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Abstract. The thermal interactions between the blood vessel and surrounding biological 
tissue are analyzed. The tissue temperaturę is described by the Pennes équation, while the 
équation determining the change of blood temperaturę along the blood vessel is formulated 
on the basis of adéquate energy balance. These équations are coupled by a boundary condi­
tion given at the blood vessel wali. The problem is solved using the hybrid algorithm, this 
means the température field in biological tissue is determined by means of the boundary 
element method (BEM), while the blood température is determined by means of the fmite 
différence method (FDM). In the final part the examples of computations are presented.

1. Formulation of the problem

The biological tissue is heated by one blood vessel [1-3] located at the central part 
of tissue cylinder. Assuming that the tissue température is changed only in the radial 
direction (as shown the calculations presented in the papers [4, 5] such an assump- 
tion is fully acceptable) the température field in the tissue sub-domain is described 
by the Pennes équation

X d ( dTir)) r , xi
r—yW.c^T-T r ]-(>„,,, =0 

r d r ( d r ) L J (1)

where r is the spatial co-ordinate, /? is the vessel radius, /?> is the external radius of 
tissue sub-domain, X [W/(mK)] is the constant thermal conductivity of tissue, WB 
[kg/(mJs)] is the blood perfusion rate, cB [J/(kgK)] is the blood spécifie heat, Qmei 
[W/nT] is the metabolic heat source and Ta is the arterial blood température.

It should be pointed out that the second component of this équation takes into 
account the presence of the capillaries in the tissue.
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On the wall of the blood vessel the Robin condition is assumed

dr(z-) r . . .
r = Rl'- = (2)

where a [W/(m2K)] is the heat transfer coefficient between the blood vessel and 
surrounding tissue, T(Ri, z) is the température of vessel wall, while TB(z~) is the 
blood temperaturę.

, d2T , dTZr—- + À------ rkT +rQ
dr’ dr

On the outer surface of the tissue the Dirichlet condition is accepted

r = Ą: T(R2,z)=Tt (3)

where T, is the known temperaturę.
Distribution of blood temperaturę TB(z) along the blood vessel is described by 

équation [4, 5]

0<z<Z: 2a + (4)
dz wCgP^R,1- wcBpB

where pß [kg/m3] is the blood density, w [m/s] is the blood velocity, QBnKl [W/m3] 
is the metabolic heat source.

Equation (4) is supplemented by initial condition: TB(0) = Tm, this means that 
the inlet temperaturę TB0 of the blood vessel must be known.

As can be seen, the équations for biological tissue (1), (2) and vessel (4) are 
coupled by an unknown temperaturę Tw = T(R^, z).

2. Method of solution

The problem is solved using the hybrid algorithm. meaning the temperaturę 
field in biological tissue is determined by means of the BEM, while the blood tem­
peraturę is determined by means of the FDM. Equation ( 1 ) can be written in the 
form

1 2 rp 1 rp
Xr^ + X--rkT+rQ = Q 

dr~ dr
(5)

where k = WB cB and Q=WB cB Ta + Qmel.
The weighted residual criterion [6-8] for équation (5) is of the form *

T (Ç, r)dr = 0 (6)
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where is the observation point, T *(£,, r) is the fundamental solution and 
it is a function of the form [9]

HM (7)

where Zo ( ) is the modified Bessel function of the first kind, zero order, while Ko 
(■) is the modified Bessel function of the second kind, zero order [10].
It can be checked that function (7) fulfills the équation

or~ dr
(8)

where r) is the Dirac function.
Heat flux resulting from the fundamental solution is defined as follows

r) = -X dT\Ę, 
dr

(9)

this means

(10)

where for (r - Ç) > 0: sgn(r - Ę) = 1, for (r - Ç) < 0: sgn(r - ^) = -1, sgn(0) = 0, fi 
(■) is the modified Bessel function of the first kind, first order, while Ki (•) is the 
modified Bessel function of the second kind, first order [10].

Twice integrating by parts of the first component of équation (6) one obtains

dr(r) . dT*(ą,r)
------- T £,r]-Kr------------T(r) dr V ’ dr V ’

( d2ť(d,r) 8T* (Ł,r} ,, J , ,+ kr------ - + /.-----------^-2-rkr Ç,r) 7 r)dr = 0
dr2 dr V ’) V ’

k

Taking into account property (8) of fundamental solution one has

+Q\ F7’*(ę,r)dr-T(^) = 0 (12)
1 t?

