ON RIGHT HEREDITARY SPSD-RINGS OF BOUNDED REPRESENTATION TYPE II

Nadiy Gubareni
 nediva gubarent wahoocom

Abstract

In this paper right hereditary semiperfect semidistributive rings $A=A(\mathrm{~S} .0)$ of bounded representation type are described in terms of Dynkin diagrams and diagrams with weiglts. We describe these rings using a reduction to mixed matrix problems over a discrete valuation ring and its skew field of fractions.

Introduction

Onc of the main problems in the representation theory of rings and algebras is to obtain information about the possible structure of indecomposable modules and to describe the isomorphism classes of all indecomposable modules. There are dilferent approach to study the representations ol algebras and rings. One of then belongs to P. Gabriel who reduced the study of f.d. algebras to study of representation of quivers in $1972|1|$. In this paper P. Gabriel gave a lull description ol quivers of tinite representation type over an algebraically closed field. The other approach belongs to L.A. Nazarova and A.V. Roiter [2] who reduced these representations to solving some matrix problems over lields, i.e. the reduction of some classes of matrix by an admissible set of transformations.

Recall that a quiver is an oriented graph without any restriction to the number of arrows between two vertices and possibly with loops or oriented eycles. More exactly: a quiver $Q=\left(Q_{1}, Q_{1} . s, e\right)$ is given by a set of vertices Q_{0}, a set of arrows Q_{1} and 1wo maps s. e: $Q_{1} \rightarrow Q_{0}$ which associate to each arrow $\sigma \in Q_{1}$ the start point $s(\sigma) \in Q_{\|}$and the end point $e(\sigma) \in Q_{0}$.

Theorem 1. (P. Gabriel, [1])
A connected quiver Q is of a finite sype if and only if the underlying andirected graph \bar{Q} of Q tobtained from Q by deleting the ortentation of the arrous) is a Dynkin diagram of the form $A_{10}, D_{i}, F_{6}, E_{7}, E_{3}$,

The number of isomorphism classes of indecomposable representations of Q is finite if and only if the corresponding quadratic form is positive definite. In this case the number of indecomposable representations equals the number of positive roots of the corresponding root systems. Moreover there is a bijection between the
isomorphic classes of indecomposable representations of Q and positive roots of the underfying Dynkin diagrams.

This result was generalized for an arbitrary field by Bernstein, Gelfand and Ponomarev [3].
P. Gabriel also introduced in [1] the notion of K-species which consists of a tilnite family of skew fields $\left(K_{i}\right)_{i=1}$ which are finitely dimension and central over a common commutative subfield K, together with a family of (K_{r}, K_{j})-bimodules which are finite dimensional over K and K operates centrally on each this bimodwle. In this paper he characterized K-species of tinite type for the case when any $K_{i}=F$ is a fixed stew field. I ater the results of P . Gabriel on representations of species were generalized by V. Dlab and C.M. Ringel in [4. 5].

Theorem 2. [4. Theorem B]
A K-species is of finite representation tope if and only if its diagram is a finite disjoint union of D_{1} nkin diagrams of the form $A_{n}, D_{11}, E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$.

Theorem 3. [4. Theorem C]
A fmite dimensional K-algebra A is a hereditary algebra of fimite type if and only if A is Morita equivalent to the tensor algebra of a K-species of finite tope.

The generalization of this theorem for the case of hereditary Artinian rings was stated by I. Dowbor, C.M. Ringel and D. Simson [6, 7]. Each Artinian ring A can be associated with the corresponding species $\Gamma(A)$ which is a generalization of a K-species. In the definition of species we do not assume that all skew fields are finitely generated over their common commutative subfield K.

Theorem 4. [6. Theorem 2]
The hereditary Arlinian ring A is of finite representation type if and only if $\Gamma(A)$ is a disjoin union of Coxeter diagrams $A_{4}, B_{1,} . D_{1}, E_{6,}, E_{7}, E_{8}, F_{1}, G_{2} . I_{5}, I_{1}, I_{2}(p)$ ($p=5$ or $p \geq 7$).

Note that this theorem was only stated in [6,7] without full proof and it was remarked that the proof is rather technical and the details were left out. The full proof of the theoren from which theoren 4 follows was oblained by S. Oppermann in [8].

