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Abstract. A queucing network of any structure with single-type messages is considered in
the paper. An asymptotic analysis of the network in case of large number of service requ-
ests conducted. It {s suggested that the scrvice parameters of cach queucing system of the
network. as well as the probability of messages transition between systems, depend on time.
A system of ordinary differential cquations to calculate the average rclative number of
messages in each queueing system, depending on the time, was obtained. There is one cal-
culated example in the article.

Introduction

Currently, much attention is paid to the mathematical modeling of various tech-
nical. economic and other processes and objects. Mathematical models allow one
to study the properties and behavior of real simulated objects. without the practical
experience that it 15 often impossible or impractical to carry out. Recently, one of
the most trequently used probabilistic models related in time, linking the function-
ing of many disparate systems arc queuing networks (QN).

The development of new approaches and methods of modern QN theory have
often dictated the need 1o consider a number of [catures of the simulated object.
For example, the QN are used as models of the processing of customer claims (or
an insurance company [1-4]. However, the parameters ol customer service in the
insurance companies are not constant throughout the period ol time, In this regard,
there is a problem to study of queueing networks provided depending on time of
the intensities of service requests, the number of service lines and transition proba-
bilities between the systems of the network.

1. Diffusion approximation of queucing network of any structure with
single-typc messages

Consider a closed queueing network consisting of n+1 queneing systems (QS)
Sys 8. .8, . where the tolal number of single-type messages equals K. Suppose

na
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that the parameters of services of this network depend on time ¢, 71 €[0,77. Let the
number of service lines in the system S, at time ¢ is described by a function of
time sm,{1). that takes integer values, 7 =0.». The service time in each of the lines
of S, is distributed exponentially with time-dependent mean value p '(z). and
wAN=00 0.7, Requests for service are selected according to the discipline
FIFO. Message that completed servicing in the system S§,. with the probability of

p,(t) goes to the queue of system §,. i j=0.n. The transition mafrix

P(r):" P, {l)" is the matrix of transition probabilities of an irreducible Markov

"
chain, and generally depends on the time, 0< p (1) <1, Z p, (11 =1. The main
1=
objective of the study of QN described here is the asymplotic analysis of the Mar-
kov process deseribing its behavior, with a large number of messages. The state of
the network at time ¢ is described by the vector

k(Y =k (1), k(D k (1), (N
where &,{¢) - the number of messages in the system S, at time 7. /<[0,77.

i=1n. which forms the a-dimensional Markov process with continuous time and
finite number of states. Because the network is closed. it is obvious that the number

U
ol messages in the system S, 1s equal 1o £, (=K —Zk, (7).
il
Theovem. Probability density  p(x.t) of vector of relative variables

’

koty ky(r k, (1 . " .
f;(l)={ 112 ). }i ),..., "Ii )J, provided that it is differentiable on t and twice

piecewise continuousiy differentiable in x,. i=1n, satisfies up to O(e™), where

I .
€= ra Kolmogorov-Fokker-Planck equation

Ep(x.) RSB N e & _ 5
Hot= Z;.(«\ (A,.(.\,I)p{)«,())+2l; . (B, (x.1yp(x.0)). (2)

where
A,(x.,r)=Zul(r)p:,(t)min(l.,(t).x__.), (3)

=0

B, (x.t)= Z O, (Omind (6).x,) 4

-0



Asvinptotic analysis of the closed network with time-dependent service parameters ... 107

B, o0 =—-p, @p, (Nming/ (7). x,}.

PRy —r )= p, (). i% i pA)=—r,()==1+p, (1), i=].

Proof. Consider all the possible transitions in the state A(f+ Ar)=(k. ¢+ At) of
the process in the time Ar:
— from state (4 + =1 ,.1) can getinto (k.7 + Ar) with probability

WA min(m, (O () + 1) p, (DAL +O(AD), i, j =01

— from state (k.#} - with probability

!
1—Zu,(!)min(m,(l),k,(l}}if+o(£\l);
-0
— from other states - with probability o{Af). Here [, - n-dimensional zero-
veclor. with acceplance of i~th component equals 1. when 1<i<n, [, -
n-dimensional zero-vector.
Applying the formula of total probability, we can write the system of differential
equations for the state probabilities P(%,7):

Plk.ny= Z].l, (N p, minGn, (0,6 )+ DPE+T =T DA+

im0

i [1— ip,(l)p,___.(l)min(m,.(l),k,(l))/\twp(k,f) I O(AL).