K,
+ 0] rT* (Ę,r)dr +

where q(r) = —XAT(r~)ldr.
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Equation (12) can be written in the form

T(^)=V(^7?2)r(A2)-A2r(ę,7?2)?(A2)-V(^JR1)T(7?1) +

+ R}ť^R<)q(R<) + Qbť^,r)dr
(13)

For Ę -> R. and Ž, —> R2 one obtains

) = ^’(7?! ,7?2)t(Ą)-Ą7,(ą,ą)7(7?2)-
k2 (14)

R}q* (R,,R,)T(R,) + Rf (Ą ,R.)q(^ ) + Qf rť (Ą ,r)dr 

—T (R, ) = R2q* (ä2 , R, ) T (R, ) - R2T" (f?2, R2 ) q (Ą ) -

r2 (15)
Ä,q (R2,Ä, )T(Ä, ) + R,ť (R,,R, )q(Ä, ) + Q J rT* (R,,r)dr

/?1

The system of équations (14), (15) can be written in the matrix form

-RJ^R, ,Rt) R2T\r1,R2)

7?2T*(7Ł,Ą)
q(Rt)

Introducing the boundary conditions (2), (3) into the system of équations (17) one 
has

-a[T(7?1,z)-7i(z)]l = p11
q(R2,Z) _ _H21

h12
æ22

r(MŁ Jzd
T< J LZ2j

(18)
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or

■-aG11-/f11 G12 ~T(R„z) Hl2Tl-aGuTB(z') + QZA

-aG, [ - H2i G.. q^z) H22Tt-aG2JB(z} + QZ2
(19)

Under the assumption that TB(z) is known, this system of équations allows one to 
détermine the values of T(Ru z) and q(Ry z) and next

q(Rl,z) = -a[T(Rl,z)-TB(z)'] (20)

The températures at the internai points are calculated using the formula

T^i,z)=R2q^i,R2)Tl-R2ť^i,R2)q(<R2,z>)-Rlq^,Rl)T(Rl,z) +

+ ĄT* (q,,)q , z) + q] rT* (i;,, r ) dr
7Í]

(21)

As mentioned above, to solve the system of équations (19) the blood tempera­
turę TB(z) must be known. This temperaturę is calculated from the équation (4) 
which can be written as

where

0<z<Z: ^H = ^[?;,.(Z)-Ts(z)] + ä (22)
dz

A = 2a , b=Qj^ (23)
cBpBw

The following discretization of variable z is introduced

O = -o <“! <-j <zJ+l <...<zm=Z (24)

where z, =jh, h is the mesh step and j = 0,1,2, 
The approximation of équation (22) takés the form 

and then

^+l =a(toj-tBj)+b (25)

TBf+} =(l-Ah)TBJ + AhT0J + Bh (26)

where dénotés the vessel wall temperaturę for z = zt, as shown in Figure 1.
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Summing up, forj = 0 the system of équations (19), where the temperaturę 
TB(Q) = Tm is known, should be solved. Then on the right-hand side of équation 
(26) fory = 0 the températures Too = T (7?|, 0) and also Tm are known. Using this 
équation the temperaturę TBl is calculated. Next, the system of équations (19), 
where TB(z) = TBl {z = /;) is known, is solved and the température Tæ from formula 
(26) is determined etc.

3. Results of computations

In the computations the following input data are assumed: thermal conductivity 
of tissue X = 0.5 W/(mK), spécifie heat of blood cB = 3900 J/(kgK), density of 
blood P« = 1060 kg/nr1, blood perfusion rate WB = GBpB = 10 kg/(m3s), arterial 
blood temperaturę Tu = 37°C. The metabolic heat sources for tissue and blood are 
equal to Qmer = 1000 W/m3, QBnKt = 500 W/m 3. The radius of blood vessel is equal 
to fi, = 0.002 m and the outer radius of the tissue surrounding the blood vessel 
equals to R2 = 10/?,. On the basis of the Nusselt number (Nu = 4) and the Peclet 
number (Pe = 100) [11, 12], the heat transfer coefficient a = 500 W/(m2K) and the 
blood velocity w = 0.003 m/s are determined, respectively. The entry blood 
temperaturę for z = 0 is assumed as Tm = 37°C. On the outer surface of the tissue 
surrounding the blood vessel Tt = 37°C.

The domain of tissue has been divided into 10 internal cells (c.f. Fig. 1), the 
mesh step h = Rr = 0.002 m (c.f. équation (26)).

Tn Figure 2 the température distribution in the tissue domain for z = 0.01 m, 
0.02, 0.03, 0.04 and 0.05 m is presented, while Figure 3 illustrâtes the course of 
blood temperaturę along the blood vessel.
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Fig. 3. Blood temperaturę

Conclusions

The thermal interactions between blood vessel and tissue hâve been considered. 
The température distribution has been obtained using the hybrid algorithm. The 
results hâve been compared with the analytical solution presented in [9] and they 
were practically the same. The algorithm proposed allows one, among others. to 
détermine the equilibrium in the length of the blood vessel.
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