From theorem 4 we obtain the following theorem:

Theorem 5. [9. Theorem 3]

A hereditary Artinian semidistributher ring $T(\mathrm{~S}, D)$ is of finite type if and only if the undirected graph $\overline{\mathrm{l}}(\mathrm{S})$ of the Hasse diagram 1(S) is a disyom wion of the Dinkin diagrams of the form $A_{n}, D_{n}, E_{6}, E_{7}, E_{\S}$.

This paper is devoted to the description of right hereditary semiperfect semidistributive rings of bounded representation type. In this paper we prove the sufficiency of the main theorem [10, Theorem 1] that gives the structure of right
hereditary SPSD-rigs of bounded representation type for the case when rings of endomorphisms of simple modules are either a skew field or the same discrete valuation ring O. This structure is given in terms of Dynkin diagrams and diagrams with weights. The paper is a continuation of $\mid 10 \|$ where the necessity of the main theorem was proved.

We use the notions, definitions and results of [9-14].

1. Proof of sufficiency of the main theorem

Lemma 1. Let () be a discrete valuation ring with a skew field of fractions D and the radical $R=\pi O=O \pi$. Then the ring

$$
A=\left(\begin{array}{cc}
I_{i n}(O) & M \tag{1}\\
0 & T\left(\mathrm{~S}_{1}\right)
\end{array}\right)
$$

corresponding to the diagram:

$$
\bullet \longrightarrow \longrightarrow \quad \cdot \quad \cdot-
$$

and $T\left(S_{1}\right)$ is a ring corresponding to the diagram S_{1} :

where M is a $\left(H_{m p}(O), T\left(S_{1}\right)\right.$)-bimodule, is a ring of bounded representation type for any directions of arrows in the diagram S_{1}.

Proof. Let M be a finitely generated right A-module that is given by the set: $\left\{t_{1}, \ldots l_{m} ; l_{1}, \ldots, l_{j l l} ; \mathbf{T}\right\}$. Renumbering the vertices of the poset S in such a way that the point $1 \in S$ has the weight $I_{n k}(O)$ and is connected with the point i by an arrow, i.e. the diagram has the following form:

Then the matrix $\mathbf{T}=\left(\mathbf{T}_{10}\right)$ is an upper block-rectangular matrix with elenents in D partitioned into n horizontal and n vertical strips in which \mathbf{T}_{n} are identical matrices $(i=1 \ldots, n)$ and in the first horizontal strip all blocks are zero except the first and the i-th blocks.

The matrix of transformations $\mathbf{U}=\left(\mathbf{U}_{n i}\right)$ is a block diagonal matrix. where \mathbf{U}_{11} is an invertible matrix with entries in $I_{m}(O)$. and $\mathbf{U}_{n i}(i=2, \ldots, n)$ are invertible matrices with entries in D.

Consider the matrices \mathbf{T}^{*} and \mathbf{U}^{\prime} that are obtained from the matrices \mathbf{T} and \mathbf{U} correspondingly by erasing the first horizontal and the first vertical strip.

Reducing the matrix \mathbf{T} by the matrix \mathbf{U} is equivalent to the representation of the quiver Q_{1} corresponding to the diagram

By the Gabriel theorem, this quiver has $\frac{n(n-1)}{2}$ indecomposable representations. In accordance with these representations the matrix $\mathbf{T}_{j /}$ is partitioned into $2 n-2$ vertical strips, and the partial relations between these strips are litear. Therefore reduction of the matrix \mathbf{T} by the matrix \mathbf{U} leads to reduction of matrix $\mathbf{T}_{1 \text {, }}$ partitioned by $2 n-2$ vertical linear ordering strips by matrix \mathbf{U}_{11} with entries in $H_{m}(O)$. This matrix problem is equivalent to the following.

Given a rectangular matrix $\mathbf{B}-\left(\mathbf{B}_{i j}\right)$ with entries in a skew field D that is partitioned into $2 n-2$ horizontal strips and m vertical strips.

