LERAY–SCHAUDER DEGREE METHOD
IN ONE–PARAMETER FUNCTIONAL
BOUNDARY VALUE PROBLEMS

SVATOSLAV STÁNĚK

Abstract. Sufficient conditions for the existence of solutions of one–parameter functional boundary value problems of the type

$$x'' = f(t, x, x_t, x'_t, x'_t, \lambda),$$

$$(x_0, x'_0) \in \{(\varphi, \chi + c); c \in \mathbb{R}\}, \alpha(x|_J) = A, \beta(x(T) - x|_J) = B$$

are given. Here $f : J \times \mathbb{R} \times C_r \times \mathbb{R} \times C_r \times \mathbb{R} \to \mathbb{R}$ is continuous, $\varphi, \chi \in C_r$, α, β are continuous increasing functionals, $A, B \in \mathbb{R}$ and $x|_J$ is the restriction of x to $J = [0, T]$. Results are proved by the Leray–Schauder degree method.

1. Introduction

Let C_r ($r > 0$) be the Banach space of C^0–functions on $[-r, 0]$ with the norm $\|x\|_{[-r,0]} = \max\{|x(t)|; -r \leq t \leq 0\}$. Let T be a positive constant. For every continuous function $x : [-r, T] \to \mathbb{R}$ and each $t \in [0, T] =: J$ denote by x_t the element of C_r defined by

$$x_t(s) = x(t + s), \quad s \in [-r, 0].$$

Let X be the Banach space of C^0–functions on J endowed with the norm $\|x\|_J = \max\{|x(t)|; t \in J\}$. Denote by \mathcal{D} the set of all functionals $\gamma : X \to \mathbb{R}$ which are

a) continuous, $\gamma(0) = 0$,
b) increasing, i.e. \(x, y \in X, \quad x(t) < y(t) \) for \(t \in (0, T) \) \(\Rightarrow \gamma(x) < \gamma(y) \), and

c) \(\lim_{n \to \infty} \gamma(\varepsilon x_n) = \varepsilon \infty \) for each \(\varepsilon \in \{-1, 1\} \) and any sequence \(\{x_n\} \subset X \),
\(\lim_{n \to \infty} x_n(t) = \infty \) locally uniformly on \((0, T) \).

This paper is concerned with the functional boundary value problem (BVP for short)

\[
\begin{align*}
x'' &= f(t, x, x_t, x', x'_t, \lambda), \\
(x_0, x'_0) &\in \{(\varphi, \chi + c); c \in \mathbb{R}\}, \quad \alpha(x|_J) = A, \quad \beta(x(T) - x|_J) = B
\end{align*}
\]

depending on the parameter \(\lambda \). Here \(f : J \times \mathbb{R} \times C_r \times \mathbb{R} \times C_r \times \mathbb{R} \to \mathbb{R} \) is a continuous operator, \(\varphi, \chi \in C_r \), \(\alpha, \beta \in D \), \(A, B \in \mathbb{R} \) and \(x|_J \) is the restriction of \(x \) to \(J \).

By a solution of BVP (1), (2) we mean a pair \((x, \lambda_0) \), where \(\lambda_0 \in \mathbb{R} \) and \(x \in C^0([-r, T]) \cap C^2(J) \) is a solution of (1) for \(\lambda = \lambda_0 \) satisfying the last two conditions in (2) and
\[
x_t(s) = \varphi(t + s), \quad x'_t(s) = \chi(t + s) - \chi(0) + x'(0)
\]
for \(0 > t + s (\geq -r) \) and
\[
x_t(s) = x(t + s), \quad x'_t(s) = x'(t + s)
\]
for \(0 < t + s (\leq T) \).

This definition of BVP (1), (2) is motivated by the Haščák definitions for multipoint boundary value problems for linear differential equations with delays ([5]–[7]).

Our objective is to look for sufficient conditions imposed upon the nonlinearity \(f \) in order to obtain solutions of BVP (1), (2). The proofs are based on the Leray–Schauder degree theory (see e.g. [2]).

We observe that sufficient conditions for the existence (and uniqueness) of solutions of BVP

\[
y'' - q(t)y = g(t, y_t, \lambda),
y_0 = \varphi, \quad y(t_1) = y(T) = 0 \quad (0 < t_1 < T)
\]

were obtained in [8] with \(\varphi \in C_r \), \(\varphi(0) = 0 \). The proof of the existence theorem is based on a combination of the Schauder linearization technique and the Schauder fixed point theorem. In [10] was studied BVP

\[
x'' = F(t, x, x_t, x', x'_t, \lambda),
x_0 = \varphi, \quad x'(0) = x'(T) = 0
\]

with \(\varphi \in C^1([-r, 0]) \), \(\varphi(0) = 0 = \varphi'(0) \). The existence of solutions was proved by a combination of the Schauder quasilinearization technique and the Schauder fixed point theorem.
BVPs for second order differential and functional differential equations depending on the parameter were considered as a rule under linear boundary conditions using the shooting method ([1, 3]), by the Schauder linearization method and the Schauder fixed point theorem ([9], [11]), by a surjectivity result in \mathbb{R}^n ([13]), by a combination of the Schauder quasilinearization technique and the Schauder fixed point theorem ([14]) and by the Leray–Schauder degree theory ([12]).

2. Lemmas

REMARK 1. By c) in the definition of D, $\text{Im} \gamma = \mathbb{R}$ for all $\gamma \in D$, where $\text{Im} \gamma$ denotes the range of γ.

REMARK 2. The following example shows that assumptions a) and b) in the definition of D don't imply its assumption c).

