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Abstract. The object of analysis are two component periodically Stratified linear elastic 
multilayered composites. The aim of contribution is elastodynamics of these composites 
subjected to the mass discretization on the interfaces between adjacent homogeneous lay- 
ers. Two spécifie cases of the mass discretizations are taken into account. In the first case 
the mass is assigned uniformly to every interface. It is shown that this kind of mass dis- 
cretization leads to physically completely wrong results. In the second case, the mass is 
discretized uniformly but on the every second interface. In this case it is shown that the 
obtained elastodynamics équations hâve a physical sense provided that the wave are suffi- 
ciently long.

Introduction

It is known that in elastodynamics of continuons nonhomogeneous media the 
direct approach to the analysis of spécifie problems is very complicated. We can 
mention here, e.g., the wave propagation problems in periodically stratified compo
sites. To be more exact the wave propagation problems can be properly modelled 
by the mass discretization provided that the waves are sufficiently long. It means 
that the wavelengths are large when compared to the microstructure length of peri
odically spaced elastic medium. In the subséquent Section for the sake of simplici
ty we shall specified the object of analysis as a two component periodically strati- 
fied linear elastic space. It is assumed that: the material space under considération 
is unbounded, linear elastic and madę of two isotropie components which are 
periodically distributed in one direction. Hence the interfaces between adjacent 
materials are represented by the infinite system of parallel planes. Moreover, the 
homogeneous layers of the medium are assumed to hâve the same thickness. The 
analysis will be restricted exclusively to the waves propagating in the direction 
normal to the interfaces between components. This is a well-known problem in the 
recent literaturę and we can mentioned here the papers by Hermann, Sun and oth- 
ers, [1-5] and Woźniak [6].
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The aim of this contribution is to formulate two approaches to the long wave 
propagation problem by using the mass discretized approximation. It will be shown 
that these two approximations lead to completely different results.

1. Object of analysis

The object of subséquent analysis is the periodically stratified two-component 
linear elastic 3-D space. The period of the stratification will be denoted by l. 
A fragment of the 3-D space under considération is shown in Figure 1.

Fig. 1. A fragment of periodically stratified 3-D space; Symbols £4. G,. and EB, 
GB, pB stand for Young modulus. Kirchhoff modulus and mass dcnsity of constitucnts. 

respectively

Let Or1*2*3 be the Cartesian orthogonal coordinate system in physical space, 
occupied by the elastic medium under considération, where Ox1 - axis is normal to 
interfaces. The time coordinate will be denoted by /. t e R. Moreover xl,x2,x~.l 
represent inertial coordinate in the space-time.

Material components will be specified by subscripts A and B. Longitudinal 
Young and transversal Kirchhoff modulae of these components will be jointly de
noted by and {eb,Gb}, respectively. To simplify the formai manipula
tions it is assumed that p 4 = pB and the mass density of both material compo
nents will be denoted by p.

For the waves propagating exclusively in the direction normal to interfaces we 
shah independently investigate the longitudinal and transversal vibrations and 
hence we dénoté HA e {£'4,G4} and HB <={eb,Gb}. To simplify investigations it 
is assumed that the displacement field is independent of space Coordinates x2,x3.
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We also obtain independent problems for displacement component w’(-,z) in the 

direction Ox] normal to the interfaces, as well as displacement components 
ii’2 (■./). vr’(-,/) in the directions Ox2, Ox3 mutually orthogonal and parallel to the 
interfaces. Hence we use denotations w(-,i)e {n,l(-./). ir2 (•./), M’’(■./)(. where w(-,r) 

are assumed to be continuons up to the second space derivatives. Thus we shall 
deal with the 1-D dynamie model of the linear elastic medium under considération.

2. Mass discretization

Under the formai condition Pa=Pb=P the mass discretization of the 3-D 
elastic space can be performed on interfaces. The homogeneous layer bounded by 

x, = 0, xi = y w’ h be uniformly occupied by material “A”. Hence the homogene

ous layer bounded by planes X] = , Xj = 0 is assumed to be occupied by materi

al “B”. The system of interfaces is given by x =xn=n^, n = 0,±l,±2,..., 

(Fig- 1).
We shall analýze below two special cases of mass discretization. In the first case 

we assign to every interface x1 = xn the mass density p^. In the second 

case we assign mass density pl exclusively to the even interfaces x2/J, 
n = 0,±l,±2,... . This situation in which the mass is discretized on odd interfaces is 
similar as that assigned to the even interfaces.

2.1. Mass discretized on interfaces x1 = x„ = n— n = 0,±l,±2,...
2

In this case the dynamie equilibrium conditions are:

H b (w2n+1 0 - u'2„ 0) - Ha (w2n(t) - w2„_t 0) = I pw2n 0,
l 0)

HA 02„+2 (0 - W2»+l 0) ~HB 02„+l 0 - W2„0) = ~ pW2n+l 0-

where here and subsequently w„(-0 are displacements for x1 = xn, n = 0,±l,±2,....
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In this Subsection we shall confine ourselves to the harmonie waves propagat- 

ing in the direction of the Ox'-axis. Let A stand for the wavelength, k = — the 
d,

wave number, k =---- = kI the dimensionless wave number, and by co free vibra-
A

tion frequency in 3-D linear elastic space.
To this end we shall look for harmonie vibrations in the form

W2n (0 = CleXPZ' ‘ n^\

<ot - (2n + l)y n = 0,± 1,± 2,... (2)

where C,, C2 are arbitrary constants.

