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Abstract. The object of analysis are two component periodically stratified linear elastic
multilayered composites. The aim ol contribution is elastodynamics of these composites
subjected to the mass discretization on the interfaces between adjacent homogeneous lay-
ers. Two specitic cases of the mass discretizations are taken into account. In the first case
the mass is assigned uniformly to every interface. Tt is shown that this kind of mass dis-
cretization leads to physically completely wrong results. In the second case, the mass is
discretized uniformly but on the every second interface. In this case it is shown that the
obtained elastodynamics equations have a physical sense provided that the wave are sulfi-
ciently long.

Introduction

It is known that in elastodynamics of continuous nonhomogeneous media the
direct approach to the analysis ol specilic problems 1s very complicated. We can
mention here, ¢.g.. the wave propagation problems in periodically stratified compo-
sites. To be more exact the wave propagation problems can be properly medelled
by the mass discretization provided that the waves are sufliciently long. It means
that the wavelengths are large when compared to the microstructure length of peri-
odically spaced elastic medium. In the subsequent Section for the sake of simplici-
ty we shall specitied the object of analysis as a two component periodically strati-
tied linear elastic space. It is assumed that: the matevial space under consideration
is unbounded, lincar clastic and made of two isotropic components which are
periodically distributed in one direction. Hence the interfaces between adjacent
materials are represented by the intinite system of parallel planes. Moreover. the
homogeneous layers ol the medium are assumed to have the same thickness. The
analysis will be restricted exclusively to the waves propagating in the direction
normal to the interfaces between components. This is a well-known problem in the
recent literature and we can mentioned here the papers by Hermann, Sun and oth-
crs. | 1-5] and Wozniak [6].
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We also obtain independent problems for displacement component (1) in the
direction Ox' normal to the interfaces, as well as displacement components
w? (.0), 14-'3(~,f) in the directions Ox”, Ox* mutually orthogonal and parallel Lo the

. - . 3 t

interfaces. Hence we use denotations w{.r)e {w' (!) w{.7),w (.0}, where w(-.e)
are assumed 1o be continuous up to the second space derivatives, Thus we shall
deal with the 1-D dvnamic mode] of the linear elastic medium under consideration.

2. Mass discretization
Under the ftormal condition p, =, =p the mass discretization of the 3-D
elastic space can be performed on interfaces. The homogeneous layer bounded by

xn=0.x-= 5 will be uniformly occupied by material “A™. Hence the homogene-

L

l . . .
ous layer bounded by planes x, = -7 x =0 is assumed to be occupied by mareri-
wlye - . L I /
al “B”. The system of interfaces is given by x =x, =n=, a=0+142...
(Fig. .

We shall analyze below two special cases of mass discretization, In the first case
. . | / . {
we assign to every interface v =x, EnE, the mass density pE, In the second

case we assign mass density pf exclusively to the even interfaces x., .
n=0.+1£2.... . This situation in which the mass is discretized on odd interfaces is
similar as that assigned 10 the even interfaces.

. . . I
2.1. Mass discretized on interfaces x' = x,, = n; n=0+112,..
In this case the dynamic equilibrium conditions are:
]IB Wouo ](f)—qu(l}) 114("’11(‘) Mo ( )) ,{J\im(F)

H (s, (r)- Wiy (‘))— Hylwa, g (r)—: w(’)) /7‘“,, ().

{H

where here and subsequently w, (z) are displacements for x' =x, , n=0.£142,..,
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In this Subsection we shall confine ourselves to the harmonic waves propagat-

-

o L . . 2r

ing in the direction of the Ox'-axis. Let A stand for the wavelength, & =— the
A

2 . . . .
wave number, & = — = &7 the dimensionless wave number, and by « free vibra-
A

tion frequency in 3-D linear elastic space.
To this end we shall look tor harmonic vibrations in the form

sy, {0) = Crexpi{er - nk),

11-'3,”,(I)=(ZT._,expi[ml (204 I)g], n=0=1,%2..

where (7. (75 are arbitrary constants.

Substituting the righi-hand sides of the above formulas into (1) we obtain the
homogenous system of linear algebraic equations for ¢, ('~ . By applying the pro-
cedure similar to that given in [5] Chapter [V we obtain the dispersion relation
between « and 4 in the form given by two branches:

2 8(,+11,) 2k
I*p 4"
8(H :H) k )
wf = 2L TR ot 2
I“p 4
Under denotation:
8
a*=——(H +Hy,) 4
l'p

the diagram of dispersion relation (3) is shown in Figure 2.