Over this matrix one performs cadmissible transformations of the following tpes:
() righ ()-elementary transformations of ronss inside any horizontal strip;
2) lefi D-elementary transformations of columns inside any verical strip;
3) addition of columns in the i-th vertical strip multiplied on the right by elements of D to columns in the j-th horizontal strip. if $i \leq j$:
t) addition of rows in the i-th horizontal strip multiplied on the left by elements of O to rows in the j-th horizontal strip, $i \leq j$:
5) addition of an arbitrary row of the j-th horizontal strip multiplied on the left by elemens of $R-\operatorname{rad}$ O) to any row of the i-ith horizontal strip, if $i \leq j$.
By means of these transformations the matrix \mathbf{B} can be reduced to the form in which any block $\mathbf{B}_{i j}$ has the following form:

E	O
O	O

and up and down of the matrix \mathbf{E} in the matrix \mathbf{B} we have the ecro matrices. This means that the matrix \mathbf{T}_{1}, is decomposed into a direct sum of matrices of the form

\mathbf{E}	\mathbf{O}
\mathbf{O}	\mathbf{O}

Thus, for any indecomposable finitely generated A-module M the corresponding matrix \mathbf{T} has a finite fixed number of elements distinct of zero that is only depend on n. Therefore A is a ring of bounded representation type.

Lemma 2. Let O be a discrete valuation ring with a skew field of fractions D, and the radical $R=\pi()=O \pi$. Then the ring

$$
A=\left(\begin{array}{ccc}
I_{i_{1}}(O) & 0 & M_{1} \tag{2}\\
0 & H_{n_{2}}(O) & M_{2} \\
0 & 0 & T\left(S_{1}\right)
\end{array}\right)
$$

corresponding to the diagram:

and $T\left(S_{1}\right)$ is a ring corresponding to the diagram

where M_{j} is a $\left(H_{i,}(O), T\left(S_{1}\right)\right.$)-bimodule $(i=1.2)$, is a ring of bounded representation type for any directions of arrows in the diagram S_{1}.

Proof. Let M be a finitely generated right A-module that is given by the set:

$$
\left\{t_{11}, \ldots . . t_{1 n_{1}} ; l_{21}, \ldots . t_{2 n_{2}} ; l_{1}, \ldots, l_{n-1} ; \mathbf{T}\right\}
$$

Renumber the vertices of the poset S in such a way that the point $1 \in S$ has weight $H_{n_{1}}(O)$ and is connected with the poimt i by an arrow, and point $2 \subseteq S$ has the weight $H_{n_{2}}(O)$ and is connected with the point j by an arrow, i.e. the diagram has the following form:

Then the matrix $\mathbf{T}=\left(\mathbf{T}_{i j}\right)$ is an upper block-rectangular matrix with elements in D partitioned into $n+1$ horizontal and vertical strips in which T_{j} are identical matrices ($i=1, \ldots, n+1$) and in the first (second) horizontal strip all blocks are zero exeept the first (second) and the i-th (j-th) bloeks.

The matrix ol transtormations $\mathbf{U}-\left(\mathbf{U}_{11}\right)$ is a block diagonal matrix. where \mathbf{U}_{11} is an invertible matrix with entries in $H_{n,}(O)(i=1,2)$, and $\mathbf{U}_{n}(i=3 \ldots, n+1)$ are invertible matrices with entries in D.

Consider the matrices \mathbf{T}^{\prime} and \mathbf{U}^{\prime} that are obtained from the matrices \mathbf{T} and \mathbf{U} correspondingly by erasing the first horizontal and the first vertical strip. The reduction of the matrix \mathbf{T}^{\prime} by the matrix \mathbf{U}^{\prime} leads to the matrix problem described in the previous lemma. In according with this problem the matrix $\mathbf{T}_{1,}$ is partitioned into t horizontal strips. Thus we obtain the following matrix problem.

Given a block-rectongular matrix $\mathbf{B}=\left(\mathbf{B}_{i j}\right)$ with entries in a skew field D that is partitioned into t horizontal strips and n_{2} vertical swips (where $t=n+n_{1}-1$).