R Al /

Using the limit for Ar — 0, we obtain a system of difference-differential equations
tor the probability of Kolmogorov states:

dPC(JJ;.:) - Z W () p, (yminGn (& ONPU = 1, = 1,.1) = PR+

=l

! i[j.l,(l)p,!(I)(min(m,(f),k_.{t) l)—min(m,.(t),k,(r)))P(k vI=1,.0).

et

Next. we consider the case of a large number of messages in the network, K>>1.

. . . k(e .

and move to the vector of relative variables £(¢) =[L) . the possible values of
~ /

=l

which belong to the bounded closed set ¢/ = ]I X={X. X0 oa X)X =0, i=rn,z,\; < I},

in which they are located at the nodes of #-dimensional lattice at a distance &= X
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(rom each other. With increasing K “filling density" of the set G by possible
components of this vector increases. and it becomes possible to believe that he has
a continuous distribution with the probability density p(x.#)= K"P(xK.t1). x €,
where p(x,t) is the meaning of the probability density function of the random
vector &(f).

Denoted by ¢, - n-dimensional zero-vector, with exceptance of i-th component

| Y
equals €. i=ln, (i) = {0 e . Note that min(u,v+1)=min(z,v)+c(ux—v),

émin(a. v . Vo2, )
ol —v)= +) because  min(i,v) = . Introduce the notation
or ITRTESY
m (1) — .. . .
I (1y=———_.17=1n.Rewriting the system of equations (2) for density p{x.7). we
obtain
8;7( x.1)

lep Py (N min{/ {1),x, )(/)(\'+e —¢.0) = p(x, 1))

ij=n

cmin(Z (t).x
+ Zp {()p; # plx+e —e, . 4).
1 X/

We represent the right-hand side of this system. up to terms of order of small-
ness £ . We will assume thai p(x,7) is dilTerentiable both at ¢ and twice continu-

—  dp(x.4)

ously differentiable at x,. i=1.n. =0. Then the following Taylor seties

o
Xy

expansion takes place:

A
P+, = Pl +s cp(w) cp(x.t)J+

ax,

+ST((. plad) 50 plet) p{: {}J+()(8“). =i

av; ox,0x ox;

Using the last expansion and the fact that €K =1. we obtain:

LD _ S\, mind, (1).x,) L“I’(-‘ 0 ([;:,t)}L
1= ax, v

By

ax, oy, E‘r

X.t) 2(, p(\ [} (\ }]
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G.(1)= {n(z):z,(z) < (OELieQ,(: 00, (h],(). /€ Q,(f');in( ()= 1}.

U

~eee L

r=12..2"" | JG.(h=G.
t-1

Now we can write the system of equations (6) explicitly for each region G (¢).
For instance. in region
A Q=412 0% Q)r)=1{0}.

which corresponds 1o empty queuc in average in QS §,, 7=L#, we obtain the
tollowing system of difterential equations:

B =N L0 1Y 1w O O (1. 7
=l

‘The solution of (7) for certain initial conditions can find the average relative
number #,(#), and hence the average number Kn,{f). of messages in each of the
(S of the network.

3. Example

Consider a QN. consisling of four QS 5,..5,,§5,.5;, in which circulates
K =30000 single-type messages. We deline the following probabilitics of transi-
tions between the queueing systems of the network:
Po;{)=1=po (1), py(O)=1-p;).
PO =1=pualt). pu()=1=py,(0).
P ()= pa (1) =0.4(cos(H) +1).
pra(t) = 0AGsin() +1)
P (8) =02(sin(r) +1),

P, (1) =0 in other case.

Supposc that at the initial time all messages are concentrated in the system S, i.c.

n(0)=0. i=13, and on the interval of time. in average there are no queues in

syslems S, . 7 =13 System (7) in this casc would be:
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Conclusions

‘I'he considered method of calculating of the average relative number of mes-
sages in systems of queueing network is valid only for heavily loaded networks,
that is. in the case of a large number of messages K. The accuracy of the method
increases with the number of messages in the network.
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