SELECTIONS OF BIADDITIVE SET-VALUED FUNCTIONS

JOANNA SZCZAWIŃSKA

Abstract. In this paper we prove that there exists a biadditive selection \(f \) of a biadditive set-valued function \(F \) and a continuous selection when \(F \) is lower semicontinuous.

We begin with some notations and definitions. Let \(n(Y) \) denote the set of all nonempty subsets of a nonempty set \(Y \). If \(Y \) is a normed space then \(cc(Y) \) denotes the set of all compact and convex elements of \(n(Y) \).

Definition 1. Let \(X, Y, Z \) be real vector spaces. We say that a set-valued function \(F : X \to n(Z) \) (abbreviated to "s.v. function") in the sequel is additive iff

\[
F(x + y) = F(x) + F(y) \quad \text{for} \quad x, y \in X.
\]

A s.v. function \(F : X \times Y \to n(Z) \) is called biadditive iff \(F \) is additive with respect to each variable.

Definition 2. The point \(x_0 \) of a subset \(C \) of real vector space \(X \) is called an algebraic interior point of \(C \) (we write \(x_0 \in \text{core}C \)) iff for each \(x \in X \) there is a real positive \(\varepsilon \) such that

\[
\alpha x + (1 - \alpha)x_0 \in C \quad \text{for} \quad |\alpha| \leq \varepsilon.
\]

Definition 3. We say that a point \(x_0 \in C \), \(C \subseteq X \) is an extreme point of \(C \) iff there are no two different points \(x, y \in C \) and no number \(t \in (0, 1) \) such that

\[
x_0 = tx + (1 - t)y.
\]

The set of all extreme points of \(C \) is denoted by \(\text{Ext}C \).

Received January 11, 1994 and, in final form, May 10, 1994.
DEFINITION 4. A set $C \subseteq X$ is said to be a **convex cone** iff $C + C \subseteq C$ and $tC \subseteq C$ for all $t \in (0, \infty)$.

K. Nikodem in the paper [4] proved the following theorem.

Theorem. Let X, Y be real vector spaces and C be a convex cone in X. Assume that $F : C \to n(Y)$ is an additive s.v. function, $x_0 \in \text{core}C$ and $p \in \text{Ext}F(x_0)$. Then there exists exactly one additive selection $f : C \to Y$ of F such that $f(x_0) = p$. In addition,

$$f(x) \in \text{Ext}F(x) \text{ for } x \in C.$$

The following lemma (Nikodem [4]) will be useful for us.

Lemma. Let B and C' be subsets of a real vector space. If $p \in \text{Ext}(B+C')$, then there exists exactly one point $b \in B$ and exactly one point $c \in C'$ such that $b + c = p$. Moreover, $b \in \text{Ext}B$ and $c \in \text{Ext}C$, i.e. $\text{Ext}(B+C') \subseteq \text{Ext}B + \text{Ext}C$.

Now, we shall formulate a theorem, analogue to Nikodem's Theorem.

Theorem 1. Let X, Y, Z be real vector spaces, C, D be convex cones in X, Y, respectively, and $F : C \times D \to n(Z)$ be a biadditive s.v. function. Moreover, let $x_0 \in \text{core}C, y_0 \in \text{core}D$ and $p \in \text{Ext}F(x_0, y_0)$. Then there exists exactly one biadditive selection $f : C \times D \to Z$ of F such that $f(x_0, y_0) = p$.

Proof. Let $U := C \cap (x_0 - C)$. If $u \in U$ then $x_0 - u \in U$. Fix any element $a \in U$. Since $p \in \text{Ext}F(x_0, y_0) = \text{Ext} \{F(a, y_0) + F(x_0 - a, y_0)\}$, there exist, by Nikodem's lemma, a unique point $p_a \in \text{Ext}F(a, y_0)$ and a unique point $p_{x_0-a} \in \text{Ext}F(x_0 - a, y_0)$ such that

$$p = p_a + p_{x_0-a}. \tag{1.1}$$

For the additive s.v. function $F(a, \cdot) : D \to n(Z)$, $y_0 \in \text{core}D$ and the point $p_a \in \text{Ext}F(a, y_0)$, the assumptions of Nikodem's Theorem hold. So there exists exactly one additive selection $f_a : D \to Z$ of $F(a, \cdot)$ such that

$$f_a(y_0) = p_a.$$

It holds for any $a \in U$. Now, let us define a function $g_0 : U \times D \to Z$ as follows:

$$g_0(a, y) := f_a(y) \text{ for } (a, y) \in U \times D.$$
It is easy to check that \(g_0 \) is properly defined and
\[
g_0(a, y) = f_a(y) \in F(a, y) \quad \text{for } (a, y) \in U \times D.
\]

Moreover,
\[
g_0(a, x + y) = f_a(x) + f_a(y) = g_0(a, x) + g_0(a, y) \quad \text{for } a \in U, \ x, y \in D.
\]