EXAMPLE 1. Consider the functional $\gamma : X \to \mathbb{R}$ defined by

$$\gamma(x) = x(0) + x(T) + \arctan x(T/2).$$

Obviously, $\gamma(0) = 0$, $\text{Im} \gamma = \mathbb{R}$, γ is continuous increasing. Set $x_n(t) = n \sin(t \pi / T)$ for $t \in J$ and $n \in \mathbb{N}$. Then $\lim_{n \to \infty} x_n(t) = \infty$ locally uniformly on $(0, T)$ and

$$\lim_{n \to \infty} \gamma(\varepsilon x_n) = \lim_{n \to \infty} (\varepsilon x_n(0) + \varepsilon x_n(T) + \arctan(\varepsilon x_n(\pi/2)))$$

$$= \lim_{n \to \infty} \arctan(\varepsilon n \sin(\pi/2))$$

$$= \lim_{n \to \infty} \arctan(\varepsilon n) = \varepsilon \pi / 2$$

for $\varepsilon \in \{-1, 1\}$.

EXAMPLE 2. Special cases of boundary conditions (2) are conditions

(3) $x_0 = \varphi$, $x(\xi) = A$, $x(T) = B_1$ \quad ($A, B_1 \in \mathbb{R}$, $\xi \in (0, T))$,

(4) $x_0 = \varphi$, $\int_0^\tau x^{2n+1}(s)ds = A$, $x(T) = B + x(\xi)$ \quad ($A, B \in \mathbb{R}$, $n \in \mathbb{N}$, $\tau \in (0, T)$, $\xi \in (0, T))$.

8 - Annales...
\[x_0 = \varphi, \quad x^3(\xi_1) + x(\xi_2) = A, \quad x(T) = B_1 + (1/\tau) \int_0^T x(s)ds \]

\[(A, B_1 \in \mathbb{R}, \ 0 \leq \xi_1 < \xi_2 \leq T, \ \xi_2 - \xi_1 < T, \ \tau \in (0, T)),\]

\[x_0 = \varphi, \quad \max\{x(t); \ t \in [a_1, a_2]\} = A, \quad \max\{x(T) - x(t); \ t \in [a_3, a_4]\} = B \]

\[(A, B \in \mathbb{R}, \ 0 < a_1 < a_2 < T, \ 0 < a_3 < a_4 < T).\]

Boundary conditions (3) (resp. (4); (5); (6)) we obtain setting (in (2))

\[
\begin{align*}
\alpha(x) &= x(\xi), \quad \beta(x) = x(\xi), \quad B = B_1 - A \\
(\text{resp.} \quad \alpha(x) &= \int_0^T x^{2n+1}(s)ds, \quad \beta(x) = x(\xi); \\
\alpha(x) &= x^3(\xi_1) + x(\xi_2), \quad \beta(x) = \int_0^T x(s)ds, \quad B = \tau B_1; \\
\alpha(x) &= \max\{x(t); \ t \in [a_1, a_2]\}, \quad \beta(x) = \max\{x(t); \ t \in [a_3, a_4]\}.
\end{align*}
\]

Lemma 1. Let \(u, v \in X, \ \alpha, \beta \in \mathcal{D}, \ c \in [0, 1]. \) Let

\[
\begin{align*}
\alpha(x + u) + (c - 1)\alpha(-x + u) &= c\alpha(u), \\
\beta(y(T) - y + v) + (c - 1)\beta(-y(T) + y + v) &= c\beta(v)
\end{align*}
\]

be satisfied for some \(x, y \in X. \) Then there exist \(\xi, \varrho \in (0, T) \) such that

\[x(\xi) = 0, \quad y(\varrho) = y(T). \]

Proof. Define \(\alpha_1, \beta_1 \in \mathcal{D} \) by

\[
\begin{align*}
\alpha_1(z) &= \alpha(z + u) + (c - 1)\alpha(-z + u) - c\alpha(u), \\
\beta_1(z) &= \beta(z + v) + (c - 1)\beta(-z + v) - c\beta(v).
\end{align*}
\]

Assume \(x(t) \neq 0, y(T) - y(t) \neq 0 \) for \(t \in (0, T). \) Then \(\alpha_1(x) \neq 0, \beta_1(y(T) - y(t)) \neq 0 \) which contradicts the assumptions \(\alpha_1(x) = \alpha(x + u) + (c - 1)\alpha(-x + u) - c\alpha(u) = 0, \beta_1(y(T) - y) = \beta(y(T) - y + v) + (c - 1)\beta(-y(T) + y + v) - c\beta(v) = 0. \)

Lemma 2. Let \(\alpha, \beta \in \mathcal{D}, \ u_i, v_i \in X \ (i = 1, 2), \ A, B \in \mathbb{R} \) and \(v \in [0, \infty). \) Then there exist unique \(a, \mu \in \mathbb{R} \) such that the equalities

\[
\begin{align*}
\alpha \left(a \sin(\pi t/T) + \mu (\cos(\pi t/T) - 1) + u_1 \right) \\
- \nu \alpha \left(-a \sin(\pi t/T) - \mu (\cos(\pi t/T) - 1) + u_2 \right) &= A,
\end{align*}
\]

\[
\begin{align*}
\beta \left(a \sin(\pi t/T) + \mu (\cos(\pi t/T) - 1) + u_1 \right) \\
- \nu \beta \left(-a \sin(\pi t/T) - \mu (\cos(\pi t/T) - 1) + u_2 \right) &= 0.
\end{align*}
\]
\[
\beta (-a \sin(\pi t/T) - \mu (\cos(\pi t/T) + 1) + v_1) \\
-\nu \beta (a \sin(\pi t/T) + \mu (\cos(\pi t/T) + 1) + v_2) = B
\]

hold.

