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Abstract. We obtain an integral representation of the classical solution of the conjugation
problem for the second order parabolic equation with derivatives with respect to tangent
variablcs at the conjugation conditions. Using this solution, we construct the Teller semi-
group to which there corresponds a ditfusion process with a piecewise-constant generalized
diffusion matrix and a generalized drifl vector.

Introduction

In this paper, we consider the problem of construction of the Feller semigroup
to which there corresponds a multidimensional continuous Markov process such
that in the lower and upper halfspaces its parts coincide with given processes of
Brownian motion and the behavior of the process. after its exit onto the commaon
boundary of the given domains, is determined by two conjugation conditions given,
that should be satisfied by the required semigroup. Brownian motion processes are
given by their generators differential operators with zero transition vectors and
distinet constants diffusion matrices. Note that the first of conjugation conditions is
an expression of the Feller property of the required process. and the second condi-
tion corresponds to one of the versions of general conjugation condition of the
Wentzel type (see | 1. 2]). In the considered case, the given condition is determined
by a hincar differential operator with constant coclficients. that contains normal
derivatives and first and second order derivatives with respect to tangent variables.
This means that, among the possible extensions of the process of Brownian motion
at the points of (he hyperplancthat separates the upper and lower halfspaces, there
is only their partial reflection acting on the normal directions along with drift and
ditfusion along the boundary.

The formulated problem can also be called either a problem on gluing ditfusion
processes or a problem ol construction of a mathematical model ot diffusion phe-
nomenon in the environment with diaphragm [3, 4]. In the paper, we use analytical
methods for its solution. With this approach. the given problem can be practically
reduced to investigate the corresponding conjugation problem for a second order
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linear parabolic equation with discontinuous coefficients. We establish classical
solvability of the latter problem by the method of the limiting integral equation
using ordinary parabolic simple layer potential. Note also that the assumption that
the coefficients of the equation and the Wentzel boundary operator are piecewise-
constant and constant respectively allow us to apply the Fourier-Laplace integral
transformations to the solutions of the system of integral equations to which the
initial problem is reduced.

Recall that a similar problem was already investigated earlier in [4]. However,
a special fundamental solution was used therein which was constructed by the au-
thor, not an ordinary fundamental solution of a uniformly parabolic operator, as one
of the kernels of the simple layer potential in construction of the integral represen-
tation of the regularized semigroup. We also distinguish the paper [5], where the
problem of gluing of diftusion process is considered in martingale setting.

1. Notations, the problem formulation

The following notations are used in this paper: R = R! is a real line; € is
acomplex plane: R® is a real d-dimensional Euclidean space of points x
= (xg, ., %), x| =(xf+ ---+x§)1/2; D;=RE={xeR%:x; <0}, D,=
=RI={xecR%x; >0} § =R%*! ={xe R%x,; =0} points in R are
noted as x’ = (Xq,...,%Xq-1). such that x = (x",x5); (x,¥) =%, x;y; for
{x,y} € R? and {x',y") = 3¢ 1wy for {x',y'} € R w(x') = (vi(x’))f:\
vi(x")=0.i€{l,..,d -1}, v4 = 1 is a unit normal vector to § in the point x’
directed inside the domain D,: points in RY*! are denoted as (¢ x) =
= (t,x1, -, %) = {t,x’, x4), also ¢ is interpreted as time coordinale and X4, ... Xg
are spatial values: REH = (0, 00) x R%, RS = (0,00) x RA™L, o = (0,0) x
D,. 1 €{1,2): for some fixed T > OR$™ = (0,T) x RY. RE = (0,T) x R,
12(;') =(0,T) xD,. L €{1,2}; Qis a closure of a set Q; D} =D, =—, D; = 2