Now, we shall show that \(g_0(a + b, x) = g_0(a, x) + g_0(b, x) \) for all \(x \in D \), \(a, b \in U \) such that \(a + b \in U \). Since \(p \in \text{Ext}\{F(a, y_0) + F(x_0 - a, y_0)\} \}, there exist exactly one \(a_1 \in F(a, y_0) \) and exactly one \(b_1 \in F(x_0 - a, y_0) \) such that
\[
p = a_1 + b_1.
\]
Similarly \(p \in \text{Ext}\{F(b, y_0) + F(x_0 - b, y_0)\} \}, whence \(p = a_2 + b_2 \), where \(a_2 \in F(b, y_0), b_2 \in F(x_0 - b, y_0) \) and \(p \in \text{Ext}\{F(a, y_0) + F(b, y_0) + F(x_0 - a - b, y_0)\} \} so \(p = a_3 + b_3 + c_3 \), where \(a_3 \in F(a, y_0), b_3 \in F(b, y_0) \) and \(c_3 \in F(x_0 - a - b, y_0) \). We get
\[
p = a_3 + (b_3 + c_3) = a_1 + b_1, \ a_1, a_3 \in F(a, y_0), \ b_1, b_3 + c_3 \in F(x_0 - a, y_0),
\]
whence, by the uniqueness of the representation (1.1), we infer that \(a_3 = a_1 = p_a \). In the same way we get that \(b_3 = a_2 = p_b \) and \(p_{a+b} = a_3 + b_3 \). That is \(p_a + p_b = p_{a+b} \). This means that
\[
f_a(y_0) + f_b(y_0) = f_{a+b}(y_0).
\]
Since the fact that \(f_a \) is a selection of \(F(a, \cdot) \) and \(f_b \) is a selection of \(F(b, \cdot) \) implies that \(f_a + f_b \) is a selection of \(F(a+b, \cdot) \), and by the uniqueness of selection passing through the point \(y_0 \), we deduce that
\[
f_{a+b}(y) = f_a(y) + f_b(y) \quad \text{for } y \in D
\]
and
\[
g_0(a + b, y) = f_{a+b}(y) = f_a(y) + f_b(y) = g_0(a, y) + g_0(b, y)
\]
for \(y \in D, \ a, b \in U \) such that \(a + b \in U \). So, we have proved that \(g_0 \) is a biadditive selection of \(F \) on the set \(U \times D \).

Now, we shall extend \(g_0 \) to a biadditive function defined on \(C \times D \). Fix any point \(x \in C \). Since \(x_0 \in \text{core} C \), there exists an \(\varepsilon > 0 \) such that
\[
x_0 + tx \in C \quad \text{for } |t| < \varepsilon.
\]
Let us take a number \(n \in \mathbb{N} \) such that \(\frac{1}{n} < \varepsilon \). Then
\[
\frac{1}{n} x + x_0 \in C.
\]
Consequently
\[\frac{x}{n} \in x_0 - C \quad \text{and} \quad \frac{x}{n} \in C. \]

It implies that \(\frac{x}{n} \in U. \) Put \(g(x, y) := ng_0 \left(\frac{x}{n}, y \right). \) This definition is correct. Indeed, if \(m \in \mathbb{N} \) is such a number that \(\frac{x}{m} \in U, \) then \(\frac{x}{nm} = (1 - \frac{1}{m}) \cdot \frac{x}{n} + \frac{1}{m} \cdot \frac{x}{n} \in x_0 - C \) as well as \(\frac{x}{mn} \in C \) thus \(\frac{x}{mn} \in U \) and
\[
m g_0 \left(\frac{x}{m}, y \right) = mng_0 \left(\frac{x}{nm}, y \right) = ng_0 \left(\frac{x}{n}, y \right).
\]

Moreover, the function \(g : C \times D \to Z \) defined above is biadditive. Indeed, let \(x \in C, \ y \in C, \ n \in \mathbb{N} \) be a number so large that \(\frac{x}{n}, \frac{y}{n}, \frac{x+y}{n} \in U. \) Then
\[
g(x + y, z) = ng_0 \left(\frac{x+y}{n}, z \right) = ng_0 \left(\frac{x}{n}, z \right) + ng_0 \left(\frac{y}{n}, z \right) = g(x, z) + g(y, z).
\]

Lastly, the function \(g \) is a selection of \(F. \) If \(x \in C, \ y \in D, \ n \in \mathbb{N} \) and \(\frac{x}{n} \in U, \) then
\[
g(x, y) = ng_0 \left(\frac{x}{n}, y \right) \in nF \left(\frac{x}{n}, y \right) \subseteq F \left(\frac{x}{n}, y \right) + \ldots + F \left(\frac{x}{n}, y \right) = F(x, y).
\]

To end the proof we have to show that \(g \) is a unique selection of \(F \) passing through the point \((x_0, y_0), \) \(p. \) So, assume that there exists \(g_1 : C \times D \to Z \) biadditive selection of \(F \) such that \(g_1(x_0, y_0) = p. \) Fix any \(a \in U. \) Then
\[
p = g_1(x_0, y_0) = g_1(a, y_0) + g_1(x_0 - a, y_0).
\]

Since \(g_1(a, y_0) \in F(a, y_0) \) and \(g_1(x_0 - a, y_0) \in F(x_0 - a, y_0), \) by the uniqueness of representation (1.1), we have that
\[
g_1(a, y_0) = p_a = f_a(y_0) = g(a, y_0).
\]