Over this matrix one performs udmissible transformations of the following topes:

1) right ()-elementory fransformations of colunns inside any vertical strip:
2) left D-elementary tronsformations of rou's inside any horizontal strip $\mathbf{B}_{\text {ir }}$ if $i \notin$ $\left\{k+1, \ldots, k-n_{1}\right\} ;$
3) leff O-elementary transformations of ron's inside any horizontal strip $\mathbf{B}_{i j}$, if $i \subset$ $\left\{k+1 \ldots . k-n_{1}\right\} ;$
t) addition of columm: in the i-fh vertical strip multiplied on the left by elements of D to rows in the j - h vertical strip, if $i \leq j$:
4) addition of colums in the j-th vertical strip multiplied on the right by elements of $R-\mathrm{rad}$ O to columns in the i-th vertical strip. if $i \leq j$;
5) addition of rows in the $k-i$-th horizontal strip multiplied on the right by elements of O to rows in the $k+j$-th horizontal strip, if $i<j$, chnd $i, j \in\left\{1.2 \ldots, n_{1}\right\}$;
${ }^{7}$) addition of rows in the $k \mid j$-th horizontal strip multiplied on the right by elements of $R-\operatorname{rad} O$ to rows in the $k+i$-fh horizontal strip. if $i \leq j$, and i, j $\in\left\{1,2, \ldots n_{1}\right\} ;$
6) addition of rows in the i-th horizontal strip multiplied on the right by elements of D to rows in the j - 1 h horizontal strip, if $i \leq j$, and $i . j \in\left\{k+1, k-2, \ldots k+n_{1}\right\}$.

Using these transformations, the matrix \mathbf{B} can be reduced to the form in which any block $\mathbf{B}_{i j}$ has one of the following forms:

E	\mathbf{O}
\mathbf{O}	\mathbf{O}

or

$\pi^{\mathrm{m}} \mathrm{E}$	\mathbf{O}
\mathbf{O}	\mathbf{O}

and up and down. on the left and on the right of the matrix \mathbf{E} (or $\pi^{112} \mathbf{E}$) in the matrix \mathbf{B} we have the zero matrices. This means that the matrix $\mathbf{T}_{1 i}$ is decomposed into a direct sum of matriecs of the these forms.

Thus, A is a ring of bounded representation type.
Lemma 3. Let () be a discrete valuation ring with a skew field of fractions D. and the radical $R=\pi O=O \pi$. Then a ring

$$
A=\left(\begin{array}{ccc}
H_{m,}(O) & M_{1} & M_{2} \tag{3}\\
0 & D & 0 \\
0 & 0 & D
\end{array}\right)
$$

corresponding to the diagram

$$
\bullet \hookleftarrow \longrightarrow
$$

where M_{i} is a $\left(H_{m}(O) . D\right)$-bimodule $(i=1,2)$, is a ring of bounded representation lype.

Proof. Let M be a finitely generated right A-module that is given by the set:

$$
\left\{l_{1}, \ldots, l_{m} ; l_{1}, l_{2} \div \mathbf{T}\right\}
$$

in which a block-rectangular matrix \mathbf{T} has the following form:

\mathbf{E}	\mathbf{T}_{12}	$\mathbf{T}_{1 ;}$
\mathbf{O}	\mathbf{E}	\mathbf{O}
\mathbf{O}	\mathbf{O}	\mathbf{E}

and $\mathbf{T}_{12}, \mathbf{T}_{13}$ are matrices with entries in D.
The matrix of transformations \mathbf{U} has the following form:

\mathbf{U}_{11}	\mathbf{O}	\mathbf{O}
\mathbf{O}	\mathbf{U}_{22}	\mathbf{O}
\mathbf{O}	\mathbf{O}	\mathbf{U}_{33}

where \mathbf{U}_{11} is an invertible matrix with entries in $H_{m}(O)$, and $\mathbf{U}_{n \prime}(i=2,3)$ are invertible matriees with entries in D.

The reduction of the matrix \mathbf{T} by the matrix \mathbf{U} leads to the following matrix problem:

Given a matrix \mathbf{T}^{\prime} with entries in D paritioned into 2 vertical strips and m horizontal strips.

Over these matrices one performs admissible transformations of the following tpes:

1) right D-elementary transformations of columns inside amy vertical strip:
2) left O-elementary transformations of rous inside any horizontal strip;
3) addition of rows of the i-th horizontal strip multiphed by elenents of o to rows of the j-th horizontal strip;
4) addition of rows of the j-th horizontal strip multiplied by elements of $R-$ rad O to rows of the i-th horizontal strip if $i<j$.