8

TS
D; = %‘;"; {i,j} € {1, ...,d}., are operator of differentiation; D} and DZ are the
symbols of the partial derivative of the order r with respect to t and any partial of
the order p with respeet 1o x respectively, where ¥ and p are nonnegative integers:
V'=(Dy, .., D4_y) is a spatial gradient; AL £(-,x) = F(, x) = F(, %). AE f(t,) =
= f(t-) — f(E): C(Q) (C(Q)) is the set of all continuous functions on € ({1},
where (0 is a subset of the region R&FL: ¢12(Q) (€12(£1)) is the set of all continu-
ous functions on Q (@) that have continuous on § (£) derivatives DY and Dﬁ.
r=1p<£2:C (R“) is a space of bounded and continuous in R functions ¢
with norm ||@ || = sup,gal@|. By £(t,0") we will denote the Fourier transform by
variable x* of the function f(t, x'). and by f:(p, ¢’) we will denote a Laplace trans-
form by variable ¢ of the function f(t, ¢'):
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o' € R% 1, p e C, where C, ={p € C: Rep > al. ais some nonnegative con-
stant that is defined by a function f. Everywhere below € and ¢ are some positive
constants that do not depend on (¢, x) and as a rule their values are not inportant 1o
us. Other notations will be explained as soon as they have arisen.

Let us continue with the problem formulation. Assume that in the inner points
of domains D; = RY and D, = R$. d > 2. that are divided by a hyperplanc
S = R4, arc given generating differential operators of some Brownian motion
processes Ly and L, respectively:

L—libw() o 1=1,2 1
I_zij_l U X axiaxjr — L4y ()

where bi(;) are real numbers and matrix B, = (bl(;)) is symmetric positively de-
tined. Assume also that numeric parameters f;;, «; € R, {f,j}c{1,...,d — 1}, and
@, L€1{1,2}, with g; 20 and g; + g, # 0 are given. and matrix g = (B;;) is
symmetrical and positively delined. They will be used Lo deseribe propertics of the
diaphragm that is situated on § and it affects a diffusing particle only when it
reaches the diaphragni, We set up a problem to investigate the existence of a Feller
semigroup Tp, ¢ = 0. that generates a class of continuous Markov processes in R¢
such that their parts in domains D; coincide with Brownian motion processes that
are controlled by the operator L,. I = 1, 2.

In this paper. one such semigroup will be constructed by analytical methods un-
der assumptions that the function u(t,x) = T,@(x). @ € Cb(le). is a solution of
the next parabolic conjugation problem:

Dou(t,x) — Lu(t,x) =0, (t,x)e 0¥, 1e{1,2}, 2)
u(0,x) = ¢(x), x € RY, {3)
u(t,x, 0 =) =u(t,x,0+4), (t.x)€RY, {4
1 =1 d=1
Lou{t,x',0) = 5 Z BiDyju(t, x',0) + z a;Dou(t, x',0) —
i'j:l i=1 {S)

— g Dgqu(t,x',0 =) + g, Du(t,x’,0+) = 0, (¢,x") € RE,

where u(t,x', 0 =) (Dyu(t, x’, 0 —)) and u(t, x’, 0 +) (D ult,x’',0 +)) are bound-
ary values of the function u(t, x’,0) (Dyu(t,x’,0)) as x approaches to {x',0) €
R~ from inside D, and D, respectively.
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Note that 1if the semigroup satisfies equation (2) then the sought process coin-
cides with given Brownian motion processes in Dy and D,: also the equation {3)
corresponds to the fact that T, = 1. where { is an identity operator. Besides that, the
formulation of the problem (2) — (5) requires that the function u(t, x) and its deriv-
atives Dyu(t, x), i € {1, ..., d}. change continuously as it moves through §. Proba-
bilistic interpretation of conditions (4) and (5) and proper comments were stated in
the introduction.

So, we are interested in classical solution of the problem (2)-(5) that is bounded
by a spatial variable and the function u(t, x) belongs to

c2(a®) ne(adt),

and its derivatives Dyu(t, x).D;;u(t, x).{i,j} < {1,..,d — 1}. exist and are contin-
uous in all points of the domain (¢, x) € R&H.

2. Solution of the parabolic conjugation problemand construction
of genceralized diffusion process

We will use a method ot boundary integral equations to prove a classical solva-
bility of the problem (2)-(5).

