building a parallel adjusted X-tree (PaX-tree) for this purpose. We discussed 
indexing structure for large spatial datasets, bulk loading spatial structure and 
applying the idea of parallelism to their improvement. We proposed an improved 
algorithm for the DBSCAN clustering and we also proposed a new algorithm for 
adjusting the existing X-tree. 

Bulk-loading spatial data using the popular MapReduce framework is in-
tended to overcome the problems associated with parallel bulk-loading of tree-
based indexes which has the disadvantage that the quality of produced spatial 
index decrease considerably as the parallelism increases. Therefore as our future 
work, we intend to design an algorithm for parallel bulk loading of X-tree using 
Hadoop technology. Secondly we have to also evaluate our current proposed 
system in other to ascertain its efficiency. 
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PaX-DBSCAN: PROPOZYCJA ALGORYTMU  
DLA DOSKONALONEGO GRUPOWANIA 

 
Streszczenie: W artykule autorzy skupiają swoją uwagę na zastosowaniu techniki prze-
twarzania równoległego przy wykorzystaniu struktur drzewiastych X-tree i algorytmu 
bulk loading. Zaproponowano nowy algorytm przetwarzania równoległego DBSCAN  
i drugi algorytm dla rozszerzania struktur indeksowania przestrzennego.  
Algorytm grupowania DBSCAN jest efektywnym algorytmem grupowania dla Syste-
mów Przestrzennych Baz Danych, który ma możliwość wykrywania zakłóceń i nie wy-
maga znacznej liczby skupień wcześniej ustalonych, jednakże działanie algorytmu zmie-
nia się, gdy rozmiar danych jest duży. Ten algorytm może nie działać optymalnie, jeśli 
niewłaściwe wartości są wybrane dla minpts i eps. Dlatego nowy zaproponowany algo-
rytm powinien eliminować te ograniczenia.  
 
Słowa kluczowe: struktura drzewiasta X-tree, indeks przestrzenny, rozdzielanie, prze-
twarzanie równoległe, algorytm bulk loading, przestrzenne bazy danych, grupowanie. 


