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Abstract. In this paper the solution of the vibration problem of a non-uniform nanorod is 
presented. The WKB method is applied to solve the équation of motion for free axial 
vibration of the nanorod.

Introduction

The vibration analysis of nanostructures has been of great interest because of 
their applications, for example in nanoelectromechanical, nanodevices. The scale 
effect on vibration characteristics of the nanostructures (nanotubes, nanobeams, 
nanorods) is often investigated by using the non-local elasticity theory.

The axial vibrations of nanorods are induced by the axial external forces. The 
frequencies of the axial free vibration of a nanorod are important parameters which 
characterize the behaviour of this nanorod during the enforced vibration. The axial 
free vibrations of non-uniform nanorods were studied in papers [1-4].

The small scale effect on vibration of non-uniform nanorods by using the theo
ry of non-local elasticity was investigated by Chang [1], The numerical solutions 
was obtained by using the differential quadrature method. The effect of the non- 
local long-range interactions on the longitudinal vibration of a nanorod was the 
subject of the paper [2] by Huang. The exact solution of the problem of free and 
forced vibration was determined under the condition of a uniform non-local kernel. 
The axial vibration of a tapered nanorod was studied by Mohammad Danesh et al. 
[3]. The solution of the governing équations of the nanorod vibration was obtained 
by using the differential quadrature method. The same problem was studied by 
Lee, using finite element method. Firouz-Abadi investigated the three dimensional 
free vibration properties of nanocones based on a nonlocal continuum shell model 
and the Galerkin technique [4], A modified Wentzel-Kramers-Brillouin (WKB) 
method to obtain an asymptotic solution of vibration problem of nanocones was 
applied by Guo and Yang [5].

The free vibration of a non-uniform nanorod is the subject of the present paper. 
The solution of the problem was derived by using the WKB method [6, 7],

mailto:ciekot@im.pcz.pl


30 A. Ciekot

1. Formulation of the problem

The équation of motion for free-vibrating axial non-uniform nanorod in the 
nonlocal elasticity can be written in the following form:

du 
dx

d 
dx

d2 I / x d2u 
—- mlx)—- 
dx2 v 7 dt (1)

where: the axial displacement, m(x) - the mass per unit length, E(x)- the
Young’s modulus, A(x) is the area of cross-section of the non-uniform and 
non-homogeneous nanorod, e0 is a constant appropriate to each material and a is 
an internai characteristic size. The fonction ii(x.l) satisfies the boundary condi
tions

m(0,/) = u(L,ť) = 0 (2)

2. Solution of the problem

In order to find the natural frequencies of the nanorod, one assumes a solution 
of the problem in the form:

u(x,t) = U(x)eia‘ (3)

Substituting (3) into Eq. (1) gives:

EA + co2 J 1 - (eoaY —— j m (a) U (x) = 0 (4)
dx y dx ) dx j

JCIntroducing a new variable £, = — and assuming = pAfë), Ao = A(0),

p.E-const in Eq. (4), one obtains:

Í \ "•">(' / \ 2 -) AFïhC T S (5>
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After transformation, Eq. (5) can be written in the form:

cf
(6)
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where:

r(^) = Q2 q2 _p4«42
EA0

In order to use the WKB approximation, the first step is to transfer Eq. (6) by mak- 
ing the transformation

[7(^) = <D(^)f(5(£)) (7)

where ä(^), E(s(E,)) are arbitrary fonctions, the Eq. (5) becomes

+[p(^)<ř"(^)+í/(e)<ř'(^)+^U)®(^)y«^)) = o

Equating the coefficient of E'(ó(^)) to zero gives an équation for (I>(ç) :

2p(tyt>'($s'& + p£)<S>($s”($ + = 0 (9)

The solution of this équation is:

O(^) = exp(-Jö(§)^) = ^RU) (10)

where

2p£)s'£)
1

fl = -7-------- ------
2 1-Q2f^

l L

Taken into account Eq. (9) in (8), one obtains

E(.(^)) = 0 (H)