Theorem 1. Let the coclTicients ol the operators Ly, € {1,2} from the problem
(2)-(5) are real constants that construct a positively defined symmetric matrix B,.
and numeric parameters §,;. ;. {f,j} < {1,...,d — 1}, and g,. [ € {1,2}, satisfy the
next conditions: §;; € R. @; €R. ¢, 2 0, g, + g, # 0 and the matrix § = (8;;) is
symmetric and positively defined. Then the problem (2)-(5) has a unique classical
solution for every {unction ¢ € €, (R%) and next estimation holds:

lu(t, )| < Cllgll,  (tx) € R, (6)

The proof of the theorem is in receiving an explicit form of the solution as
a sum of Poisson potential and simple layer potential, then a respective estimates
are proved. Let g;(¢,x,y). L € {1,2}. £ > 0, x € RY, y € R? is a fundamental solu-
tion (f.s.) of the equation (2):

gty =g/t x—y) =g(t,x" =y x4 —ya) =
d 1 1
= (2nt) 2(detB;) 2exp (_Z_t (Bf] (x—y)x— y))

Consider the Poisson potential and simple layer potential

uOl(tl x) = Jdgl(‘ti X, J’)(P(J’)dJ’: (t, X) € Rgflr le {112}1 {7)
R



Feller semigroup for diffusion process piesewise-constant generalized diffusion matnix ... 79

i
uy(t,x) = J- drf Gt =1, 0,y Wi,y 0)dy', (t,x) € RE, L€ {1,2).(8)
0 ra=1

llere ¢ s the function from (3). and density functions Vp,l € {1,2}. arc 1o be de-
fined. Notice that dependence of densities V. { € {1,2} on initial function ¢ from
(3) will be defined in the problem by conjugation conditions (4), (5).

Let us note some properties of the potentials wg;. ty,, ¢ € {1,2}, that follows di-
rectly from the properties of fis. go; (see [6, Ch. 1V] and [7. 8]). In particular,
if p € Cp(RY), then the functions ug(t, x), 1 € {1,2}, satisfy cquation (2) in do-
mains (¢, x) € 0%, initial condition (3). and in every domain of next form (¢, x)
€ (0,T] x R%next inequality holds

_2r+p
IDI D¥ug (£, )| < Cllglle™ 2, )

where v and p are nonnegative integers.

Further, let us assume a prioti that functions Vi(t,x', @) = V,(t.x"), I € {1,2},
arccontinuous in the domain (¢, x") € RY, and when (¢, x") € (0, T] X RY™! next
inequalities holds

Vi, x)] < C llellt™=. (10)
Then the functions uq;{t, x). [ € {1,2}. satisly the equation (2) in domains (£, x) €
QW initial condition 4, (0,x) = 0, x € R, and next inequality holds

luy (8, )] < € llgll,  (¢,x) € (0,T] x RY. (1)

We will also use formulas of jump of conormal derivatives of simple layer po-
tential on the boundary § = R4~ For this, for x’ € R%"!, we define vectors
Ny = B;-v. L € (1,2}, tha arc called conormals. Due 1o the assumption ol the
Theorem | (Byv,v) > 0. [ € {1,2}, so that both conormals have ditcctions inside
the domain D,. A derivative of some function v(x}.x € R% in the direction of
every conormalN,, ! € {1,2}. is defined by a formula

dv(x)
aN,

d 1
_lbi(d)D,;v(x). (12)

[n the sought case for conormal derivatives of simple layer potentials u,;(¢, x},
[€{1,2). fort > 0 and x = (x’,0) € R%! we will obtain

du,, (t,x",0F)

3, = +V,(t,x"), le{1,2). (13)

As potentials ug; and wq,. [ € {1,2}, satisfy the mentioned conditions then we
can (ry 1o Iind a solution ol the problem (2)-(5) in next form
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u(t, x) = (¢, %), (t.x) € 0O, 1€ {12}, (14)
whete
w (6, x) = up (L, x) + uy (t, x). (15)

Now we have to find unknown functiens V; and V, such that conjugation condi-
tions {4) and (5) are satisfied for u(t, x). Substituting expressions for w;(t,x).
{ € {1,2} in these conditions after some transformations we will obtain