PROOF. Define the continuous functions \(p, q : \mathbb{R}^2 \rightarrow \mathbb{R} \) by

\[
p(x, y) = \alpha (x \sin(\pi t/T) + y(\cos(\pi t/T) - 1) + u_1) \\
-\nu \alpha (-x \sin(\pi t/T) - y(\cos(\pi t/T) - 1) + u_2),
\]

\[
q(x, y) = \beta (-x \sin(\pi t/T) - y(\cos(\pi t/T) + 1) + v_1) \\
-\nu \beta (x \sin(\pi t/T) + y(\cos(\pi t/T) + 1) + v_2).
\]

Since \(\alpha, \beta \in \mathbb{D}, 0 < \sin(\pi t/T) \leq 1, -2 < \cos(\pi t/T) - 1 < 0 \) and \(0 < \cos(\pi t/T) + 1 < 2 \) for \(t \in (0, T) \), we see that (cf. the definition of \(\mathbb{D} \)) \(p(\cdot, y) \) is increasing on \(\mathbb{R} \) and \(p(x, \cdot), q(\cdot, y), q(x, \cdot) \) are decreasing on \(\mathbb{R} \) (for fixed \(x, y \in \mathbb{R} \)). Moreover,

\[
\lim_{x \to +\infty} p(x, y) = +\infty, \quad \lim_{y \to +\infty} p(x, y) = -\infty,
\]

\[
\lim_{x \to -\infty} q(x, y) = +\infty, \quad \lim_{y \to -\infty} q(x, y) = -\infty
\]

for \(\varepsilon \in \{-1, 1\} \) (and fixed \(x, y \in \mathbb{R} \)). Consequently, to each \(x \in \mathbb{R} \) there exists a unique \(y = r(x) \in \mathbb{R} \) such that \(p(x, r(x)) = A \). Evidently, \(r : \mathbb{R} \rightarrow \mathbb{R} \) is continuous increasing, \(\lim_{x \to +\infty} r(x) = +\infty \) for \(\varepsilon \in \{-1, 1\} \) and setting \(s(x) = q(x, r(x)) \) for \(x \in \mathbb{R} \), \(s \) is continuous decreasing, \(\lim_{x \to +\infty} s(x) = -\infty \) for \(\varepsilon \in \{-1, 1\} \). Hence \(s(a) = B \) for a unique \(a \in \mathbb{R} \) and if we set \(x = a, \mu = r(a) \), our lemma is proved. \(\square \)

Lemma 3. Let \(\alpha, \beta \in \mathbb{D}, a,A,B \in \mathbb{R} \). Then the system of nonlinear equations

\[
(7) \quad \alpha (a + x \sin(\pi t/T) + ty) = A, \quad \beta (-x \sin(\pi t/T) + (T - t)y) = B
\]

has a unique solution \((x, y) \in \mathbb{R}^2\).

PROOF. We shall consider the continuous functions \(p, q \in \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by

\[
p(x, y) = \alpha (a + x \sin(\pi t/T) + ty), \quad q(x, y) = \beta (-x \sin(\pi t/T) + (T - t)y).
\]

Since \(0 < \sin(\pi t/T) \leq 1, 0 < t < T, 0 < T - t < T \) for \(t \in (0, T) \), \(p(\cdot, y), p(x, \cdot), q(x, \cdot), q(\cdot, y) \) are increasing on \(\mathbb{R} \) and \(q(\cdot, y) \) is decreasing on \(\mathbb{R} \) (for each
fixed $x, y \in \mathbb{R}$). Moreover, $\lim_{x \to \infty} p(x, y) = \varepsilon \infty$, $\lim_{y \to \infty} p(x, y) = \varepsilon \infty$, $\lim_{y \to \infty} q(x, y) = \varepsilon \infty$ and $\lim_{x \to \infty} q(x, y) = -\varepsilon \infty$ for $\varepsilon \in \{-1, 1\}$. In the same manner as in the proof of Lemma 2 we can verify that system (7) has a unique solution. □

3. Existence theorems

Let $u, v \in X$ and $\chi \in C_r$. Consider BVP

(8) $x'' = h(t, x, x_t, x_{tt}, x_t', \lambda),$

(9) $(x_0, x_0')
\in \{(0, \chi + c); c \in \mathbb{R}\}, \quad \alpha(u + x_j) = \alpha(u), \quad \beta(x(T) - x_j + v) = \beta(v)$
depending on the parameter λ. Here $h : J \times \mathbb{R} \times C_r \times \mathbb{R} \times C_r \times \mathbb{R} \to \mathbb{R}$ is a continuous operator and $\alpha, \beta \in D$.

Set $S_K = \{x : x \in C_r, \|x\|_{[-r,0]} \leq K\}$ for each positive constant K and $\|x\|_I = \max\{|x(t)|; t \in I\}$ for each compact $I \subset \mathbb{R}$ and $x \in C^0(I)$.

THEOREM 1. Let $\chi \in C_r$, $m = \|\chi\|$. Assume there exist constants $K > 0$, $\Lambda > 0$, $M > 0$ and a function $w_1 : [0, \infty) \times [0, \infty) \to (0, \infty)$ nondecreasing in both its arguments such that

(10) $h(t, x, \psi, 0, \varepsilon, \Lambda) \geq 0$ for $(t, x, \psi, \varepsilon) \in J \times [0, K] \times S_K \times S_{M+2m},$

(10') $h(t, x, \psi, 0, \varepsilon, -\Lambda) \leq 0$

for $(t, x, \psi, \varepsilon) \in J \times [-K, 0] \times S_K \times S_{M+2m},$

(10'') $h(t, -K, \psi, 0, \varepsilon, \Lambda) \leq h(t, K, \psi, 0, \varepsilon, \Lambda)$

for $(t, \psi, \varepsilon, \Lambda) \in J \times S_K \times S_{M+2m} \times [-\Lambda, \Lambda],$

(11) $|h(t, x, \psi, y, \varepsilon, \Lambda)| \leq w_1(|y|, \|\varepsilon\|_{[-r,0]})$

for $(t, x, \psi, \Lambda) \in J \times [-K, K] \times S_K \times [-\Lambda, \Lambda], (y, \varepsilon) \in \mathbb{R} \times C_r$

and

(12) $\int_0^M \frac{s ds}{w_1(s, M + 2m) + (3K/2)(\pi/T)^2} > 2K.$
Then BVP (8), (9) has at least one solution \((x, \lambda_0)\) satisfying
\[
\|x\|_J \leq K, \quad \|x\|_J \leq M, \quad |\lambda_0| \leq \Lambda.
\]

