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Abstract. The thermal wave model of bioheat transfer supplemented by boundary and ini­
tial conditions is considered. To solve the problem, the boundary element method (BEM) is 
proposed. In the final part of the paper examples of numerical computations concerning 
the détermination of the temperaturę field in a heating tissue are shown.

Introduction

Heat transfer in living tissues, subjected to the action of strong external heat 
sources can be described using different mathematical models. The most popular 
is the Pennes équation [1-5] based on classical Fourier law. According to the new- 
est opinions [6-9], heat conduction proceeding in the biological tissue domain 
should be described by using a hyperbolic équation (Cattaneo-Vernotte équation 
[10, 11]) in order to take into account its nonhomogeneous inner structure. In the 
paper, the method of solving the Cattaneo-Vernotte équation for a 2D problem is 
proposed. It is the boundary element method using discretization in time adapted 
for the numerical solution of the thermal wave équation. In successive chapters, 
the boundary integral équation is derived, the numerical model is described and the 
results of computations are shown.

1. Thermal wave équation

The thermal wave model of bioheat transfer in living tissues is the following 
[7, 8]:

9 2T ( x, t )
T-------------

dt2
: dT (x, t)

+ ät
, x / x dQ (x,t)

= XV T (x, t) + Q (x, t) + y \ (1) 
9t

where c, À, dénoté the volumétrie spécifie heat and thermal conductivity of tissue, 
respectively, Q (x, t) is the volumétrie heat due to metabolism and blood perfusion,
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T = a! C2 is the relaxation time, (a = À. le is the diffusion coefficient, C is 
the velocity of thermal wave), T is the tissue température, x, t dénoté the spatial Co­
ordinates and time. Function Q (x, t) is equal to

ß(x,i) = GB cb [tb + (2)

where GB is the blood perfusion rate, cB is the volumétrie spécifie heat of blood, 
Tb is the artery température and Qm is the metabolic heat source.

It should be pointed out that for T = 0, équation (1) reduces to the well-known 
Pennes bioheat équation.

Equation (1) is supplemented by boundary conditions

xe r, : T(x, i) = Tfr(x) 
ver.: ç(x, i)=çfr(x)

and initial ones

t = 0 : T (x, t) = To,
dT ( x, t )

ât = o, (4)

where q(x, t) is the boundary heat flux, Th(x), qh(x) are the known boundary 
température and boundary heat flux and To is known initial température 
of biological tissue.

Taking into account formula (2), équation (1) can be written in the form 

d 2T ( x. t )
T ďt2

dT (x, i)
+ ďt

, kr , ,-i Q xkdT(x,t)
= aV2 T x, G + -[tb - T x, t)l + ^-----------

c L J c c dt
(5)

or

32T(x, t) ( xk^dT (x,t} 7 z kr , .1 0r------ 1 + — ----------------- I x,t +-frs-T x,t 1 + ^(6)
dt \ c ) dt c L J c 

where k = GBcB.

2. Boundary element method using discretization in time

To solve équation (6), the BEM using discretization in time is applied [12, 13]. 
At first, the time grid with constant step A/ = / ' - / is introduced.

Using the Lagrange interpolation for points (/“2, 7^-2), (/-1, 7^-1), 
(?, Tf), where ť-2 = T(x, ?-2), T/-1 = T(x, ?-1), Tf = T(x, tf \ one obtains
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T ( x, t ) = Tf-2

(7)

On the basis of (7), the time derivatives are calculated and then

dT ( x. t ) _ Tf~2 - 4T! + 3Tf
dt = , 2At

(8)

while

a2? (x, t) 
a?

r/-2 _ 2r/~l + Tf

(At)2
(9)

Taking into account formulas (8), (9), the following approximation of équation 
(6) is obtained

(A>)

rk \ T ( x, tf~2 ) - 47 ( x, tf~‘ ) + 3T(x, tf )1 + — —1)------->- = (10)
c J 2At

«V2 T (x, iz) + -[rB - T (x,+ —

or

V2?(x, tz )- AT(x, tf] + BT[x, ť !)-CT (,v./'2 ) + — = 0. (11) 
À

where

r 3(c + t£) k 2r 2(c + rfc)
------ 7 H----------------- 1--- , B = ----------— H---------------  
(At)2 2XAt À a (At)2

r c + xk 
a (At)2 2ÀAt

Q — kTR + Q
(12)

For équation (11) the weighted residual criterion is applied
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jj [v 2T (x, tf ) - AT (x, ) + BT (x, tf~' ) -
Q

CT (x,//2) + J T\^ x)dQ = 0
(13)

where S, is the observation point and 7*(i;,x) is the fundamental solution and 
this function should fulfil the équation

V 2f "(J;, x) — AT x) = — 5 ( Ç, x ) (14)

where 8 (Í;, x) is the Dirac function.
For a 2D problem and domain oriented in the Cartesian co-ordinate system it is 

the following function

T*(^X) = J_K0(rVÂ), 
2tt x '

(15)

where Ko (•) is the modified Bessel function of the second kind of zero order [12, 
13], r is the distance between observation point Í; = (i;b i;2) and point x = (xb x2).