Thus \(g_1(a, y_0) = g(a, y_0) \) for \(a \in U. \) Since \(g_1(a, \cdot), f_a \) are additive selections of \(F(a, \cdot) \) and \(g_1(a, y_0) = p_a = f_a(y_0), \) we deduce that
\[
g_1(a, y) = f_a(y) = g(a, y) \quad \text{for} \quad y \in D, \ a \in U
\]
(because the selection is unique). If \(a \in C, \ n \in \mathbb{N} \) and \(\frac{a}{n} \in U \) then
\[
g_1(a, y) = ng_1 \left(\frac{a}{n}, y \right) = ng \left(\frac{a}{n}, y \right) = g(a, y) \quad \text{for} \quad a \in C, \ y \in D.
\]

Hence \(g = g_1 \) on the set \(C \times D. \) This completes the proof. \(\square \)
Remark 1. The last proof implies that
\[f(x, y) \in \text{Ext} \, F(x, y) \quad \text{for} \quad (x, y) \in C \times D, \]
whenever \(F : C \times D \to \text{conv}(Z) \), where \(\text{conv}(Z) \) denotes the set of nonempty convex subsets of \(Z \). Indeed, if \(x \in U \) and \(y \in D \), then \(g_0(x, y) \in \text{Ext} \, F(x, y) \).

Fix \(x \in C, \ y \in D, \ n \in \mathbb{N} \) such that \(\frac{x}{n} \in U \). Then
\[g(x, y) = n \, g_0 \left(\frac{x}{n}, y \right) \in n \text{Ext} \, F \left(\frac{x}{n}, y \right) \subseteq \text{Ext} \left(n \, F \left(\frac{x}{n}, y \right) \right) \subseteq \text{Ext} \, F(x, y). \]

Theorem 2. Let \(X, Y, Z \) be real vector spaces, and \(C, D \) convex cones in \(X, Y \), respectively. Assume that \(F : C \times D \to \text{conv}(Z) \) is a biadditive s.v. function and \(x_0 \in \text{core} \, C, \ y_0 \in \text{core} \, D \) and \(p \in \text{conv}[\text{Ext} \, F(x_0, y_0)] \). Then there exists a biadditive function \(f : C \times D \to Z \) such that \(f(x_0, y_0) = p \) and
\[f(x, y) \in \text{conv}[\text{Ext} \, F(x, y)] \quad \text{for} \quad (x, y) \in C \times D. \]

Proof. The point \(p \) belongs to \(\text{conv}[\text{Ext} \, F(x_0, y_0)] \), so there exist a number \(n \in \mathbb{N} \), points \(p_1, \ldots, p_n \in \text{Ext} \, F(x_0, y_0) \) and nonnegative numbers \(\lambda_1, \ldots, \lambda_n \) such that \(\sum_{i=1}^n \lambda_i = 1 \) and \(p = \sum_{i=1}^n \lambda_i p_i \). By Theorem 1, there exist biadditive functions \(f_i : C \times D \to Z \) for which \(f_i(x_0, y_0) = p_i \) and
\[f_i(x, y) \in \text{Ext} \, F(x, y) \quad \text{for} \quad (x, y) \in C \times D, \quad i = 1, \ldots, n. \]

It is easy to check that the function \(f : C \times D \to Z \) given by formula
\[f(x, y) := \sum_{i=1}^n \lambda_i f_i(x, y) \quad \text{for} \quad (x, y) \in C \times D \]
is biadditive, \(f(x_0, y_0) = \sum_{i=1}^n \lambda_i p_i = p \) and \(f(x, y) \in \text{conv}[\text{Ext} \, F(x, y)] \) for all \((x, y) \in C \times D \).

Definition 5. Assume that \(X, Y \) are topological vector spaces and \(C \) is an open subset of \(X \). We say that a s.v. function \(F : C \to n(Y) \) is lower semicontinuous (l.s.c.) at a point \(x_0 \in C \) iff for any neighbourhood \(V \) of zero in \(Y \), there exists a neighbourhood \(U \) of zero in \(X \) such that
\[F(x_0) \subseteq F(x) + V \quad \text{for} \quad x \in x_0 + U. \]
We say that \(F \) is upper semicontinuous (u.s.c.) at \(x_0 \in C \) iff for every neighbourhood \(V \) of zero in \(Y \) there exists a neighbourhood \(U \) of zero in \(X \) such that
\[F(x) \subseteq F(x_0) + V \quad \text{for} \quad x \in x_0 + U. \]

\(F \) is called continuous at \(x_0 \in C \) iff it is both l.s.c. and u.s.c. at \(x_0 \).
THEOREM 3. Let X, Y, Z be topological vector spaces and Z be locally convex, C, D open convex cones in X, Y, respectively. A s.v. function $A : C \times D \to \text{cc}(Z)$ is biadditive if and only if there exist a biadditive continuous s.v. function $L : C \times D \to \text{cc}(Z)$ and a biadditive function $a : C \times D \to Z$ such that

$$A(x, y) = a(x, y) + L(x, y) \quad \text{for} \quad (x, y) \in C \times D.$$

PROOF. By Theorem 1, there exists a biadditive selection $a : C \times D \to Z$ of A. Let us define an s.v. function $L : C \times D \to \text{cc}(Z)$ as follows:

$$L(x, y) := A(x, y) - a(x, y) \quad \text{for} \quad (x, y) \in C \times D.$$

Obviously $0 \in L(x, y)$ for all $(x, y) \in C \times D$. Fix any $(x_0, y_0) \in C \times D$. Let W be a neighbourhood of zero in Z. $L(x_0, y_0)$ is bounded, so there is a positive integer $n \geq 3$ such that