Proof. Define the continuous operator \(h^* : J \times \mathbb{R} \times C_r \times \mathbb{R} \times C_r \times \mathbb{R} \to \mathbb{R}\) by
\[
h^*(t, x, \psi, y, \varphi, \lambda) = h(t, x, \psi, y, \hat{\varphi}, \lambda)
\]
where \((s \in [-r, 0])\)
\[
\hat{\varphi}(s) = \begin{cases}
M + 2m & \text{for } \varphi(s) > M + 2m \\
\varphi(s) & \text{for } |\varphi(s)| \leq M + 2m \\
-(M + 2m) & \text{for } \varphi(s) < -(M + 2m).
\end{cases}
\]
Consider the equation
\[
x'' = c_h^*(t, x, x_t, x', x_t', \lambda) + (1 - c)(\varepsilon^2 x + k\lambda), \quad \in [0, 1],
\]
where
\[
\varepsilon = \frac{\pi}{T}, \quad k = \frac{\pi^2 K}{2T^2 \Lambda}.
\]
Let \((x_c, \lambda_c)\) be a solution of BVP \((16_c), (16'_c)\) with \(c \in [0, 1)\) such that
\[
\|x_c\|_J \leq K, \quad |\lambda_c| \leq \Lambda, \text{ where}
\]
\[
(x_{c_0}, x'_{c_0}) \in \{(0, \chi + d); \ d \in \mathbb{R}\},
\]
\[
(16'_c) \quad \alpha(u + x_c|_J) + (c - 1)\alpha(u - x_c|_J) = c\alpha(u),
\]
\[
\beta(x_c(T) - x_c|_J + v) + (c - 1)\beta(-x_c(T) + x_c|_J + v) = c\beta(v).
\]
We shall prove
\[
\|x_c\|_J < K, \quad \|x'_c\|_J < M,
\]
\[
\|x''_c\|_J \leq w_1(M, M + 2m) + (3K/2)(\pi/T)^2, \quad |\lambda_c| \leq \Lambda.
\]
Assume \(\lambda_c = \Lambda\). By Lemma 1 (with \(c = 1\)) \(x_c(v) = 0, \ x_c(T) = x_c(\xi)\) for some \(v, \xi \in (0, T)\) and therefore \(0 \leq \max\{x_c(t); \ t \in J\} = x_c(\tau)\) for \(\tau \in (0, T)\). Then \(x''_c(\tau) = 0, \ x''_c(\tau) \leq 0 \) which contradicts (cf. \((10')\) and \((15)\)) \(x''_c(\tau) = c_h^*(\tau, x_c(\tau), x_{c\tau}, 0, x_{c\tau}', \Lambda) + (1 - c)(\varepsilon^2 x_c(\tau) + k\Lambda) > 0).\)
Let \(\lambda_c = -\Lambda\). Then \(0 \geq \min\{x_c(t); \ t \in J\} = x_c(\mu)\) for a \(\mu \in (0, T)\) and \(x'_c(\mu) = 0, \ x''_c(\mu) \geq 0 \) which contradicts (cf. \((10'')\) and \((15)\)) \(x''_c(\mu) =\)
\[c.h^*(\mu, x_c(\mu), x_{cm}, 0, x'_{cm}, -\Lambda) + (1 - c)(\varepsilon^2 x_c(\mu) - k\Lambda) < 0. \text{ Hence } |\lambda_c| < \Lambda. \]

Let \(|x_c|^J = K \), for example let \(x_c(\kappa) = K \) with a \(\kappa \in (0, T) \) (see Lemma 1 with \(c = 1 \)). Then \(x'_c(\kappa) = 0, x''_c(\kappa) \leq 0 \) which contradicts (cf. (11) and (15)) \(x''_c(\kappa) = c.h^*(\kappa, K, x_{cm}, 0, x_c, \lambda_c) + (1 - c)(\varepsilon^2 K + k\lambda_c) \geq (1 - c)(\varepsilon^2 K - k\Lambda) = (1 - c)(\pi^2 K/2T^2) > 0. \) Hence \(|x_c|^J < K. \) Since \(x_c(v) = 0 \) and \(x_c(0) = 0, x'_c(\eta) = 0 \) for an \(\eta \in (0, v) \) and, moreover,

\begin{equation}
|x''_c(t)| \leq c|h^*(t, x_c(t), x_{ct}, x'_c(t), x''_c, \lambda_c)| + (1 - c)(\varepsilon^2 K + k\Lambda) < w_1(|x'_c(t)|, M + 2m) + (3K/2)(\pi/T)^2
\end{equation}

for \(t \in J \) by (12) and (15). So, using (13), (18) and a standard procedure (see e.g. [4]) we can prove \(|x'_{ct}|^J < M. \) Finally, \(|x''_c|^J < w_1(|x'_c|^J, M + 2m) + (3K/2)(\pi/T)^2 \leq w_1(M, M + 2m) + (3K/2)(\pi/T)^2 \) and (17) is proved.

