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Abstract. A solution of the problem of the thermally induced transverse vibration of an
annular plate is presented. One assumes that the plate temperature changes by periodic
oscillation of the heat stream in a ring region on one side of the plate. The axisymmetric
temperature distribution in the plate is determined by the conductivity equation and corre-
spending initial and boundary conditions. The heat conduction problem in the plate and the
problem of tranusverse vibraticn of the plate is solved by using the Green’s function method.

Introduction

The problem of thermally induced vibration ol a plate couples the heat condue-
tion problem in the plate and the problem of mechanical vibration of this plate
caused by thermal stresses. Such vibration problems are the subject of many papers
(for example references [1-3]).

A study of thermally excited vibration of rectangular and circular plates was
presented by [gnaczak and Nowacki in paper [1]. The considerations were confined
to vibrations of plates forced by a temperature field harmonically varying with
time. The solutions of the problems were found in the form of series by applying
the finite sine transformation (for a rectangular plate) and the finite Hankel trans-
formation (lor circular plate). In paper |2] by Nakajo and llayashi, the thermally
induced vibrations of simply supported and clamped circular plates were consid-
ered. In the analysis. it is assumed that the distribution of temperature is linear
through the thickness and along the radius, To solve this problem, authors used an
analytical method and the finite element method. Within the paper |3| Kidawa-
-Kukla presents a solution of the problem of the thermally induced vibration of
a circular plate which is subjected to the activity of a point heat source moving on
the plate surface along a concentric circular trajectory,

In this paper, a solution to the problem of the thermally induced vibration of
a thin annular plate is presented. The thermal moment caused by the temperature
distribution in the plate is determined and displacements of the plate induced by the
thermal moment are derived. The solution of the problem is obtained by using
time-dependent Green's functions.


czest.pl

66 ). Kiduwa-Kukla

1. Heat conduction problem

An annular isotropic plaie of an unilorm thickness » with inner radius « and
outer radius & (Fig. 1) is considered. One side of the plate is subjected by a heat
souce in an annular region of the plate. The axisvmmetric temperature distribution
in the plate is zoverned by the heat conduction equation which in cylindrical coor-
dinates is as {ollows

Sl g

71 1 31
- +—g{,r.:.!):—(7
Az k K 7t

VT +

(1)

where 7(r.z.t) is temperature of the plate at the point (#,Z) at time £, & is ther-
mal conductivity, & s thermal dilfusivity, g(r.z.f) represents a heal generation
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term and V* = —+——_ The heat generation term is assumed in the form
arsoorar

glr.z.0) = ol0)8r 8z — h) (2)

where € characterises the strcam of the heat. &7 J is the Dirac delta function, ¢(7)
is the function describing the change with time of the heat stream
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Fig. 1. A schema of an annular plate

Moreover., the following initial and boundary conditions are assumed:

T(r.z,0}=0 (4
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where «y is a heat transfer cocfficient, 7, is the known temperature of
a surrounding medium,
The solution of the problem (1) and (4)-(7) can be presented in the form [1]
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where (7 1s the Green’s function {(GT) corresponding to the problem of the heat
conduction in cylindrical coordinates, Taking into account the function g given by
(2) in equation (8), one obtains
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The Green's function (7 satislics the zero initial and boundary conditions analo-
gous to the conditions {4)-(7). The GF for annulus with radial and angular depend-
ence is given in paper [3]. For the considered axisymmetric case ot annular plate
the needed GT can be constructed as a product ol two one-dimensional GFs. ie.