Let =—5'(%) = —, then the Eq. (11) can be evaluated as: 
v v
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K"(s) + v2F(s)K(5) = 0 (12)

where

F(,) =
A\$q& + 2p£)(2Q2A($-A"($)

4AU)
Ç = vs

and v - is a large, positive number.
If F(s) is constant the nature of the solution dépends on its sign; for positive 

values, F(s) = 1, the two linearly independent solutions are the oscillatory fonc
tions F(s) =exp(±z'vs); for negative values, Æ(s) = -1, the solutions are 
F(s) = exp(±vs) which change exponentially. These limiting cases suggest ex
pressing the solution of Eq. (12) in the form:

exp(iv'P(Ls')) 

exp(v'ť(,v))
if F(s)>0

if F(s)<0
(13)

for some fonction T'(.s). Substituting into équation (12) gives the following non- 
linear équations for Tfos) :

-T"(5) + T’(5)-['P'(î)]2 =0 if F(s)>Q

+ =0 if F(s)<0
(14)

Since v » 1 an approximate solution is obtained by ignoring the first term, so 
the simplest approximate solutions of équation (14) are

fo)=
exp (±zv jy]F (s) ds

exp ( ±v j y/-F(s) ds

if F(s)>0

if F(s)<0
(15)

Using the WKB method solution of équation (12) may be obtained using the sé
riés expansion

T(.s) = T!I(.v) + 1ti(.s) + — T2(5) + ... = £v-^(5) (16)
v V ü=o

Substituting this into (10) and equating the coefficient of v " to zero gives an 
equationfor 'T J.y) in ternis of T.f'.sj. k = l,2,....n-1. If F(s)>0 we obtain



Free axial vibration of a nanorod using the WKB method 33

k = Q-. T0(s) = ±Jf(P)

k=i-. /X(í) = 2to0y;0

k = 2-. /Ti'(.) = 2T„(5)T',(.v) + [Ti(a)]2

k = 3 : M (.) = 2'K (5) T< (5) + 2T, (5)T' (5)

generally:

<17)
7=0

The solutions of the first and second of these équations are

T0(5) = ±|Jf(^J5, Tj (.$’) = F In F (5)

and hence

V (5) =--- i—-exp(±zv j yjF(s)ds^

(F(.y)r

The general solution of équation (12) is then as follow:
for F(s) > 0,

V (5) =---- !—-^exp^žv j y]F(s)ds} + Bexp^-iv j yjF(s)ds^ (18)

(^)F
and for F(s) < 0,

V (5) =---- —;-|c exp (v J yj-F(s)ds j + D exp (-v jy]-F(s)ds(19)

(F(.v))7

for some constants A, B, C and D.

Inserting the obtained solution (Eq. (18) and (19)) into the boundary conditions 
F(0) = 0 and E(l) = 0 yields the following set of homogeneous équations (for 
F(s)>0)
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---- —j-{^exp(żv/(0)) + Bexp(-zv/  (0))} = 0 
(f(0)y

—!~^{Cexp(żv/(l)) + Z>exp(-żv/(l))} = 0

(F(l)r

where f (s) = jy[F(s)ds.

The non-trivial solutions of this set of équations exist if and only if the determinant 
of the coefficient matrix is zero. This determinant defined a frequency function as 
folio ws:

exp(zv/(0)) 
exp(zv/(l))

exp(—zv/(0)) 
exp(—zv/Xl))

= 0 (21)

The roots of équation (21) are called natural frequencies and can be determined 
numerically.

Conclusions

Then équation of motion for free-axial vibration of uniform nanorod was 
solved with the WKB approximate method. A boundary conditions were applied 
to obtain the natural frequencies which are relevant parameters for the behaviour 
of the tested nanorod. These solutions can be used in numerical frequency analysis 
of the non-uniform nanorods.
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