$$\frac{2}{n} L(x_0, y_0) \subseteq W.$$

There exist a balanced neighbourhood U of 0 in X such that $\frac{1}{n} x_0 + u \in C$, $x_0 + u \in C$ for all $u \in U$ and a neighbourhood V of 0 in Y such that $\frac{1}{n} y_0 + v \in D$, $y_0 + v \in D$ for $v \in V$. Then

$$L(x_0, y_0) = L\left(\frac{n-2}{n} x_0, y_0\right) + \frac{2}{n} L(x_0, y_0)$$

$$\subseteq L\left(\frac{n-2}{n} x_0, y_0\right) + L\left(\frac{1}{n} x_0 + \frac{n-1}{n} u, y_0\right) + W$$

$$= L\left(\frac{n-1}{n} x_0 + \frac{n-1}{n} u, y_0\right) + W = L(x_0 + u, \frac{n-1}{n} y_0) + W$$

$$\subseteq L(x_0 + u, \frac{n-1}{n} y_0) + L(x_0 + u, \frac{1}{n} y_0 + v) + W$$

$$= L(x_0 + u, y_0 + v) + W,$$

where $(u, v) \in U \times V$. So, $L(x_0, y_0) \subseteq L(x, y) + W$ for $(x, y) \in (x_0, y_0) + U \times V$. Hence the function L is lower semicontinuous at (x_0, y_0) and L is l.s.c. in $C \times D$.

Since $(\frac{1}{n} x_0, \frac{1}{n} y_0) \in C \times D$ and $C \times D$ is open, there exist a balanced neighbourhood U of 0 in X and a balanced neighbourhood V of 0 in Y such that $\frac{1}{n} x_0 - u \in C, x_0 + u \in C$ for $u \in U$, $\frac{1}{n} y_0 - \frac{n+1}{n} v \in D, y_0 + v \in D$ for
Let \((u, v) \in U \times V. Then
\[
\begin{align*}
L(x_0 + u, y_0 + v) & \subseteq L(x_0 + u, y_0 + v) + L\left(\frac{1}{n}x_0 - u, y_0 + v\right) \\
& = L\left(\frac{n+1}{n}x_0, y_0 + v\right) = L\left(x_0, \frac{n+1}{n}y_0 + \frac{n+1}{n}v\right) \\
& \subseteq L\left(x_0, \frac{n+1}{n}y_0 + \frac{n+1}{n}v\right) + L\left(x_0, \frac{1}{n}y_0 - \frac{n+1}{n}v\right) \\
& = L\left(x_0, \frac{n+2}{n}y_0\right) = L(x_0, y_0) + \frac{2}{n}L(x_0, y_0) \\
& \subseteq L(x_0, y_0) + W.
\end{align*}
\]
So, \(L(x_0 + u, y_0 + v) \subseteq L(x_0, y_0) + W\) for \((u, v) \in U \times V. Hence L is upper semicontinuous at \((x_0, y_0)\). By the first part of the proof \(L\) is continuous in \(C \times D\).

For the next theorem we need some Banach-Steinhaus-type theorems for a bilinear function, which are probably known, however we will give them here for convenience of readers.

Definition 6. Let \(X, Y, Z\) be real normed spaces. A bilinear map \(T : X \times Y \to Z\) is called **bounded** iff there exists a real number \(M > 0\) such that
\[
\|T(x, y)\| \leq M \|x\| \cdot \|y\| \quad \text{for } (x, y) \in X \times Y.
\]

The norm of a bilinear bounded map \(T\) is defined by the formula
\[
\|T\| = \sup_{\|x\| \leq 1, \|y\| \leq 1} \|T(x, y)\|.
\]
A bilinear map is bounded if and only if it is continuous.

Theorem 4. Let \(X, Y\) be Banach spaces and \(Z\) be a normed space. Assume that bilinear maps \(T_n : X \times Y \to Z\) are continuous, \(n \in \mathbb{N}\). If the sequence \(\{T_n(x, y)\}_{n \in \mathbb{N}}\) is bounded for all \((x, y) \in X \times Y\), then the sequence \(\{\|T_n\|\}_{n \in \mathbb{N}}\) is bounded.

Proof. Let \(A_k := \{(x, y) \in X \times Y : \|T_n(x, y)\| \leq k, n \in \mathbb{N}\}, \ k \in \mathbb{N}\. It is easy to verify that
\[
X \times Y = \bigcup_{k \in \mathbb{N}} A_k.
\]
The continuity of the maps \(T_n\) and the norm implies that sets \(A_k\) are closed, \(k \in \mathbb{N}\). Since \(X, Y\) are Banach spaces, we deduce by Baire's theorem that
\(X \times Y\) is the second category set; this means that there exists a number \(k_0 \in \mathbb{N}\) such that \(A_{k_0}\) is not a nowhere dense set; in other words \(\text{Int} A_{k_0} \neq \emptyset\). so there exist real numbers \(r_1 > 0, r_2 > 0\) such that

\[
\text{cl} K_1(x_0, r_1) \times \text{cl} K_2(y_0, r_2) \subseteq A_{k_0}
\]