Substituting the right-hand sides of the above formulas into (1) we obtain the 
homogenous system of linear algebraic équations for C,, C2. By applying the pro
cedure similar to that given in [5] Chapter IV we obtain the dispersion relation 
between a> and k in the form given by two branches:

l2p 4’
H (3)

2 8(//4+Z/s) ik<o, =——-----— cos —.
l2p 4

Under denotation:

O
a2 =-^—(h A + H (4)

l P

the diagram of dispersion relation (3) is shown in Figure 2.

Fig. 2. Diagram of dispersion relation
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It can be seen that there exist two independent branches of the dispersion curves 
which are mutually intersecting. However, it has to be remembered that from the 
physical point of view we shall take into account only the part of the dispersion 
relation for long wave i.e. for 0 < k « 1.

Let us apply formulas (3) to free vibrations which hołd only for long waves i.e. 
for 0 < k « 1. In this situation formulas (3) can be rewritten in the form:

^2 = (^+^)x-2+oH
2/9 v p

l2p 211 p V ?

For an arbitrary positive ż and under limit passage k —> 0 we obtain:

2 (Ha+Hb] 2
(6)

2co+ —.

we recall that k = —. The physical meaning of this result will be discussed in 
X

Conclusions.

2.2. Mass discretized on interfaces x1 = xn = ni, n = 0,±l,±2,...

In this case the dynamie equilibrium conditions are:

Hß(w2„+l - ^2n)-HA^2n ~ w2„-l) = (7)

Ha (W2n+2 ~ W2n+1 ) “ Hß (w’2„+1 “ W2n ) = 0

Obviously the second from the above conditions represents the equilibrium on 
interfaces deprived mass distribution, v1 = n-^, n = 0,±l,±2,...

From the second of the above conditions we obtain w2„+l in the terms of w2n 
and w2n+2. Substituting this resuit into first équation from (7) we arrive at the final 
resuit in the form:

27/ H
rr A J (w2»+2 ~2ïv2» +^2»-2) = Z2Ai>2» ’ « = 0,±l,±2,... (8)
HA +hb

This is the main resuit of the mass discretization on interfaces .y1 = xn= ni.
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Denoting by:

_ 2HaHb
■ti o —

ha + hb

. W2» “ w2«-2

we can rewrite (8) in the finite-difference form:

7/0AAw2„ = pw2n , n = 0,+l,+2,... (9)

From (9) and for Z —> 0 we shall dérivé what will be called the asymptotic form 
of the long wave approximation of (9). To this end let m^x1,?), x1 e R, t&R 
w(-,t)e {«'(-,í),w2(-,t),w3(-,ř)} satisfy condition r/(-,i)eC2 ((O,Z)), where L»1 for 

an arbitrary but fixed interval [0,z] of Ox1 axis. The resulting asymptotic form of 
the long wave approximation for l —> Oyields:

H0d2u - pu — 0 (10)

This means that under the limit passage MOwe obtain the well-known wave 
équation representing the asymptotic model of 1-D elastodynamics in the layer 
(0,f)xť.

At the end of this subsection we pass to the free vibration problem of the mass 
discretized space under considération. Similarly like in Subsection 2.1 we shall 
look for the solution to Equation (8) in the form:

vr2., (/) = Cexpi(eut - nk\ n = 0,± 1,± 2,... (11)

Substituting the right hand side of the above solution into Equation (9) afiter 
some manipulations we obtain dispersion relation:

2
2 47T0 . m =—Asm

pZ2
(12)

Under denotation:

A2=^
Z2p

(13)
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the diagram of the dispersion relation is shown in Figure 3.

Fig. 3. Diagram of dispersion relation

In this case the dispersion relation has only one branch.
Applying formula (11) to the free vibration which hold only for long wave i.e. 

for 0 < k « 1 the formula (12) can be rewritten in the form

a2 = ^K2 + c42). (14)
P

For an arbitrary positive 2 and under limit passage k —> 0 we obtain:

®2 = (15)
P

we recall that k = — .This resuit corresponds to the well-known results.

Conclusions

The main concluding remark is that the free vibration firequency in Case 1 tends 
(// i 7/ )

either to -— ----- — k2 or to infinity. However, the resuit given by formula (8)
2p

from the physical point of view is completely wrong in any case in which 
Ha * Hb . It can be easily seen that for HA = 0 or HB = 0(but not both!) in the 
framework of Case 1 the frequency of free vibrations a>2 is positive and Finite, for 
every 2 > 0 .

Hence the final conclusion is that the proposed mass discretization approach, 
given here as the Case 1 cannot be treated as correct.

Obviously for the wave propagating in the direction of the Ox'-axis vibration 
frequencies (5) for HA = 0 and HB > 0 or HA > 0 and HB = 0 hâve to be equal 
to zero which is in contradiction to formula (5). On the other hand ail results pre- 
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sented in Subsection (2.2) hâve a physical sense provided that the length wave 2 is 
sufficiently large when compared to inhomogenity period l.

The proposed discretization which is presented as Case 2 leads to asymptotic 
model which is physically permissible.
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