Comparative Studies of Thyroid 99mTc Uptake Measured with Gamma Camera and Scintillation Probe

M. Wasilewska-Radwanska¹, A. Stepień², J. Pawlus², K. Natkaniec¹,², O. Kraft³

¹ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland, e-mail address: radwanskai@novell.fstj.agh.edu.pl
² 5-th Clinical Military Hospital, Department of Nuclear Medicine, Krakow, Poland
³ University Hospital, Clinic of Nuclear Medicine, Ostrava, Czech Republic

Abstract

The purpose of these studies was to compare data obtained in thyroid 99mTc uptake measurements carried out with a gamma camera against results from a scintillation probe.

Data from 30 patients (average age of 52 years) with hyperthyroidism were calculated after intravenously administered of 60 MBq of 99mTcO$_4^-$ (~1ml). The radioactivity of radiopharmaceutical was measured after 20 min with gamma camera Nucline AP (Mediso) equipped with a pinhole collimator and with a scintillation probe SSU-70-2 (Polon).

The difference in the thyroid 99mTc uptake resulting from gamma camera measurement and the data obtained from the scintillation probe was not greater than 2.3%.

Keywords: radioisotope diagnostic of thyroid, 99mTcO$_4^-$ thyroid uptake, hyperthyroidism

Introduction

The radioisotope diagnosis method shows not only the morphology but also the thyroid function [1-3]. The evaluation of this function is carried out by the measurement of radioisotope uptake. Radiopharmaceutical (labeled with 131I, 123I or 99mTc) is administered orally or intravenously. Then the radioisotope quantity collected in thyroid is measured. The thyroid uptake can be determined as the ratio of measured to administered radioactivity.

The use of 131I ($T_{1/2}=8.05$ days, $E_r=0.364$ MeV) or 123I ($T_{1/2}=13$ hours, $E_r=0.159$ MeV) causes greater radiological effect (effective dose) to patient than can be obtain from radiopharmaceuticals labeled with 99mTc ($T_{1/2}=6$ hours, $E_r=0.140$ MeV). Therefore some authors compare the applicability of both radioisotopes in thyroid function diagnosis [4-5].

Also in these studies we intend to compare applicability of a simple scintillation probe against gamma camera used to measure the 99mTcO$_4^-$ (pertechnetate) uptake in thyroid.

Experimental procedures

The study was performed for patients with hyperthyroidism. The known quantity of administered radioactivity (60 MBq for patient of 70 kg weight), which depends on the weight of patient, was introduced intravenously as solution of about 1 ml volume. After 20 min the radioactivity of thyroid was measured with a scintillation probe SSU-70-2 (produced by POLON, Poland) as well as with a gamma camera Nuclide AP (produced by MEDISO, Hungary) with a pinhole collimator. The thyroid uptake (TU) was calculated as the
ratio of measured (MR) to administered radioactivity (AR) according to the following formula:

$$TU = \frac{MR - BG}{AR}$$ \hspace{1cm} (1)

where BG is measured background, and

$$AR = BAR - AAR$$ \hspace{1cm} (2)

where BAR is the radioactivity of solution in syringe (before injection to patient) and AAR is the radioactivity of syringe after the injection.

Results

Images from gamma camera were obtained on a 64x64 matrix in AP projection for all 30 patients with average age of 52 years. The examples of registered images are presented in Fig. 1.

In Table 1, the comparison of $^{99m}\text{TcO}_2$ uptake in thyroid resulting from a gamma camera measurement against results from a scintillation probe is collected.

Fig. 1. Example of registered images from gamma camera Nucline AP:

a) thyroid goiter without nodules (37 years old patient, woman)

b) nodular goiter of thyroid (35 years old patient, woman)
Discussion of results

The difference in the thyroid 99mTcO$_2$ uptake determined with a gamma camera and a scintillation probe was not greater than 2.3%. Therefore, the scintillation probe for thyroid 99mTcO$_2$ uptake measurement may be used alternatively to the gamma camera as a simple and efficient technique.

References