(where \(K_1\) is a ball in \(X\), \(K_2\) is a ball in \(Y\)). If \(\|x - x_0\| \leq r_1\) and \(\|y - y_0\| \leq r_2\), then \(\|T_n(x, y)\| \leq k_0\) for all \(n \in \mathbb{N}\). Fix \((x, y) \in X \times Y\) such that \(x \neq 0\) and \(y \neq 0\). Since \(\left\| \left(\frac{x}{\|x\|} r_1 + x_0 \right) - x_0 \right\| = r_1\) and \(\left\| \left(\frac{y}{\|y\|} r_2 + y_0 \right) - y_0 \right\| = r_2\) one has

\[
\left\| T_n \left(\frac{x}{\|x\|} r_1 + x_0, \frac{y}{\|y\|} r_2 + y_0 \right) \right\| \leq k_0
\]

and

\[
\left\| T_n(x, y) \right\| = \left\| T_n \left(\frac{x}{\|x\|} r_1, y \right) \right\| \cdot \frac{\|x\|}{r_1}
\]

\[
= \frac{\|x\|}{r_1} \left\| T_n \left(\frac{x}{\|x\|} r_1 + x_0, y \right) - T_n(x_0, y) \right\|
\]

\[
\leq \frac{\|x\|}{r_1} \left\{ \left\| T_n \left(\frac{x}{\|x\|} r_1 + x_0, y \right) \right\| + \left\| T_n(x_0, y) \right\| \right\}
\]

\[
= \frac{\|x\|}{r_1} \left\{ \frac{\|y\|}{r_2} \left\| T_n \left(\frac{x}{\|x\|} r_1 + x_0, \frac{y}{\|y\|} r_2 + y_0 \right) - T_n(x_0, y_0) \right\| \right\}
\]

\[
\leq \frac{4k_0}{r_1 \cdot r_2} \|x\| \cdot \|y\|
\]

for \((x, y) \in X \times Y\) such that \(x \neq 0, y \neq 0\). Hence

\[
\left\| T_n \right\| = \sup_{\|x\| = \|y\| = 1} \left\| T_n(x, y) \right\| \leq \frac{4k_0}{r_1 r_2} \text{ for } n \in \mathbb{N}.
\]

\(\square\)

Definition 7. A subset \(A\) of a normed space \(X\) is called **linearly dense** in \(X\) iff the set

\[
\left\{ \sum_{i=1}^{n} \lambda_i a_i; \quad a_i \in A, \quad \lambda_i \in \mathbb{R}, \quad i = 1, \ldots, n; \quad n \in \mathbb{N} \right\}
\]

is dense in \(X\).
THEOREM 5. Let X,Y,Z be Banach spaces and A_1,A_2 be linearly dense sets in X,Y, respectively. Assume that $T_n : X \times Y \to Z, n \in \mathbb{N}$ is a sequence of bilinear and continuous maps. The sequence $\{T_n(x,y)\}_{n \in \mathbb{N}}$ is convergent for all $(x,y) \in X \times Y$ iff $\{T_n(x,y)\}_{n \in \mathbb{N}}$ is convergent for all $(x,y) \in A_1 \times A_2$ and the sequence $\{|| T_n |||\}_{n \in \mathbb{N}}$ is bounded.

PROOF. If the sequence $\{T_n(x,y)\}_{n \in \mathbb{N}}$ is convergent in $X \times Y$ then it is in $A_1 \times A_2$. Since $\{T_n(x,y)\}_{n \in \mathbb{N}}$ is convergent, the sequence $\{|| T_n(x,y) |||\}_{n \in \mathbb{N}}$ is bounded for any $(x,y) \in X \times Y$. Hence, by Theorem 4, the sequence $\{|| T_n |||\}_{n \in \mathbb{N}}$ is bounded.

Now we assume that $\{T_n(x,y)\}_{n \in \mathbb{N}}$ is convergent in $A_1 \times A_2$ and $\{|| T_n |||\}_{n \in \mathbb{N}}$ is bounded by M. Fix any pair $(x_0,y_0) \in X \times Y$ and let $a \in A_1$ be an element of the set A_1. Then the map $F_n : Y \to Z$, given by the formula $F_n(y) := T_n(a,y)$ for $y \in Y$, is linear and continuous in Y. Moreover, the sequence $\{F_n(y)\}_{n \in \mathbb{N}}$ is convergent for any $y \in A_2$ and $\{|| F_n |||\}_{n \in \mathbb{N}}$ is bounded. Indeed,

$$|| F_n || = \sup_{\| y \|=1} || F_n(y) || = \sup_{\| y \|=1} || T_n(a,y) || \leq \sup_{\| y \|=1} || T_n || || a || || y || = M \cdot || a ||, \quad n \in \mathbb{N}.$$

So, by Theorem 16.8 ([3] p.156), we get the convergence of the sequence $\{F_n(y)\}_{n \in \mathbb{N}}$ for all $y \in Y$. Hence, in particular, $\{F_n(y_0)\}_{n \in \mathbb{N}}$ is convergent. Since $a \in A_1$ is arbitrary, the sequence $\{T_n(a,y_0)\}_{n \in \mathbb{N}}$ is convergent for any $a \in A_1$.