Let \(Y_i \) (\(i = 1, 2 \)) be the Banach space of \(C^1 \)-functions on \(J \) with the norm

\[\|x\|_i = \sum_{j=0}^i \|x^{(j)}\|^J, \quad Y_0 = \{x; x \in Y_i, x(0) = 0\}. \]

Define the operators

\[U, H, V : Y_0 \times \mathbb{R} \rightarrow X \times \mathbb{R}^2 \]

by

\[(U(x, \lambda))(t) = (x''(t) + \varepsilon^2 x(t) + k\lambda, \alpha(x + u) - \alpha(-x + u), \beta(x(T) - x + v) - \beta(-x(T) + x + v)), \]

\[(H(x, \lambda))(t) = (h^*(t, x(t), x_{ct}, x'_c(t), \lambda), \alpha(u) - \alpha(-x + u), \beta(v) - \beta(-x(T) + x + v)), \]

\[(V(x, \lambda))(t) = (\varepsilon^2 x(t) + k\lambda, 0, 0), \]

where

\[x_t(s) = \begin{cases} 0 & \text{for } t + s < 0 \\ x(t + s) & \text{for } t + s \geq 0, \end{cases} \]

\[x'_t(s) = \begin{cases} \chi(t + s) - \chi(0) + x'(0) & \text{for } t + s < 0 \\ x'(t + s) & \text{for } t + s \geq 0. \end{cases} \]

Consider the operator equation

\[(19_c) \quad U(x, \lambda) = c(H(x, \lambda) + V(x, \lambda)) + 2(1 - c)V(x, \lambda), \quad c \in [0, 1]. \]

We see that BVP (8), (9) with \(h = h^* \) has a solution \((x, \lambda_0)\) if \((x|^J, \lambda_0)\) is a solution of (19_1) and conversely, if \((x, \lambda_0)\) is a solution of (19_1), then \((z, \lambda_0)\) is a solution of BVP (8), (9) with \(h = h^* \) where \((z_0, z'_0) = (0, \chi - \chi(0) + x'(0)), z|^J = x.\) So, to prove the existence of solutions of BVP (8), (9) with \(h = h^* \) it is sufficient to show that (19_1) has a solution.
We shall prove that $U : Y_{02} \times \mathbb{R} \rightarrow \mathbb{X} \times \mathbb{R}^2$ is one to one and onto. Let $(z, a, b) \in \mathbb{X} \times \mathbb{R}^2$ and consider the operator equation

\[U(x, \lambda) = (z, a, b), \]

that is the equations

\[(20') \quad x'' + \varepsilon^2 x + k\lambda = z(t), \]

\[(20'') \quad \alpha(x + u) - \alpha(-x + u) = a, \quad \beta(x(T) - x + v) - \beta(-x(T) + x + v) = b, \]

where $x \in Y_{02}$, $\lambda \in \mathbb{R}$. The function $x(t) = c_1 \sin(\varepsilon t) + c_2 \cos(\varepsilon t) - (k\lambda/\varepsilon^2) + w(t)$ is the general solution of $(20')$ where $w(t) = (1/\varepsilon) \int_0^t z(s) \sin(\varepsilon(t-s)) \, ds$ and c_1, c_2 are integration constants. The function x satisfies $(20'')$ and $x(0) = 0$ if and only if $c_2 = k\lambda/\varepsilon^2$ and (c_1, λ) is a solution of the system

\[\alpha (c_1 \sin(\varepsilon t) + (k\lambda/\varepsilon^2)(\cos(\varepsilon t) - 1) + w + u) - \alpha (-c_1 \sin(\varepsilon t) - (k\lambda/\varepsilon^2)(\cos(\varepsilon t) - 1) - w + u) = a, \]

\[\beta (-c_1 \sin(\varepsilon t) - (k\lambda/\varepsilon^2)(1 + \cos(\varepsilon t)) + w(T) - w + v) - \beta (c_1 \sin(\varepsilon t) + (k\lambda/\varepsilon^2)(1 + \cos(\varepsilon t)) - w(T) + w + v) = b, \]

since $\varepsilon T = \pi$. By Lemma 2 (with $a = c_1$, $\mu = k\lambda/\varepsilon^2$, $u_1 = w + u$, $u_2 = -w + u$, $v_1 = w(T) - w + v$, $v_2 = -w(T) + w + v$, $A = a$, $B = b$), there exists a unique solution $(\tilde{c}, \tilde{\lambda})$ of the above system. Hence $U^{-1} : \mathbb{X} \times \mathbb{R}^2 \rightarrow Y_{02} \times \mathbb{R}$ exists. Let $(x, \lambda) \in Y_{02} \times \mathbb{R}$ and set $U(x, \lambda) = (z, a, b)$, $U(-x, -\lambda) = (z_1, a_1, b_1)$. Then

\[x''(t) + \varepsilon^2 x(t) + k\lambda = z(t), \quad -x''(t) - \varepsilon^2 x(t) - k\lambda = z_1(t) \tag{for t \in J} \]

and

\[\alpha(x + u) - \alpha(-x + u) = a, \quad \beta(x(T) - x + v) - \beta(-x(T) + x + v) = b, \]

\[\alpha(-x + u) - \alpha(x + u) = a_1, \quad \beta(-x(T) + x + v) - \beta(x(T) - x + v) = b_1. \]

Therefore $z_1 = -z$, $a_1 = -a$, $b_1 = -b$ and consequently

\[U(x, \lambda) = -U(-x, -\lambda) \]