2 t
Z{ ](—1)"‘f drfw qt—1.x" =y, 0Vi(r,y)dy =
. 1] pee—1

(16)
= u.oz(t,x', 0) - u{)l(tu x’! D)'
2 1 d-1
z " [(Ez lf(U)Dij+Z, ai(O)Di) g (t.x',0) +
=1 f.j=1 =1
duy (6,x',0) Vi(t,x") (1
o QU x’,0) - Wil _Z (0
+(-1) 3, bég +{3 e ﬁ Dy; + (17)

d-1 t
+Z ai(O)Di>_f dr g;(c—r,x’—y’,O)VI(r.y’)dy'} =
i=1 0 R4-1

where
0 _ yib}
a4 = -+ N D' bﬁ',zeu d—1}.
© _ By 1+q G-y
By =t el d =1k == = q= o

So trom conjugation conditions {4). (5) we have obtained a system of equations
(16), (17) with respect to unknown functions V;, 1 € {1,2}. As one can see, the first
equation is an integral Volterra equation of the first kind, and the second one is an
integral-differential Volterra equation of the second kind. We will show that the
system of equations (16). (17) can be solved using the integral Fourier transform-
with respect to the variable x’and the integral Laplace transtorm with respect to
variable t. We have agreed to denote Fourier-Laplace transforms of the function
F(t,x") byf (p,6") (see Ch. 2). Obvicusly we will consider that this transformation
exists for every function from equations (16} and (17}. After application of the
Fourier-Laplace transtorm to every equation in the svstem (16} and {17) it trans-
forms into algebraic system of equations with respect to the images V,(p,a").
{ € {1,2}. and we will obtain
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Vi(p.o")y = 2b5)(p + ap) [—9: (.0, 0)ig (p.c”, 0)

(18)
+Gi(p,oWp.oh)],  1e(12},
where
7 ' 2]/2 ® ag:z(p' 4 ’!xd - yd) S
Yip,o')= h(T) an, lxy=0 " @(c", ¥q)dyq —
2 651(;0,0' X4 = Ya)
»D 3 lxq=0 " Pla", yaddya s
Gip.a') = ( b.f.,}(p+af) e (p+a1)+n (2) pta) +K|
dd dd
pBp®
@ = -(H, o’,a,  H = h(" L
; =1 D
1 [ s on 41 ’ oy @1
K=3(a, oV +itare),  fo=(6") . @=(«")_

Notice that for obtaining and solving the system with unknown V;(p,¢"), [ € {1,2}
we have used known properties of Fourier and Laplace transforms [9] along with
the next relation for image of I's. which was cstablished by us g,(t,x) =
= g[(t,X',Xd), te {1:2}

1 d-1, () 3
= (oD , Tja 9%
,g{(P,O' 'xd) - ( bda(p + al)) EXpytxyg (;) I dl (l) (p + ai)
= bag
From equalities (18) and well-known formula lor the Fourier-l.aplace transform

ol convolution of (unctions lollows that the solution of the system (16)-(17) can be
written in next form

4
V,(t,x") = 2680, (2, %) f dr f [—g,(t —7,x" — ¥, 0) X ug,{z,¥",0)
0 [ (19)

+ Gt —1,x" =y W y)dy', €12},

where gy arc uniformly parabolic operators,
1 d-1

it
m=0—3 ij= 1h 0y

2 d Ly
Y(ry') = Z (-1 )lbz?)f %}:Z)q)(z)dz.



82 B. Kopy ko, A Novosyadloe

and G,;(t,x"} are originals of the functions 5,(;0.0'). We will use next equality to
find them

