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Abstract. In this paper the Lagrange multiplier formalism has been ušed to find a solution 
of free vibration problem of a cantilever tapered beam. The beam has been circumscribed 
according to the Timoshenko theory. The sample numerical calculations for the cantilever 
tapered beam hâve been carried out and compared with experimental results to i 1 lustrate the 
correctness of the present method.

Introduction

Beams, whose geometry and/or material properties vary along the length, hâve 
practical importance in engineering design, for instance they are used to reduce 
weight or volume as well as to increase strength and stability of structures. There- 
fore, non-uniform beams hâve been the subject of research of many authors. The 
typically non-uniform beams hâve been circumscribed according to the Bernoulli- 
-Euler [1-3] or Timoshenko [3-8] theory. The Timoshenko theory [9, 10] is adé­
quate for vibrations of higher modes or for short beams.

In this paper, the free vibration problem of the cantilever tapered beam has been 
formulated and solved with the help of the Lagrange multiplier formalism [11, 12]. 
The beam has been circumscribed according to the Timoshenko theory. Exempláry 
numerical calculations hâve been carried out and compared with the experimental 
results.

1. Formulation and solution of the problem

Considering the vibrations of the cantilever tapered beam, the beam can ap- 
proximate to a system of N segments (Fig. 1).

Each segment is described according to the Timoshenko theory and has con­
stant parameters: p - the mass density, A(x) - the cross-sectional area, I(x) - the area 
moment of inertia, E - the modulus of elasticity, G - the shear modulus and k’ - 
a numerical factor depending on the shape of the cross-section.
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Fig. 1. An approximation of the cantilever tapered beam by stepped beams

Acting on the Lagrange multiplier formalism [11-13], the free vibration prob­
lem of the analyzed system has been formulated and the solution has been reduced 
to the matrix system of équations in the following form:

CA = 0, (1)

where:

A = [ai,A2,...,A2V] (2)

is the vector of Lagrange multipliers and band matrix C has the form:

The sub-matrices on the diagonal háve the form:

’cu C1.2 0 0 0 0 0 0

C2,1 C2>2 C2,3 0 0 0 0 0
0 c„,„ 0 0 0 0
0 0 ĉn+ïji c ĉ-'n+lji+2 0 0 0

C = 0 0 0 cV'f/+2,H+1 ĉn+2,n+2 0 0 0 • (3)

0 0 0 0 0 c■■■ '-'A-2.A-2 Qv-2,A'-1 0
0 0 0 0 0 Cw_uv_2 Qv-i,am Qv-l,Ar

0 0 0 0 0 0 C A,A'-1 C'/V.V

(4a)

+ C"”-12m-L2m-I ”2/7-1,2»

c”-12ří,2??-l w2n,2»-1

c + c12ř?-l,2w ”2n-L2n

c + cn~^2n,2n n2n,2n

(4b)
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and the sub-matrices above and below the diagonal have the form:

C = CT x~'n,n+\

Coefficients C„kr have been defined as:

(5a)

(5b)

(6)

and they characterize the dynamie properties of separate segments of the beam. 
The introduced denotations />„, r represent the z-th translational and rotational vibra- 
tional modes of n-th beam segments without additional elements:

where:

JT„; (x„ Jfor r = 1,3,5,...,2N -1, n = 1,2,..., N 
[ T„;.(x„Jforr = 2,4,6,...,27V, n = 1,2,...,7V

0 for r =

Ln for r =

/2n-l
1 2n
Í 2n +1 
12n + 2

(8)

A more detailed explanation and complément of the above-mentioned mathe- 
matical expressions are placed in works [11-13].

From the condition of existing of nontrivial solution of system of équations (1), 
the équation of free vibration frequencies (<y) of the beam has been obtained in the 
form of

detC = 0. (9)

2. Numerical and experimental research

On the basis of presented mathematical model, the algorithm and computer 
program have been worked out and numerical calculations have been carried out.
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In order to check the reliability and accuracy of present method (numerical results) 
the experimental research háve been performed.

A numerical calculations hâve been worked out for the cantilever tapered beam 
(Fig. 1) madę of steel St3S with the parameters: thickness h = 5 mm, length 
L = 500 mm, width: Zq = 75 mm and Z>A?= 20 mm. The shear coefficient has been 
assumed on the basis of work [14]:

10(1+ v)
12 + 1 lv ’

(10)

where v is the Poisson's ratio, and in the analyzed cases it is equal 0.3.
In Table 1, the first five natural frequencies obtained by taking into account ten 

and twenty segments approximating to the tapered beam, and also fifteen and thirty 
tenus of coefficients C„k (6), have been shown.

Frequencies from the numerical calculations of the cantilever tapered beam

Table 1

Number of 
segments

Number of terms of 
coefficients C„k

Frequencies [Hz]

<01 C'>2 «3 O.)4 ü)5

Af= 10
m = 15 24.996 121.218 313.247 599.011 979.615

in = 30 24.343 117.982 304.626 581.908 950.51

.V-20
m = 15 24.327 118.912 308.05 589.212 963.056

m — 30 23.405 114.415 296.36 566.706 925.972

The measurement system which has been used to the experimental investiga­
tions is presented in Figure 2. This system consists of the fixed beam (1), PC com­
puter (2) with appropriate software, four-channel vibration analyzer (3), hämmer 
(4) and one-axial piezoelectric accelerometer (5).

Fig. 2. Scheme of the measuring set

The modal model (set of natural frequencies and modes of vibrations) of the 
system has been obtained as a resuit of the experimental research.

In Figures 3 and 4 the first five received natural frequencies and corresponding 
modes of vibrations are shown.
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Fig. 3. l’he experimental first free vibration frequency and the mode ( isométrie 
and right view) of the beam

Fig. 4. The experimental free vibration frequencies (2-4) and the modes (isométrie 
and right views) of the beam

In Table 2, the best numerical results are collated with the experimental results, 
and the relative error between them is illustrated.

Table 2

Comparison of numerical and experimental results and the relative error between them

Frequencies [Hz]
CWl ú>2 (Ü3 G)ą «5

Numerical results (ai,) 23.405 114.415 296.36 566.706 925.972
Experimental results (ros) 21 114 294 565 923

~ °Jl’ -100% 11.45 0.36 0.80 0.19 0.32
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Comparing the experimental and calculated free vibration frequencies, one can 
notice compatibility within the values, and it allows one to state that the theoretical 
model representing the real object appropriately. The biggest relative error occurs 
for the lïrst vibration frequency, but it may be due to the following factors: giving 
considération in the mathematical model to the infinity rigidity of fixed system and 
influence of experimental stand on the tested beam.

Conclusions

In this paper, the free vibration problem of the cantilever tapered Timoshenko 
beam has been formulated and solved on the basis of Lagrange multiplier formal- 
ism.

On the basis of a comparison between numerical calculations and experimental 
results, the reliability and accuracy of the present mathematical method hâve been 
proved. However, if the results hâve to be received with the demanded précision, 
the number of segments approximating the tapered beam and terms of coefficients 
C„kr should be appropriately determined.
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