for all $(x, \lambda) \in Y_{02} \times \mathbb{R}$. So U is an odd operator and then U^{-1} is odd as well.
In order to prove that U^{-1} is a continuous operator let $\{(z_n, a_n, b_n)\} \subset X \times \mathbb{R}^2$ be a convergent sequence, $(z_n, a_n, b_n) \to (z, a, b)$ as $n \to \infty$. Set $(x_n, \lambda_n) = U^{-1}(z_n, a_n, b_n)$, $(x, \lambda) = U^{-1}(z, a, b)$. Then
\begin{align*}
x_n''(t) + \varepsilon^2 x_n(t) + k\lambda_n = z_n(t), \quad x''(t) + \varepsilon^2 x(t) + k\lambda = z(t) \quad \text{for } t \in J, \ n \in \mathbb{N}
\end{align*}
and there exist sequences $\{c_n\}, \{d_n\} \subset \mathbb{R}$ and $c, d \in \mathbb{R}$ such that
\begin{align*}
(21') & \quad \alpha (c_n \sin(\varepsilon t) + d_n (\cos(\varepsilon t) - 1) + w_n + u) \\
& \quad - \alpha (-c_n \sin(\varepsilon t) - d_n (\cos(\varepsilon t) - 1) - w_n + u) = a_n,
(21'') & \quad \beta (-c_n \sin(\varepsilon t) - d_n (1 + \cos(\varepsilon t)) + w_n(T) - w + v) \\
& \quad - \beta (c_n \sin(\varepsilon t) + d_n (1 + \cos(\varepsilon t)) - w_n(T) + w + v) = b_n,
(22') & \quad \alpha (c \sin(\varepsilon t) + d (\cos(\varepsilon t) - 1) + w + u) \\
& \quad - \alpha (-c \sin(\varepsilon t) - d (\cos(\varepsilon t) - 1) - w + u) = a,
(22'') & \quad \beta (-c \sin(\varepsilon t) - d (1 + \cos(\varepsilon t)) + w(T) - w + v) \\
& \quad - \beta (c \sin(\varepsilon t) + d (1 + \cos(\varepsilon t)) - w(T) + w + v) = b,
\end{align*}
and
\begin{align*}
x_n(t) = c_n \sin(\varepsilon t) + d_n (\cos(\varepsilon t) - 1) + w_n(t), \\
x(t) = c \sin(\varepsilon t) + d (\cos(\varepsilon t) - 1) + w(t)
\end{align*}
for $t \in J$ and $n \in \mathbb{N}$ where
\begin{align*}
w_n(t) &= (1/\varepsilon) \int_0^t z_n(s) \sin(\varepsilon (t - s))ds, \\
w(t) &= (1/\varepsilon) \int_0^t z(s) \sin(\varepsilon (t - s))ds, \quad t \in J, \ n \in \mathbb{N}
\end{align*}
and
\begin{align*}
\lambda_n &= \varepsilon^2 d_n/k, \quad \lambda = \varepsilon^2 d/k, \quad n \in \mathbb{N}.
\end{align*}
Evidently, $\lim w_n = w$ in Y_2 and $\{c_n\}, \{d_n\}$ are bounded sequences since $\text{Im} \alpha = \mathbb{R} = \text{Im} \beta$ and $\{a_n\}, \{b_n\}$ and $\{w_n\}$ are bounded in \mathbb{R} and X, respectively. Assume, on the contrary, that for example $\{c_n\}$ is not convergent
(the convergence of \(\{d_n\} \) can be proved similarly). Then there exist convergent subsequences \(\{c_{k_n}\} , \{c_{l_n}\} \), \(\lim_{n \to \infty} c_{k_n} = c^* , \lim_{n \to \infty} c_{l_n} = \tilde{c}, c^* \neq \tilde{c} \).

Without loss of generality we can assume that \(\{d_{k_n}\} , \{d_{l_n}\} \) are convergent, \(\lim_{n \to \infty} d_{k_n} = d^* , \lim_{n \to \infty} d_{l_n} = \tilde{d} \), where \(d^* \) equals \(d \) or not. Taking the limits in (21'), (21'') as \(k \to \infty \) and \(l \to \infty \) we obtain

\[
\begin{align*}
\alpha (c^* \sin(\epsilon t) + d^* (\cos(\epsilon t) - 1) + w + u) \\
- \alpha (-c^* \sin(\epsilon t) - d^* (\cos(\epsilon t) - 1) - w + u) &= a, \\
\beta (-c^* \sin(\epsilon t) - d^* (1 + \cos(\epsilon t)) + w(T) - w + v) \\
- \beta (c^* \sin(\epsilon t) + d^* (1 + \cos(\epsilon t)) - w(T) + w + v) &= b,
\end{align*}
\]

and

\[
\begin{align*}
\alpha (\tilde{c} \sin(\epsilon t) + \tilde{d} (\cos(\epsilon t) - 1) + w + u) \\
- \alpha (-\tilde{c} \sin(\epsilon t) - \tilde{d} (\cos(\epsilon t) - 1) - w + u) &= a, \\
\beta (-\tilde{c} \sin(\epsilon t) - \tilde{d} (1 + \cos(\epsilon t)) + w(T) - w + v) \\
- \beta (\tilde{c} \sin(\epsilon t) + \tilde{d} (1 + \cos(\epsilon t)) - w(T) + w + v) &= b,
\end{align*}
\]

respectively. Hence \(c^* = \tilde{c}, d^* = \tilde{d} \) by Lemma 2 (with \(u_1 = w + u, u_2 = -w + u, v_1 = w(T) - w + v, v_2 = -w(T) + w + v \), a contradiction. Let \(\lim_{n \to \infty} c_n = c_0, \lim_{n \to \infty} d_n = d_0 \). Taking the limits in (21'), (21'') as \(n \to \infty \) we see that (22'), (22'') hold with \(c = c_0, d = d_0 \) and consequently \(c = c_0, d = d_0 \) by Lemma 2. Then

\[
\lim_{n \to \infty} x_n^{(i)}(t) = \lim_{n \to \infty} (c_n \sin(\epsilon t) + d_n (\cos(\epsilon t) - 1) + w_n(t))^{(i)} \\
= (c \sin(\epsilon t) + d (\cos(\epsilon t) - 1) + w(t))^{(i)}
\]

uniformly on \(J (i = 0, 1, 2) \) and \(\lim_{n \to \infty} \lambda_n = \lambda \); hence \(\lim_{n \to \infty} U^{-1}(z_n, a_n, b_n) = U^{-1}(z, a, b) \) and consequently \(U^{-1} \) is a continuous operator.