Glr.o.r. 2 oy =G e )G, (2.1 2 1) (10)

The Green's function Gy, can be written in the form [4]
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(m=1,2,...) are roots of the equation
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The Green’s function (77 has the form |4
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and y, {(n=1.2...)) are roots of the equation
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The temperature distribution in the plate is obtained by substituting {10)-(11)
and (14} in equation (9)
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where (it is assumed: £, 0)
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a

=0

For ¢(7)=sinw 7, wec have

P, )= , ( i —mcosmi +dsinant )
dt+m’ ’
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where d = a{ﬁ"’ y"J.
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2. The problem of vibration of the plate thermally induced by
sinusoidally varying heat stream

‘I'he vibration of the considered plate is governed by the differential equation

’\2,

L=V, (19)
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whete D is a flexural stiffiness, g is a mass per unit arca of the plate. w(r.®J) is
a displacement of the middle surface of the plate at the point (#.9) at time £, and
M, is a thermal moment. The thermal moment is defined as [1]
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The presented study deals with the annular plate with simply supported edges.
which means that the following boundary conditions are satisfied
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Moreover, the zero initial conditions are assumed
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Taken into account equation (1 7) and (20), we obtain the thermal moment
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where

A = {sin(,v" }- fg—'cos()',, ]} + ” [cos(y,, }- B siny, ) -1

i 113 s n

‘The solution to the vibration problem (19}, {21)-(22) of the annular plate can be
expressed in the form

ih
wir.g.1)= ” VM, (0.0)GAr .t p.1)dpdr 24
[$053]

where G, is the Green's function corresponding to the considered vibration prob-
lem.

3. The Green’s function

The differential equation for the Green's function G (#.£; p.7) has the form
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The function G, satisfies the zero initial and homogeneous boundary conditions
analogous to the conditions (21)-(22). i.c.
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GAr0)=0, &l =0 (28)
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The solution of the initial-boundary problem (26)-(28) can be presented in the
{orm

GoAr.t)= i o)) (29)

=1

where (., (r) are the eigenfunctions of the following boundary problem
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The general solution of the differential equation (30) can be written in the form
0,0)= ¢4+ Cx )+ O CR () (33)

where /4. Y, are the Bessel functions of order zero, and {,. K, are the modified

Bessel functions of order zero. Substituting the function (31) into the boundary
conditions (31)-(32), we oblain a system ol homogencous equations
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The non-trivial solution of the system (32} exasts for these 4, , which satisfy the

cquation

det|4, | =0 (35)
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Roots of the equation (33) are determined numerically. The eigenfunctions corre-
sponding to the roots are derived by substituting a solution of the system (34) in the
equation (33). After transformations, the cigenfunctions can be presented in the

form
0. =Coy (2, + Cox {2, )+ Tt (2,)+ Tk (4 ,r) (36)
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Note that the functions R, satisfy the orthogonality condition
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Taking into account (23)-(24) and using the orthogonality condition {37) in
equations (20) and (22), we obtain the differential equation

o) - 0,(r)

Tﬂ T, st -1) (39)
1,. b M ”ﬂ/‘rm("mn
and mitial conditions
dr,
r(0)=o0, =0 (40)
dr|_,
The solution of the initial problem (39)-(40) has the form
| 0,(p) ’
1, (!) ————sin !2 r)H(I (41}
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where 2 = P A} and A denotes the 1eaviside function.
h 1t

Finally. on the basis of cquations {29), (36), (41}, the Green's [unction for the
simply supported annular plate can be written in the lollowing form

G (r.p.r)= Hz(;;:)z - (),,() sin 2, {r—7) (42)
a-1

Taking into account equations (23) and (42) in equation {24, we obtain the dis-
placements of the plate caused by the thermal moment.

Conclusions

The solution of the problem of transverse vibration of an annular plate, thermal-
Iy induced by a heat stream which acts on a concentric annular part of the plate and
changes with time sinusoidally, was presented. The problem was based on the dif-
ferential equations of the heat conduction and the transverse vibration of the plate,
which were complemented by initial and boundary conditions. The temperature
distribution and the transyerse deflection of the annular plate in an analytical form
were obtained by using the properties of the Green’s function. The presented solu-
tion can be used for numerical investigation of the thermally induced vibration of
the plate.
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