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Abstract. In this paper the Lagrange multiplier formalism has been used to find a solution
ol [ree vibration problem of a cantilever tapered beam. The beam has been circumscribed
according 1o the Timoshenko theory, The sample nhumerical caleulations for the cantilever
tapered beam have been carried out and compared with experimental results to illustrate the
cotreciness of the present method.

Introduction

Beams, whose geometry and/or material propertics vary along the length. have
practical importance in engineering design, for instance they are used to reduce
weight or volume as well as to increase strength and stability of structures. There-
lore. non-uniform beams have been the subject of research of many authors. The
typically non-unitorm beams have been circumscribed according to the Bernoulli-
-Euler [1-3] or Timoshenko [3-8] theory. The Timoshenko theory [9, 10] is ade-
quate for vibrations of higher modes or for short beams.

In this paper. the free vibration problem of the cantilever tapered beam has been
formulated and solved with the help of the Lagrange multiplicr formalism | L1, 12].
The beam has been circumsceribed according o the Timoshenko theory, Txemplary
numerical calculations have been carried out and compared with the experimental
results.

1. Formulation and solution of the problem

Considering the vibrations ot the cantilever tapered beam. the beam can ap-
proximate to a system of ¥ segments (Fig. 1).

Fach scgment is deseribed according to the Timoshenko theory and has con-
stant parameters: p - the mass density, A{x) - the cross-sectional area, /(x) - the area
moment of inertia. £ - the modulus of elasticity. & - the shear modulus and & -
a numerical factor depending on the shape of the cross-section.
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and the sub-matrices above and below the diagonal have the form:

C,=CT Cus O (5a)
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Coefficients €, have been defined as:
n h b
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and they characterize the dynamic propertics of scparate segments of the beam.,
The introduced denotations 4, , represent the /-th translational and rotational vibra-
tional modes of #-th beam segments without additional elements:

%, (v, Jorr=135.. 2N =1,n=12...N
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where:
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A more detailed explanation and complement ol the above-mentioned mathe-
matical expressions are placed in works [11-13].
From the condition of existing of nontrivial solution of system of equations (1}.

the equation of free vibration trequencies () of the beam has been obtained in the
form of

detC=0. (9)

2. Numerical and experimental research

On the basis of presented mathematical model, the algorithm and computer
program have been worked out and numerical calculations have been carried out.
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Comparing the experimental and calculated free vibration [requencies, one can
notice compatibility within the values, and it allows one to state that the theoretical
model representing the real object appropriately. The biggest relative error occurs
{or the first vibration frequency, but it may be due 1o the following factors: giving
consideration in the mathematical model to the infinity rigidity of fixed system and
influence of experimental stand on the tested beam.

Conclusions

In this paper, the free vibration problem of the cantilever tapered Timoshenko
beam has been formulated and solved on the basis of Lagrange multiplier formal-
ism.

On the basis of a comparison between numerical calculations and experimental
results, the reliability and accuracy of the present mathematical method have been
proved. However, it the results have to be received with the demanded precision.
the number of segments approximating the tapered beam and terms of coefficients
C}, , should be appropriately determined.
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