Applying \(U^{-1} \) we can rewrite (19c) as

\[
(x, \lambda) = U^{-1} \left(c(Hj(x, \lambda) + Vj(x, \lambda)) + 2(1 - c)Vj(x, \lambda) \right), \\
c \in [0, 1],
\]

where \(j : Y_{01} \times \mathbb{R} \to Y_{02} \times \mathbb{R} \) is the natural embedding, which is completely continuous by the Arzelà–Ascoli theorem and the Bolzano–Weierstrass theorem. Set

\[
\Omega = \{(x, \lambda) ; (x, \lambda) \in Y_{02} \times \mathbb{R}, \|x\|_J < K, \|x'\|_J < M, \\
\|x''\|_J < w_1(M, M + 2m) + (3M/2)(\pi/T)^2, |\lambda| < \Lambda \}.
\]
Then \(\Omega \) is a bounded open convex and symmetric with respect to \(0 \in \Omega \) subset of \(Y_{02} \times \mathbb{R} \), \(U^{-1}(Hj + Vj) \) is a compact operator on \(\Omega \) and \(U^{-1}(2Vj) \) is a completely continuous operator on \(Y_{02} \times \mathbb{R} \). To prove that BVP (8), (9) with \(h = h^* \) has a solution \((x, \lambda_0) \) satisfying (14) it is sufficient to show that \(U^{-1}(Hj + Vj) \) has a fixed point in \(\overline{\Omega} \), that is (23i) has a solution in \(\overline{\Omega} \). If \(U^{-1}(Hj + Vj) \) has a fixed point on \(\partial \Omega \), our theorem is proved. Assume \((U^{-1}(Hj + Vj))(x, \lambda) \neq (x, \lambda) \) for all \((x, \lambda) \in \partial \Omega \). Define \(W : [0,1] \times \overline{\Omega} \rightarrow Y_{02} \times \mathbb{R} \) by \(W(c,x,\lambda) = U^{-1}(c(Hj(x,\lambda) + Vj(x,\lambda)) + 2(1 - c)Vj(x,\lambda)) \). \(W \) is a compact operator and (cf. (17)) \(W(c,x,\lambda) \neq (x,\lambda) \) for \((x,\lambda) \in \partial \Omega \) and \(c \in [0,1] \); hence (cf. e.g. [2]) \(D(I - U^{-1}(Hj + Vj),\Omega,0) = D(I - U^{-1}(2Vj),\Omega,0) \), where "D" denotes the Leray–Schauder degree. Since \(U^{-1} \) is odd and \(Vj \) is linear, \(U^{-1}(2Vj) \) is odd and consequently \(D(I - U^{-1}(2Vj),\Omega,0) \neq 0 \) by the Borsuk theorem (see e.g. [2, Theorem 8.3, p. 58]). Thus there exists a solution \((x, \lambda_0) \in \overline{\Omega} \) of (23i) and since \(\|x'(t)\|_{[-r,0]} \leq \|x'(t) + \|\chi - \chi(0)(t)\|_{[-r,0]} \leq M + 2m \) for \(t \in J \) we see that

\[
h^*(t, x(t), x_t, x'(t), x'_t, \lambda_0) = h(t, x(t), x_t, x'(t), x'_t, \lambda_0)
\]
on \(J \). This completes the proof. \(\square \)

Remark 3. Let \(\varphi \in C_r \) and \((x_0, y_0) \in \mathbb{R}^2 \) be the unique solution of system (7) with \(a = \varphi(0) \), \(A, B \in \mathbb{R} \) (see Lemma 3). Then the function

\[
* x(t) = \begin{cases}
\varphi(t) & \text{for } t \in [-r,0], \\
\varphi(0) + x_0 \sin(\pi t/T) + y_0 t & \text{for } t \in (0,T)
\end{cases}
\]
satisfies boundary conditions \(x_0 = \varphi, \alpha(x|_J) = A, \beta(x(T) - x|_J) = B \).

Theorem 2. Assume that \(f \) satisfies the following assumptions:

\((H_1)\) (Sign conditions): For each constant \(E > 0 \) there exist constants \(K > 0 \) and \(\Lambda > 0 \) such that

\[
f(t, x - E, \psi, y, \varphi, \Lambda) \geq -E
\]

for \((t, x, \psi, y, \varphi) \in J \times [0, K + 2E] \times S_{K+E} \times [-E, E] \times C_r ,
\]

\[
f(t, x + E, \psi, y, \varphi, -\Lambda) \leq E
\]

for \((t, x, \psi, y, \varphi) \in J \times [-K - 2E, 0] \times S_{K+E} \times [-E, E] \times C_r ,
\]

\[
f(t, x, \psi, y, \varphi, \lambda) \geq -E
\]

for \((t, x, \psi, y, \varphi, \lambda) \in J \times [K - E, K + E] \times S_{K+E} \times [-E, E] \times C_r \times [-\Lambda, \Lambda] ,
\]

\[
f(t, x, \psi, y, \varphi, \lambda) \leq E
\]

for \((t, x, \psi, y, \varphi, \lambda) \in J \times [-K - E, -K + E] \times S_{K+E} \times [-E, E] \times C_r \times [-\Lambda, \Lambda] ;
\]
(H₂) (Bernstein–Nagumo growth condition): A nondecreasing function
\(w(\cdot, A) : [0, \infty) \rightarrow (0, \infty) \) exists to any bounded subset \(A \) of \(\mathbb{R} \times C_r \times \mathbb{R} \) such that

\[
\int_0^\infty \frac{sdS}{w(s, A)} = \infty
\]

and

\[
|f(t, x, \psi, y, \varphi, \lambda)| \leq w(|y|, A) \quad \text{for} \quad (t, x, \psi, \lambda) \in J \times A, \ (y, \varphi) \in \mathbb{R} \times C_r.
\]

Then BVP (1), (2) has at least one solution for each \(\varphi, \chi \in C_r \) and \(A, B \in \mathbb{R} \).