Let us define maps $G_n : X \to Z$ as follows:

$$G_n(x) := T_n(x,y_0) \quad \text{for} \quad x \in X, \; n \in \mathbb{N}.$$

G_n are linear and continuous maps and the sequence $\{G_n(x)\}_{n \in \mathbb{N}}$ is convergent for any $x \in A_1$. Moreover,

$$|| G_n || = \sup_{\| x \|=1} || G_n(x) || \leq M \cdot || y_0 ||, \quad n \in \mathbb{N}.$$

Hence, by the same theorem, the sequence $\{G_n(x)\}_{n \in \mathbb{N}}$ is convergent for any $x \in X_1$, in particular for $x = x_0$. Consequently $\{T_n(x_0,y_0)\}_{n \in \mathbb{N}}$ is convergent.

THEOREM 6. Let X,Y,Z,A_1,A_2 be just like in the last theorem. If a sequence $T_n : X \times Y \to Z$ of bilinear and continuous maps is convergent in $A_1 \times A_2$ and the sequence $\{|| T_n |||\}_{n \in \mathbb{N}}$ is bounded then the function $T : X \times Y \to Z$ given by

$$T(x,y) := \lim_{n \to \infty} T_n(x,y) \quad \text{for} \quad (x,y) \in X \times Y$$

is continuous.
is a bilinear as well as continuous map and

\[\| T \| \leq \sup_{n \in \mathbb{N}} \| T_n \|. \]

Proof. Theorem 5 implies the convergence of the sequence \(\{ T_n(x, y) \}_{n \in \mathbb{N}} \) for all \((x, y) \in X \times Y\) and hence, the correctness of definition of the map \(T \). Its bilinearity and continuity follow from the Theorem 48.4 ([1] p.139).

Let \(x \in X, \ y \in Y \) and \(\| x \| \leq 1, \| y \| \leq 1 \). Then

\[\| T(x, y) \| \leq \| T(x, y) - T_n(x, y) \| + \| T_n(x, y) \| \]
\[\leq \| T(x, y) - T_n(x, y) \| + M \| x \| \| y \| \]
\[\leq \| T(x, y) - T_n(x, y) \| + M \]

for \(n \in \mathbb{N} \), where \(M = \sup_{n \in \mathbb{N}} \| T_n \| \). By letting \(n \to \infty \), we obtain \(\| T(x, y) \| \leq M \) for \((x, y) \in X \times Y, \| x \| \leq 1, \| y \| \leq 1\). Thus

\[\| T \| = \sup_{\| x \| \leq 1, \| y \| \leq 1} \| T(x, y) \| \leq M = \sup_{n \in \mathbb{N}} \| T_n \|. \]

\[\square \]

Lemma 1. Let \(X, Y, Z \) be real vector spaces, \(C, D \) convex cones in \(X, Y \), respectively. Let \(f : C \times D \to Z \) be a biadditive function. Then there exists a biadditive function \(\bar{f} : X \times Y \to Z \) such that \(\bar{f}(x, y) = f(x, y) \) for \((x, y) \in C \times D\). If \(C, D \) are open then

\[\bar{f}(x, y) := f(x_1, y_1) - f(x_2, y_1) - f(x_1, y_2) + f(x_2, y_2), \]

where \(x = x_1 - x_2, \ y = y_1 - y_2, \ x_1, x_2 \in C, y_1, y_2 \in D \).

Proof. If \(C, D \) are cones then \((C \times D) - (C \times D) = (C - C) \times (D - D)\) is a subspace of \(X \times Y \). Let us define a function \(f_0 \) on \((C - C) \times (D - D)\) as follows:

\[f_0(x, y) := f(x_1, y_1) - f(x_2, y_1) - f(x_1, y_2) + f(x_2, y_2), \]

where \(x = x_1 - x_2, \ y = y_1 - y_2, \ x_1, x_2 \in C, y_1, y_2 \in D \).

At first we shall show that the definition of \(f_0 \) is correct. Assume that \(x = x_1 - x_2 = z_1 - z_2 \) and \(y = y_1 - y_2 \) where \(x_1, x_2, z_1, z_2 \in C \) and \(y_1, y_2 \in D \). Then \(x_1 + z_2 = z_1 + x_2 \) and

\[
[f(x_1, y_1) - f(x_1, y_2) - f(x_2, y_1) + f(x_2, y_2)]
\]
\[- [f(z_1, y_1) - f(z_1, y_2) - f(z_2, y_1) + f(z_2, y_2)]
\]
\[= f(x_1 + z_2, y_1) + f(x_2 + z_1, y_2) - f(x_2 + z_1, y_1) - f(x_1 + z_2, y_2)
\]
\[=[f(x_1 + z_2, y_1) - f(x_1 + z_2, y_1)] + [f(x_2 + z_1, y_2) - f(x_1 + z_2, y_2)] = 0.
\]
The case when $x = x_1 - x_2$ and $y = y_1 - y_2 = u_1 - u_2$, $(x_1, x_2 \in C, y_1, y_2, u_1, u_2 \in D)$ is similar.

