A NOTE ON THE FRÉCHET THEOREM

ANDRZEJ NOWAK

Abstract. We give conditions under which every measurable function is the limit almost everywhere of a sequence of continuous functions.

The following classical result is well known (see e.g. [7, p.110]):

FRÉCHET THEOREM. Let E be a Lebesgue subset of \mathbb{R}^m, and f a Lebesgue measurable extended real-valued function on E. Then there exists a sequence of finite continuous functions which converges to f almost everywhere in E.

Recently the problem of the approximation of measurable functions by continuous ones was studied in [8]. In this note we present some more general results.

Let T be a topological space and let μ be a measure defined on a σ–algebra \mathcal{T} of subsets of T such that \mathcal{T} contains $\mathcal{B}(T)$, the Borel sets of T. We say that μ is regular if for each $A \in \mathcal{T}$ and each $\epsilon > 0$ there exist closed F and open G such that $F \subset A \subset G$ and $\mu(G \setminus F) < \epsilon$ (cf. [2, p.7]).

We shall use a general version of the Lusin theorem given in [9].

LUSIN THEOREM. Let (T, \mathcal{T}, μ) be a space of a regular measure, and X a topological space with a countable base. If $f : T \to X$ is measurable, then for each $\epsilon > 0$ there exists a closed set $T_\epsilon \subset T$ such that $\mu(T \setminus T_\epsilon) < \epsilon$ and $f | T_\epsilon$ is continuous.

The following theorem is the main result of the paper. Its proof is rather standard (cf. the proof of the Fréchet theorem in [7]).

THEOREM 1. Let (T, \mathcal{T}, μ) be a space of a regular measure with T metrizable; let X be a locally convex, separable and metrizable space. Then for

each measurable function \(f : T \rightarrow X \) there exists a sequence of continuous functions \(f_n : T \rightarrow X, n \in \mathbb{N} \), convergent to \(f \) \(\mu \)-a.e.

Proof. By the Lusin theorem, for each \(n \in \mathbb{N} \) there is closed \(F_n \subset T \) such that \(\mu(T \setminus F_n) < 1/n \) and \(f | F_n \) is continuous. Let \(A_n = F_1 \cup \ldots \cup F_n \). Then \(A_n \subset A_{n+1} \) and \(f | A_n \) is continuous. By the Dugundji extension theorem (see e.g. [4, p.92]), \(f | A_n \) has a continuous extension \(f_n : T \rightarrow X \). Let \(A = \bigcup \{ A_n : n \in \mathbb{N} \} \). It is immediate that \(\mu(T \setminus A) = 0 \), and \(f_n(t) \) converges to \(f(t) \) for each \(t \in A \). It completes the proof. \(\square \)

For real functions we can relax the assumption of the metrizability of \(T \).

Theorem 2. Let \((T, \mathcal{T}, \mu)\) be a space of a regular measure, where \(T \) is normal. Each measurable extended real-valued function \(f \) on \(T \) is the limit \(\mu \)-a.e. of a sequence of continuous functions \(f_n : T \rightarrow \mathbb{R}, n \in \mathbb{N} \).

Proof. Let \(h \) be a homeomorphism of the extended real line and the interval \([-1,1]\), and let \(g = h \circ f \). There exists a sequence of continuous functions \(g_n : T \rightarrow [-1,1], n \in \mathbb{N} \), which converges to \(g \) \(\mu \)-a.e. It can be constructed in the same way as in the previous proof, but with the use of the Tietze–Urysohn extension theorem. Now we define \(f_n(t) = \max\{-n, \min\{h^{-1}(g_n(t)), n\}\}, n \in \mathbb{N}, t \in T \). It is obvious that the functions \(f_n \) are finite, continuous and converge \(\mu \)-a.e. to \(f \). \(\square \)

Remarks.

1. If \(\mu \) is a regular measure then its completion is also regular. Hence, in both theorems it suffices to assume that \(f \) is measurable with respect to \(\mathcal{T}_\mu \), the completion of \(\mathcal{T} \). Note that if \(f \) is the \(\mu \)-a.e. limit of a sequence of continuous functions, then \(f \) is \(\mathcal{T}_\mu \)-measurable.

2. If \(T \) is a Polish space and \(\mathcal{T} = \mathcal{B}(T) \), then the assumption of the separability of \(X \) in Theorem 1 is superfluous. In fact, for every Borel function \(f \) from such \(T \) into a metric space the range \(f(T) \) is separable (see [3, p.164]).

3. There is a less known extension theorem which says that a continuous function from a closed subset of a normal space \(T \) into a separable Banach space can be extended to a continuous function on \(T \). It follows from the result of Hanner [6] and the Dugundji extension theorem. By an application of this result we obtain a variant of Theorem 1 with \(T \) normal and \(X \) separable Banach.

4. It is well known that a finite Borel measure on a metric space is regular (see e.g. [2, Th.1.1]). More general, if \(\mu \) is a measure on \(\mathcal{B}(T) \), where \(T \) is metrizable and can be represented as the union of countably many open sets of finite measure, then \(\mu \) is regular (see [5, p.61]). It implies that the \(m \)-th dimensional Lebesgue measure is regular (cf. also Remark 1).
We conclude this paper with a variant of Theorem 1 for Baire measures. The smallest σ-algebra in a topological space T with respect to which all continuous real-valued functions are measurable is called the σ-algebra of Baire sets in T, and denoted by $B_o(T)$. Always $B_o(T) \subset B(T)$; if T is metrizable then these two σ-algebras are equal.

Theorem 3. Let T be a normal topological space, μ a finite measure on $B_o(T)$, and X a separable Banach space. Each $B_o(T)$-measurable function $f: T \to X$ is the limit μ-a.e. of a sequence of continuous functions.

Proof. A finite measure μ on $B_o(T)$ is regular in this sense, that for every Baire set $A \subset T$ and every $\epsilon > 0$ there exist closed F and open G such that $F, G \in B_o(T)$, $F \subset A \subset G$ and $\mu(G \setminus F) < \epsilon$ (see [1, Cor.7.2.1]). Thus we have a version of the Lusin theorem with $\mathcal{T} = B_o(T)$ and such μ. Now we argue in the same way as in the proof of Theorem 1, using the extension theorem from Remark 3.

Acknowledgement. This research was supported by the Silesian University Mathematics Department (Iterative Functional Equations program).

References

Mathematics Department
Silesian University
40-007 Katowice
Poland