Proof. Let \(\varphi, \chi \in C_r \), \(A, B \in \mathbb{R} \) and \(p \in C^0([0, T]) \cap C^2(J) \) satisfy boundary conditions \(p_0 = \varphi, \ \alpha(p|J) = A, \ \beta(p(T) - p|J) = B \) (see Remark 3). Set \(E_1 = \max \{||p|-\tau, \ ||p'||, \ ||p''||\} \) and

\[
h(t, x, \psi, y, \varphi, \lambda) = f(t, x + p(t), \psi + p_t, y + p'(t), \varphi + \psi_t, \lambda) - p''(t)
\]

for \((t, x, \psi, y, \varphi, \lambda) \in J \times \mathbb{R} \times C_r \times \mathbb{R} \times C_r \times \mathbb{R} \) where

\[
z_t(s) = \begin{cases}
p'(0) & \text{for } t + s < 0 \\
p'(t + s) & \text{for } t + s \geq 0.
\end{cases}
\]

We see that \((x + p, \lambda_0) \) is a solution of BVP (1), (2) if and only if \((x, \lambda_0) \) is a solution of BVP (8), (9) with \(u = p|J \), and \(v = p(T) = p|J \). Thus to prove our theorem it is sufficient to show that BVP (8), (9) has a solution which occurs if \(h \) satisfies the assumptions of Theorem 1.

Let \(K > 0, \ \Lambda > 0 \) be constants corresponding to \(E = E_1 \) in assumption (H₁). Then

\[
h(t, x, \psi, 0, \varphi, \Lambda) = f(t, x + p(t), \psi + p_t, p'(t), \varphi + \psi_t, \Lambda) - p''(t)
\]

\[
\geq E_1 - p''(t) \geq 0
\]

for \((t, x, \psi, \varphi) \in J \times [0, K] \times S_K \times C_r \),

\[
h(t, x, \psi, 0, \varphi, -\Lambda) = f(t, x + p(t), \psi + p_t, p'(t), \varphi + \psi_t, -\Lambda) - p''(t)
\]

\[
\leq - E_1 - p''(t) \leq 0
\]

for \((t, x, \psi, \varphi) \in J \times [-K, 0] \times S_K \times C_r \), and

\[
h(t, K, \psi, 0, \varphi, \lambda) = f(t, K + p(t), \psi + p_t, p'(t), \varphi + \psi_t, \lambda) - p''(t) \geq E_1 - p''(t) \geq 0
\]
\[h(t, -K, \psi, 0, \varphi, \lambda) = f(t, -K + p(t), \psi + p_t, p'(t), \varphi + z_t, \lambda) - p''(t) \leq -E_1 - p''(t) \leq 0 \]

for \((t, \psi, \varphi, \lambda) \in J \times S_K \times C_r \times [-\Lambda, \Lambda].\)

Set \(A = [-K - E_1, K + E_1] \times S_K + E_1 \times [-\Lambda, \Lambda].\) By \((H_2),\) a nondecreasing function \(w(. , A) : [0, \infty) \rightarrow (0, \infty)\) exists such that (24) and (25) hold. Then

\[|h(t, x, \psi, y, \varphi, \lambda)| = |f(t, x + p(t), \psi + p_t, y + p'(t), \varphi + z_t, \lambda) - p''(t)| \leq w(|y + p'(t)|, A) + E_1 \leq w(|y| + E_1, A) + E_1 \]

for \((t, x, \psi, y, \varphi, \lambda) \in J \times [-K, K] \times S_K \times C_r \times [-\Lambda, \Lambda] \) and \(y \in \mathbb{R}.)\) Since the function \(w_1(s) = w(s + E_1, A) + E_1\) is positive nondecreasing on \([0, \infty)\) and (cf. (24))

\[
\int_0^M \frac{s ds}{w_1(s) + (3K/2)(\pi/T)^2} = \int_0^M \frac{s ds}{w(s + E_1, A) + E_1 + (3K/2)(\pi/T)^2} > 2K
\]

for a positive constant \(M,\) the assumptions of Theorem 1 are satisfied. This completes the proof. \(\square\)

Example 3. Consider the functional differential equation

\[x''(t) = a(t) + b(t)x^3(t) + c(t)x(t - r) + d(t)x'(t) + (1 + |\sin t|)\lambda \]

depending on the parameter \(\lambda\) together with boundary conditions (2). Here \(a, b, c, d \in C^0(J),\) \(b(t) > 0\) on \(J.\) Equation (25) is the special case of (1) with \(f(t, x, \psi, y, \varphi, \lambda) = a(t) + b(t)x^3 + c(t)\psi(-r) + d(t)y + (1 + |\sin t|)\lambda\) and satisfies the assumptions of Theorem 2. Indeed, let \(b = \min\{b(t); t \in J\}(> 0)\) and fix \(E > 0.\) Then

\[K = \max \left\{ \frac{1}{3} + \left(\frac{1}{27} + \frac{S}{2} + \left(\frac{S^2}{4} + \frac{S}{27} \right)^{\frac{1}{2}} \right)^{\frac{3}{2}} + \left(\frac{1}{27} + \frac{S}{2} - \left(\frac{S^2}{4} + \frac{S}{27} \right)^{\frac{1}{2}} \right)^{\frac{3}{2}}, \right. \]

\[\left. \frac{24C}{b} , 2E \right\} \]

and \(\Lambda = Q + KC\) are constants corresponding to \(E\) in \((H_1)\) where \(C = ||c||_J, S = (8/b) (3||a||_J + 3E(C + ||d||_J + 1) + 2E^3||b||_J), Q = ||a||_J + E(C + ||d||_J + 1) + E^3||b||_J\) and \(w(s, A) = HS + P\) satisfies assumption \((H_2)\) for suitable positive constants \(P = P(A), H = H(A).\) Hence, there exists at least one solution of BVP (25), (2) for each \(\varphi, \chi \in C_r\) and \(A, B \in \mathbb{R}.\)
REFERENCES

DEPARTMENT OF MATHEMATICAL ANALYSIS
FACULTY OF SCIENCE, PALACKÝ UNIVERSITY
TOMKOVA 40, 779 00 OLOMOUC
CZECH REPUBLIC