We shall check that f_0 is a biadditive map on $(C - C) \times (D - D)$ to Z and $f_0(x, y) = f(x, y)$ for $(x, y) \in C \times D$. Indeed, let $x, z \in C - C$ and $y \in D - D$. Then there exist $x_1, x_2, z_1, z_2 \in C$ and $y_1, y_2 \in D$ such that $x = x_1 - x_2$, $y = y_1 - y_2$, $z = z_1 - z_2$. By definition of f_0

\[
\begin{align*}
&f_0(x + z, y) = f_0((x_1 + z_1) - (x_2 + z_2), y_1 - y_2) \\
&= f((x_1 + z_1, y_1) - f(x_1 + z_1, y_2) \\
&- f(x_2 + z_2, y_1) + f(x_2 + z_2, y_2) \\
&= [f(x_1, y_1) - f(x_1, y_2) - f(x_2, y_1) + f(x_2, y_2)] \\
&+ [f(z_1, y_1) - f(z_1, y_2) - f(z_2, y_1) + f(z_2, y_2)] \\
&= f_0(x, y) + f_0(z, y).
\end{align*}
\]

In the same way we can prove the additivity of f_0 with respect to the second variable. Finally, we shall check that f_0 is an extension of f. Let $(x, y) \in C \times D$. Then $(x, y) = (2x, 2y) - (x, y)$ and

\[
\begin{align*}
f_0(x, y) &= f((2x, 2y) - (x, y)) \\
&= f(2x, 2y) - f(x, 2y) - f(2x, y) + f(x, y) \\
&= f(x, 2y) - [f(2x, y) - f(x, y)] = f(x, 2y) - f(x, y) = f(x, y).
\end{align*}
\]

Let X_1 be a subspace of X, and Y_1 be a subspace of Y such that $(C - C) \oplus X_1 = X$ and $(D - D) \oplus Y_1 = Y$. So, if $(x, y) \in X \times Y$ then

$(x, y) = (x_1 + x_2, y_1 + y_2)$, where $x_1 \in C - C, x_2 \in X_1, y_1 \in D - D, y_2 \in Y_2$.

Let us define a function $\tilde{f} : X \times Y \rightarrow Z$ as follows:

$\tilde{f}(x, y) = f_0(x_1, y_1)$.

It is easy to check that \tilde{f} is properly defined biadditive extension of f.

Remark 2. With respect to the above lemma we may assert in Theorem 3 that the biadditive function a is given on $X \times Y$. Similarly in the next theorem.

Now, we shall prove the following theorem, analogue to Theorem 2 from [6].

Theorem 7. Let X, Y be real separable Banach spaces, C, D be open, convex cones in X, Y, respectively, and let Z be a real Banach space. Assume that $F : C \times D \rightarrow \text{cc}(Z)$ is a biadditive s.v. function, $x_0 \in C$, $y_0 \in D$ and
\[p \in F(x_0, y_0). \] Then there exists a biadditive selection \(f : C \times D \to Z \) of \(F \) such that \(f(x_0, y_0) = p \). Moreover, if \(F \) is lower semicontinuous, then \(f \) is continuous.

Proof. Since \(F \) is compact and convex valued in \(Z \), by the Krein-Milman Theorem ([5])

\[p \in F(x_0, y_0) = \text{cl}[\text{convExt} F(x_0, y_0)]. \]

Then for each \(n \in \mathbb{N} \) there is an element \(p_n \in \text{convExt} F(x_0, y_0) \) such that

\[\| p_n - p \| < \frac{1}{n}. \]

Theorem 2 guarantees the existence of biadditive functions \(f_n : C \times D \to Z \) such that

\[f_n(x_0, y_0) = p_n \]

and

\[f_n(x, y) \in \text{convExt} F(x, y) \subseteq F(x, y) \quad \text{for} \quad (x, y) \in C \times D. \]

The set \(C \times D \) is an open cone in \(X \times Y \) and the set \((C \times D) - (C \times D)\) is an open subspace of \(X \times Y \), whence

\[(C \times D) - (C \times D) = \text{lin} (C \times D) = (C - C) \times (D - D) = X \times Y. \]

By Lemma 1

\[\tilde{f}_n(x, y) := f_n(x_1, y_1) - f_n(x_2, y_1) - f_n(x_1, y_2) + f_n(x_2, y_2), \]

where \(x = x_1 - x_2, \ y = y_1 - y_2, \ x_1, x_2 \in C, \ y_1, y_2 \in D \), is a biadditive map from \(X \times Y \) to \(Z \) and \(\tilde{f}_n(x, y) = f_n(x, y) \) for \((x, y) \in C \times D \).

Now, we assume that \(F \) is a lower semicontinuous s.v.function. For a fixed \(x \in C \) a function \(y \to F(x, y) \) is additive and \(\mathbb{Q}_+ \)-homogeneous on \(D \) (see Lemma 5.1 in [4]). There exists a constant \(M(x) > 0 \) such that

\[\| F(x, y) \| \leq M(x) \| y \|, \]

where \(\| F(x, y) \| = \sup \{ \| u \| ; u \in F(x, y) \} \) for \(y \in D \) (see Theorem 4 in [7]). Then, for each \(x \in C \), the set

\[F(x, \Sigma) = \bigcup_{y \in \Sigma} F(x, y), \]

where \(\Sigma = \{ y \in D; \| y \| \leq 1 \} \) is bounded. By Smajdor's theorem from [7] there exists a constant \(M \) such that

\[\sup_{y \in \Sigma} \| F(x, y) \| \leq M \| x \| \quad \text{for} \quad x \in C. \]
Let us take a point \(y \in D \) and let \(\{r_n\}_{n \in \mathbb{N}} \) be a sequence of rational numbers such that \(\lim_{n \to \infty} r_n = \| y \| \) and \(\| y \| < r_n \) for \(n \in \mathbb{N} \). Since \(\frac{y}{r_n} \in \Sigma \), \(\| F(x, \frac{y}{r_n}) \| \leq M \| x \| \) for all \(n \in \mathbb{N}, x \in C \). Hence \(\| F(x, y) \| \leq M r_n \| x \| \).