Using these transformations the matrix \mathbf{T}^{\prime} can be reduced to the direct sum of the following matrices:

$$
[\mathbf{E} \mid \mathbf{O}] ; \quad[\mathbf{O} \mid \mathbf{E}] ; \quad[\mathbf{E} \mid \mathbf{E}] ; \quad\left[\begin{array}{c}
\mathbf{E} \mid \pi^{k} \mathbf{E} \\
\mathbf{O} \mid \mathbf{E}
\end{array}\right]
$$

Thus, A is a ring of bounded representation type.
Lemma 4. Let O be a discrete valuation ring with a skew field of fractions D and the radical $R=\pi()=\sigma \pi$. Then the ring

$$
A=\left(\begin{array}{cc}
H_{m}(O) & M \tag{4}\\
0 & T\left(S_{1}\right)
\end{array}\right)
$$

corresponding to the diagram:

and $T\left(S_{1}\right)$ is a ring corresponding to the diagram of the poset S_{1}

where M is a $\left(H_{m}(O) . T\left(S_{1}\right)\right)$-bimodule, is a ring of bounded representation type for any directions of arrows in the diagram S_{1}.

Proof. Let M be a finitely generated right A-module that is given by the set:

$$
\left\{l_{1, \ldots, l_{m j} ;} ; l_{1}, \ldots, l_{j l \mid} ; \mathbf{T}\right\}
$$

Renumber the vertices of the poset S in such a way that the point $I \in S$ has the weight $H_{m}(O)$.

Then the matrix $\mathbf{T}=\left(\mathbf{T}_{n}\right)$ is an upper block-reetangular matrix with entries in D partitioned into n horizontal and n vertical strips in which $\mathbf{T}_{\text {I }}$ are identical matrices ($i=1, \ldots . . n$) and in the first horizontal strip all blocks are zero except the first and the i-th blocks.

The matrix of transformations $\mathbf{U}=\left\{\mathbf{U}_{n \prime}\right)$ is a block diagonal matrix, where \mathbf{U}_{n} is an invertible matrix with entries in $H_{m}(O)$. and $\mathbf{U}_{n}(i=2, \ldots, n)$ are invertible matrices with entries in D.

Consider the matrices \mathbf{T}^{\prime} and \mathbf{U}^{\prime} that are obtained from the matrices \mathbf{T} and \mathbf{U} correspondingly by erasing the first horizontal and the first vertical strip. Note that the reduction of the matrix \mathbf{I}^{\prime} by the matrix U^{\prime} leads to the representation of the quiver Q of the form:

By the Gabriel theorem, this quiver has ($n-1$) n indecomposable representations. In accordance with these representations the block \mathbf{T}_{1}, is partitioned into $2(n-1)$ vertical strips:

$$
\begin{array}{|l|l|l|l|}
\hline \mathbf{B}_{1} & \mathbf{B}_{2} & \ldots & \mathbf{B}_{2 \mu-2} \\
\hline
\end{array}
$$

Moreover, the admissible transformations on the columns of blocks B_{i} are in one-to-one correspondence with the poset $S_{工}=\left\{\delta_{1,} \delta_{2}, \ldots, \delta_{2 u-1}\right\}$ whose diagram has the following form:

That is, if $\delta_{1} \leq \delta_{1}$ in S_{2} then any column in the block B_{s} can be added to any row of the block B_{1}. Taking into account the form of the matrix T, we obtain that our problem leads to the following matrix problem.

Given a rectangular matrix \mathbf{B} with entries in a skew field D which is patitioned into $2(n-1)$ verfical strips and m horizontal strips.

Over this matrix one performs admissible transformations of the following topes.

1) leff O-elementary fransformations of rows inside any horizontal strip,
2) right D-elementary ronsformations of columms inside any verical sorip.
3) addition of rows of the i-th horizontal strip multiplied on the left by elements of O to rou's of the j-th horizontal strip. if $\delta_{1} \leq \delta_{i}$ in S_{2};
4) addition of colunns of the i-th vertical strip multiplied on the right by elements of D to columus of the j-th vertical strip, if $\delta_{1} \leq \delta_{i}$ in S_{2} :
5) addition of rows of the j-th horizontal strip multiplied on the left by elements of $R=\operatorname{rad}$ O to rovs of the $i-t h$ horizontal strip. if $i \leq j$.