Applying the 2nd Green formula for the first component of équation (13), one 
obtains

jj v2t (x,? )r’ (ç,x)dQ = JJ v2r’ (^,x)r (x,? )dQ +

J^T* (Ç, x)n-Vt(x,? )-t(x, ;'|nV/ (Ç, x)]dr 
r

(16)

and then criterion (13) takes the form

Jj[V2T* x)]?(x,ř/)dQ +
Q

T" (Ç, x)dQ +

|[t* (Ç, x)n -VT (x, tf )-T (x, tf ) n • VT* x)]dF = 0 
r

(17)

Using property (14) of a fundamental solution, one has

(18)
T * (Ç, x) dQQ 

à
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where

q (x, tf +T. ) = - À n • V? ), q (g, x) = - A. n • Vf" (£, x) (19)

Function q" (i;, x) can be calculated analytically and then

q ( x ) = Kj ( rVÄ ), (20)

where Ki (•) is the modified Bessel function of the second kind of first order [12, 
13], while

d = ( ) nl + ( x2 - ) n2 (21)

For e T, one obtains the following boundary integral équation

ß(<)r(c./q + | jr(í..v)ÍZ(.v./ř+r)dr =
A r

r , (22)
- J<f (^,x)T(x,t/)dr + JJ BT[x,tf-l)-CT^x,tf-2)+- 7”(Ç,x)dQ
X r a L M

where B (Ç) e (0, 1). The value of coefficient B (Ç) results from the position 
of boundary point í; considered, for example for the smooth fragment 
of boundary B (í;) = 0.5. Equation (22) constitûtes a basis for numerical algorithm 
construction.

3. Numerical realization

To solve équation (22), boundary T is divided into N boundary elements and in­
terior Q is divided into L internal cells. Hence, the approximate form 
of équation (22) is the following:

B (^‘ ) T tf ) + I f j T ’ (Ç, x)q(x, tf + t) dT, = 
À / = j r .

|Éb’(^)r(*’ř/)dE +
./ = i r,

1 = 1 o
T’(^,x)dQ;

(23)

For constant boundary elements and constant internal cells [12, 13] one has
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) + +r)f / (.. vyli

y S T (xJ’tf ) f «’ (ť, *)dry. +
A 7 = 1 r,

The following notations are introduced

k,=|J / U- vidr. Ą,. =|p’(^x)dr,.

Ę, = ^T" ^,x)d£i,

(24)

(25)

(26)

and then équation (24) takes the form

I t? + É =Î h. r/ + È fBT^1 -CT^2 + t] <27>
j -1 j -1 l -1 k J

or

É = É Hü r/ + È Pn ÍBTi" - CT^ + kV <28)

7 = 1 7 = 1 l = 1 V A )

where

(29)

Equations (28) written for ail boundary nodes i = 1, 2, ..N create the system of N 
algebraic équations which can be written in the matrix form

Gq = Hť +P 1 - CT
À

(30)

This system of équations allows one to détermine the ‘missing’ boundary tempéra­
tures and boundary heat fluxes.

Next, the températures at the internai nodes Ç e Q, i = N + 1, N + 2, ...,N + L 
are calculated using the formula
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/ y // Tf - y G. qf +y p, i bi - er + —
Î IJ J IJ-ŁJ il \ l l A

j = 1 j = 1 l = 1 \ A
(31)

4. Results of computations

The biological tissue domain of dimensions 0.015 m X 0.015 m (L = 0.015 m) 
has been considered. The initial temperaturę of the tissue equals To = 37°C. 
The following input data hâve been taken into account: X = 0.75 W/(mK), 
c = 3-106 W/(m3 K), Gb = 0.0005 1/s, cB = 3.9962-106 W/(m3 K), TB = 37°C, 
Q,„ = 245 W/m3.

On boundary = 0, 0 < x2 < L, the Dirichlet condition in the form of Th (xÇ) = 
= Tmt„ + ((To - Timx) x2/ L) has been assumed, on boundary = L, 0 < x2 < L, tem­
peraturę T = 37°C has been accepted, while on the remaining part of the boundary, 
the no-flux condition has been assumed.

The boundary has been divided into 60 constant boundary elements, the interior 
has been divided into 225 constant internal cells. Time step: Ař = 20 s.

Figures 1, 2 illustrate the heating curves at points 1 - (0.0055, 0.0055), 
2 - (0.0095, 0.0095) and 3 - (0.0135, 0.0135).

Fig. 1. Heating curves at points 1, 2 and 3
for Tmla = 50°C (fuli lines - r= 0 s, broken lines - r= 20 s)
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Fig. 2. Hearing curves at points 1, 2 and 3
for Tmla = 70°C (full lines - r= 0 s, broken lines - T= 20 s)

Conclusions

The 2D thermal wave équation has been solved by means of the boundary ele­
ment method. Under the assumption that t = 0, the results of computations have 
been compared to the results obtained for the Pennes équation using the classical 
boundary element method and they confirm the effectiveness and exactness 
of the proposed algorithm.
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