Passing to the limit with \(n \to \infty \), we get

\[
(7.1) \quad \| F(x, y) \| \leq M \| x \| \| y \| \quad \text{for} \quad (x, y) \in C \times D.
\]

Hence and by the relation \(f_n(x, y) \in F(x, y) \) we deduce that

\[
(7.2) \quad \| f_n(x, y) \| \leq M \| x \| \| y \| \quad \text{for} \quad (x, y) \in C \times D, n \in \mathbb{N}.
\]

For every \(x \in X \), the function \(\tilde{f}_n(x, \cdot) : Y \to Z \) is additive in \(Y \) and bounded in some neighbourhood of any point of \(D \), so by the Mehdi theorem (Theorem 4 in [2]) \(\tilde{f}_n(x, \cdot) \) is continuous. Similarly, we get continuity of \(\tilde{f}_n(\cdot, y) \) for any \(y \in Y \). Thus \(\tilde{f}_n \) is a bilinear and continuous map on \(X \times Y \).

Now, we shall show that the sequence \(\{\| \tilde{f}_n \|\}_{n \in \mathbb{N}} \) is bounded. Let us fix \((x, y) \in X \times Y \) and \(x_1, x_2 \in C, y_1, y_2 \in D \) such that \(x = x_1 - x_2, y = y_1 - y_2 \). Then

\[
\| \tilde{f}_n(x, y) \| = \| f_n(x_1, y_1) - f_n(x_2, y_2) - f_n(x_2, y_1) + f_n(x_2, y_2) \|
\leq \| f_n(x_1, y_1) \| + \| f_n(x_2, y_2) \|
+ \| f_n(x_2, y_1) \| + \| f_n(x_2, y_2) \|,
\]

whence and by (7.2) we get

\[
\| \tilde{f}_n(x, y) \| \leq M (\| x_1 \| \| y_1 \| + \| x_1 \| \| y_2 \| + \| x_2 \| \| y_1 \| + \| x_2 \| \| y_2 \|).
\]

Thus, by Theorem 4 the sequence \(\{\| \tilde{f}_n \|\}_{n \in \mathbb{N}} \) is bounded.

Let sets \(A \) and \(B \) be dense and countable in \(C \) and \(D \), respectively. The set

\[
S := A \times B = \{(x_1, y_1), (x_2, y_2), \ldots\}
\]

is dense in \(C \times D \) and linearly dense in \(X \times Y \). We choose a subsequence \(\{\tilde{f}_{n_k}\}_{n \in \mathbb{N}} \) of the sequence \(\{\tilde{f}_n\}_{n \in \mathbb{N}} \) convergent to the point \((x_1, y_1)\). We are able to do it because \(\{\tilde{f}_n(x_1, y_1)\}_{n \in \mathbb{N}} \) is a sequence of elements of the compact set \(F(x_1, y_1) \). Next, we choose a subsequence of \(\{\tilde{f}_{n_k}\}_{n \in \mathbb{N}} \) convergent to \((x_2, y_2)\), etc. Using the diagonal method we get the subsequence \(\{\tilde{f}_{n_k}\}_{k \in \mathbb{N}} \) of \(\{\tilde{f}_n\}_{n \in \mathbb{N}} \) convergent on \(S \). The sequence \(\{\tilde{f}_{n_k}\}_{k \in \mathbb{N}} \) is convergent on the linearly dense in \(X \times Y \) set \(S \) and the sequence \(\{\| \tilde{f}_{n_k} \|\}_{k \in \mathbb{N}} \) is bounded, so by Theorem 5 it converges to some bilinear and continuous map \(\tilde{f} : X \times Y \to Z \). For any \((x, y) \in C \times D \) we have

\[
\tilde{f}(x, y) \in \text{cl}[\text{convExt} F(x, y)] = F(x, y).
\]
Therefore \(f := \tilde{f} |_{C \times D} \) is a selection of \(F \) on the cone \(C \times D \).

If \(F : C \times D \to \text{cc}(Z) \) is a biadditive s.v. function, then there exist a biadditive function \(a : X \times Y \to Z \) and a biadditive continuous s.v. function \(L : C \times D \to \text{cc}(Y) \) such that

\[
F(x, y) = a(x, y) + L(x, y) \quad \text{for } (x, y) \in C \times D
\]

(cf. Theorem 3 and Remark 2). By the first part of the proof there exists a bilinear and continuous function \(f : X \times Y \to Z \) such that \(f|_{C \times D} \) is a selection of \(L \) on the cone \(C \times D \) and

\[
f(x_0, y_0) = p - a(x_0, y_0).
\]

Then the function \(f_1 : X \times Y \to Z \) given by

\[
f_1(x, y) := a(x, y) + f(x, y) \quad \text{for } (x, y) \in X \times Y,
\]

restricted to \(C \times D \), is a biadditive selection of \(F \) satisfying the condition

\[
f_1(x_0, y_0) = a(x_0, y_0) + f(x_0, y_0) = p.
\]

This completes the proof. \(\square \)

References

Institute of Mathematics
Pedagogical University
Podchorążych 2
PL-30-084 Kraków, Poland