Using these transformations the matrix \mathbf{B} can be reduced to the form in which the corresponding matrix $\mathbf{T}_{1 j}$ is decomposed into a direct sum of the matrices of the following form:

$$
[\mathbf{E} \mid \mathbf{O}]: \quad[\mathbf{E} \mid \mathbf{E}] ; \quad\left[\begin{array}{c|c}
\mathbf{E} & \pi^{k} \mathbf{E} \\
\mathbf{O} & \mathbf{E}
\end{array}\right]
$$

Thus, A is a ring of bounded representation type.
Now the sufficiency of the main theorem [10. Theorem 1] follows from theorem 5 and lemmas 1-4.

Conclusions

In this paper we prove the sufficiency in the main theorem [10. Theorem 1] for the right hereditary semiperfect semidistributive ring $A=A(\mathrm{~S}$. ()). Taking into account that the necessity in this theorem was proved in the previous paper [10], the full proof of this theorem is obtained in the case when all discrete valuation rings corresponding to minimal elements of the poset S are the same. This theorem gives the structure of these rings in terms of Dynkin diagrans. and also of diagrams with weights that were introduced in [14]. The proof of this theorem was obtained using the reduction to mixed matrix problems over a discrete valuation ring and its skew field of fractions and using the results about representations of quivers and species in $[1,6-8]$.

References

11] Gabrie] P., Indecomposable represertations I. Manustriplia Math., 1972, 6, 71-103.
[2] Nazarova I. A.. Roiter A.V.. Representations of partially ordered sets, 7ap. Kauchn. Sem. I OMI 1972, 28. 5-31 (in Russian) (English transl.: J. Soviet Math. 1975. 3. 585-606).
13] Bermstin L.N.. Gcl'tand 1.M., Ponomarev V.A.. Coxeter functors and gabricl's theorem. Uspekhi Math. Nauk. 1973. 28. 2(170). 19-33 (in Russian) (tinglish translation: Kussiatn Math. Survey 1973. 28. 2. 17-32).
|4] Dlat V.. Ringel (.M. On algetras of finite representation 1vpe. J. Algebra 1975, 33. 306-394.
[5] D]ab V.. Ringel C.M., Indecomposahle representations of graphs and algebras, Memors Amer. Nath. Soc. 1976. 173.
[6] Dowbor P.. Ringel (.M. Simson D.. Hereditary Artinian rings of finite representation type. I ceture Notes in Math.. vol. 832. Springer-Verlag 1980. 232-241.
[7] Dowbor P.. Simson D.. A characterization of heredilary rings of linite representation type, Bull. Ancr. Math. Soc. 1980. 2. 300-302.
[8] Oppermann S': Auslander-Reiten Theory of Representation-Directed Artinian Rings. Ph.D. Thesis. Liniversits of Stutlgare 2005.
[9] (iubareni N., Finitely presented modules over right hereditary SPSO-rings. Scientitie Rescarch of the Institute of Mathematics and Computer Science 2010. 2(9), 49-57.
|10|Gubareni … On rieght lereditiry SPSD-rings al bounded representation type I. Scientilic Research of the lnstitute of Mathematies and Computer Seience 2012, 3(12).
[11] Gubareni N.. Structure of tinitely generated modules oser right hereditary SPSD-ring. Scientific Research of the lnstitute of hathematics and Computer Science 2012. 3(12).
[12] Dokuchacy N1.. Gubareni X... Rings connected with finite posets. Scientific Research of the Institute al' Mathematics and Computer Science 2010. 2(9). 25-36.
|13] Hazewinkel M.. Gubateni N.. Kirichenko V. V'.. Algebras. Rings and Modules. Vol. 2. Springer 2007.
[14] Gubareni N.M.. Right hereditars rings of bounded representation type. Preprint-148 Inst. Electrodynanics Akad. Dank Ukrain, SSR. Kiev 1977, 48p (in Russian).