1

. * . 7z
Gi(p,a)= f eXP{—Ku}(£b§3(p+az)) expq—uly
0

2
tye [ e +az)
bgq

[s+]
6(t,x) = f du ] Gor(tx’ =y WG y)dy’, 1€ (12}, (20)
o Rd—l

Hence we have

where

2
Goi(t, x",u) = (¢, x", 1) = exp {—%}goz(td',{)).

dd
if Y = 0.
\ ’ _b(s-l) t ! s i [
C’Ol (C,X ,u) = T‘:i—fo dr Iﬂgd—l FE (t -0X =Yy -u)DILFR—l (r.y ,u)dy Jf
Ya—t # 0,

go{u, ¥"} is a f.s. of uniformly parabolic operator

1 x—d-1 d-1
b 25" o, - Y e,
ij=1 i=1

So we have Tound the solution ol the system of ¢quations {16}, (17). Let us cs-
tablish the estimation (10). For this purpose we will represent functions Vi,
{ € {1,2}. in a torm of a sum of two terms V;; and V},. where

t
V(6 x') = —Zb‘(;g, ,u,(t,x’)f d‘rJ‘d 1gz(t —7,x" =y, Qug(r,y’, 0)dy’,
o Jpa-

and Vi, (¢, x") is represented by the same (ormula only we have an integral from the
product of the kernel Gy and density . el us investigate funclions Vi3 more pre-
cisely. If we will consider the equality

@ -1/2
gl(t_”f,x,—)".ﬂ) = (ZTIbdd(t—r)) h{(t—’r‘x'_y')’

where h; denotes a fis. of the operator g, then it is easy to oblain next [orm
for Vl'!
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1
i R fqzl( )2
—_— t,x)= =(t—17) 2dt X
200 " o 2

| 3
X [ h(t —1,x" =y )uy(r,v', 0)dy' + f =(t—1) Zdr X
Rd-1 % 2

7 ’ I’ B ! (21
xfd lhz(f—fax =¥ ) (uy(z.y' 0) —ug(r.x',0} - )
-

tq 3
—(Vypug(1.x',0),y" —x)dy’ + J; E(t —7)72x
2

ty 2
X (uoa(f'x'. 0)— um(t:X',O))df - (5) wg(t, x',0).

After we estimate every term in the right part of (21) using inequalities (9) and
known c¢stimations for (s. k.l € {1,2}, we assurce that incquality (10) holds for
Vi (6, x) with (t,x) € (0,T] x R!. Similarly one can investigate functions
Vi (t, x"). 1 € {1,2},and as conscquence obtain estimation (10) for them. This
means that our a priori assumptions on densities V;,! € {1,2}. that are included in
simple layer potential i; from (8), holds true. From it and from inequalities (9)
and (19) follows estimation (&) for the constructed solution of the problem (2)-(3).
Theorem 1 is proved.

From Theorem 1 follows that an operator semigroup {Ty)izg, On lunctions
@ E C,,(IR") can be defined by a relation 1,@{(x)} = u(t, x, @), where the function
w15 detined by formulas (14). (I15). (19). Using these formulas and acting like in
[3. 4. 10], we prove that the semigroup, constructed this way. generates some ho-
mogencous non-breaking Feller process on RY. Further, an additional investigation
of the semigroup shows that trajectories of the constructed process can be consid-
ered to be continuous and its transition probability P({t,x,dy) satisfies the next
relations:

1
limj e(x)[=1 (v —x, @P(t,x,dy) Y dx =
tlo e £ Rt

=c(@, ) f @(x’,0)dx’,
Rd-1

1
ltifg f“gd e{x) (;Ld('y —x,0)%P(t,x, dy)) dx =
= | pe@eon. e

+c(£0,0) fR d_lga(x’,O)dx’,
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where 8 € R?. ¢ is an arbitrary continuous compact function on R?,

(me i) e
@) 1)
«/bdd + qz\’bdd

g=(@)l, @ =0, i(€{l,..d—1}, @dz=q +4,

B(x) = B, x €Dy, [e{1,2},

_ B, if{i,jyci{l..d-1},
ﬁ (ﬂ‘l ij= lﬁ” { J0, ifi=dorj=d.

Equalities (22) means that for the constructed process its local diftusion charac-
teristics exist only as generalized functions. this means that this process is a gener-
alized diffusion process m the sense of Portenko | 10].

So we have proved next theorem.

Theorem 2. Let the coetficients of differential operators Ly, [ € {1,2}, from (1)
and Lg [rom {3) satisly the conditions of Theorem 1. Then an operator semigroup,
constructed by the solution of the conjugation problem (2)-(5). generates a homo-
geneous continuous Feller process on IR with transition probability that satisfies
relation (22).
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