)

o-
©,

0 21 4n k=2ﬂ:/%

Fig. 2. Diagram of dispersion relation
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It can be seen that there exist two independent branches of the dispersion curves
which are mutually intersecting. However, it has to be remembered that from the
physical point of view we shall take into account only the part of the dispersion
relation lor long wave e, for 0 <k << 1.

Let us apply formulas (3) to free vibrations which hold only for long waves i.e.
for 0 <k << . In this situation formulas {3) can be rewritten in the form:

> :M,‘-l +O(]‘2l

2p -
. 8(H +HY) H,-H, + {1 ©)
(O e S LT NS S +()(k“’)
]",() P
For an arbitrary positive A and under limit passage & — 0 we obtain:
NN (1, +11,) >
2p (6)
W >,

!
. . . - . . .
. The physical meaning of this result will be discussed in

(3

we recall that &=

Conclusions.

2.2. Mass discretized on interfaces x' = x,=nl, n=0t1,12,..

In this case the dynamic equilibrium conditions are:
l

Ip .
Hylwy =0, )= H (2, =102, ) = W

H, ("’2n+2 Wl ) -Hy ("'2“—1 - “’2;:) =0

Obviously the second rom the above conditions represents the equilibrium on

(7

1

. . s {
interfaces deprived mass distribution, x =n5., n=0x1£2..

From the sccond of the above conditions we obtain wy,,,in the terms of wx,
and w., . Substituting this result into first equation trom (7) we arrive at the final
result in the forn:

2H \H
B

span = 2Wsyy +Wa, s )= i, . m=0,F142 (8
Hi+Hg

This is the main resull of the mass discretization on interfaces x' = x,=nl.
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Denoting by:

1, =278
H,+H,
Wq, 5 = Wy
A, | ===t "l =L
Wo,, — Wy, >
Avy, | = 2n -2
- !
1'\‘1"" ] T Wa
AA“”_?;) = P ll 2n-] .

we can rewrite (8) in the finite-difference form:
I AAw,, iy, . n 0112 9

From (9} and for { — 0 we shall derive what will be called the asymiptotic form
of the long wave approximation of (9). To this end let u(x],f), v'eR reR
ul.1)e {u'(-.t). W)’ {I)} satisty condition w(~.7}e C*{(0.L)). where L>>] for
an arbitrary but fixed interval [0, L] of Ox'axis. The resulting asymptotic form of
the long wave approximation for 7 — 0 yields:

Hy& 1 — pii =0 (10)

This means that under the limit passage / — 0 we obtain the well-known wave

equation representing the asymptotic model of 1-D clastodynamics in the layer
(0.L)x R*.

At the end of this subsection we pass to the free vibration problem of the mass
discretized space under consideration. Similarly like in Subsection 2,1 we shall
look for the solution to Equation (8) in the form:

1y (1) = Cexpilor -nk). n=0+1£2... (n

Substituting the right hand side of the above solution into Equation (9) after
some manipulations we oblain dispersion relation:

4H, . s

@ =—“sm'£ (12)
ol 2

Under denotation:

Ll
I;p
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the diagram of the dispersion relation 1s shown i Figure 3.

(O

0 in 47 k=2nl

Iig. 3. Diagram of dispersion relation

In this case the dispersion relation has only one branch.
Applying formula (11) to the free vibration which hold only for long wave i.c.
for 0 <k << the formula (12} can be rewritten in the form

a ]] 2 f -
° =—"x“+(.)(k‘), (14)
F
For an arbitrary positive A and under limit passage & — 0 we obtain:

@”
2

27
we recall that x =

.This result corresponds to the well-known results.

(3

Conclusions

The main concluding remark is that the free vibration frequency in Case 1 tends

(H.: +H3) 2

either to TA’ or to infinity. However, the result given by tormula (8)
from the physical point of view is completely wrong in any case in which
Il ;=11 . It can be easily seen that for 77, =0 or /75 =0(but not both!) in the
framework of Case 1 the frequency of free vibrations > s positive and finile, for
cvery A>0.

Hence the final conclusion is that the proposed mass discretization approach,
given here as the Case 1 cannot be treated as correct.

Obviously lor the wave propagating in the direction of the  Ox'-axis vibration
frequencies (5) for /1,=0 and /{; >0 or I7, >0 and //; =0 have to be equal
to zero which is in contradiction to formula (5). On the other hand all results pre-
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sented in Subsection (2.2) have a physical sense provided that the length wave A is
sutficiently large when compared to inhomogenity period /.

The proposed discretization which is presented as Case 2 leads to asymptotic
model which is physically permissible.
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