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Abstract. In the present work, the construction of fractals based on Archimedean solids was 
discussed. The methods of 3D fractals construction based on uniform polyhedra were pre- 
sented. It was shown that the contraction mapping procedure for the construction of fractals 
with non-overlapping or -disjointed contractions could be applied only for a limited number 
of the polyhedra. The contraction ratios and the Hausdorff dimensions were determined for 
the existing fractals with adjacent contractions based on Archimedean solids.

Introduction

The development of fractal geometry created new ways of solving topical sci­
entific problems from quantum physics [1] through structural diagnostics [2] to 
biology and genetics [3]. They found applications in problems related to the me- 
chanics of porous media or in modeling the rheology of materials. However, the 
most intensive development of the application of fractals was noticed in the prob­
lems of computer graphies, pattern récognition, image compression and coding [4]. 
Deterministic fractals are used in testing ray-tracing algorithms during the render­
ing of spatial scenes [5].

As is well known, the construction of fractals is based on the self-similarity of 
the input object. Two general approaches are used in the construction process: 
random and deterministic ones. The random approach usually uses the well-known 
Barnsley’s Chaos Game or its combination with the Iterated Function System 
(IFS), e.g. Chaos Game for IFS connected in the net [6]. The deterministic 
approach is based usually on the Multiple Réduction Copy Machine (MRCM) or 
on the IFS. Some of the simplest and earlier deterministic fractals are the Sier­
piński triangle and Sierpiński carpet. The generalization of Sierpiński fractals 
based on A-sided polygons was presented in [7]. The Sierpiński triangle and carpet 
were generalized to the three-dimensional space and known as the Sierpiński tetra- 
hedron and Menger sponge. Only these two 3D fractals are well-known and pre­
sented in many literatuře positions, e.g. [6, 8]. In [9] the authors determined the 
contraction ratios and Hausdorff dimensions for fractals based on Platonie solids, 
however, they did not give any rules for the construction of such fractals.
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1. General considérations

Because of the regularity of Platonie solids, fractals based on them could be 
constructed as well. However, there is a group of uniform or even semi-regular 
polyhedra which cannot be used construct non-overlapped or - disjointed fractals. 
It could be presented during the construction of fractals based on Archimedean 
solids. Fürther they will be called Archimedean fractals, which could be defined as 
follows.

Definition. Let Ąf be an Archimedean solid with the set of vectors vn which 
represents the vertices with coordinates v , a = 1,2,3, in the Euclidean space R3, 
where S dénotés the Schläfli symbol of the given polyhedron and the number in 
the subscript of A dénotés the number of contraction mapping itérations. Then the 
fractal based on the given Archimedean solid could be defined as attractor A^ of 
the IFS, which is the set of

A^=I w,. (4), (1)
/—o

where the contraction process of Ak to Al+1 was realized with use of the 
Hutchinson operator:

)■ (2)
/■=1

Here w, («) is an elementary similarity transformation and N dénotés the number 
of contractions in a given subset, thus 

where r(s) is the unique contraction factor for polyhedron S which ensures 
that the contractions of w, are non-overlapped or disjointed. That is, 
M'.(4s)nM'y(4s) -0 for i j. Finally, using (2) the attractor of Ąf could be ob- 

tained in the form:

^=Ýw'te), (4)

while W°(ao? )= A^. It implies the following: Ą3 = lim Ak .
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Fractals are characterized by a fractional dimension in general (except some 
fractals like the Sierpiński tetrahedron or Hilbert cube). There are many formula­
tions of fractal measures including box dimension, capacity dimension, topological 
dimension, Lebesgue dimension, Minkowski dimension etc. [6, 8], which often are 
incorrectly used as synonyms or generalized as a fractal dimension. The most 
general formulation of the fractal dimension was presented by Hausdorff [10], 
which is a power law such as:

„ 1 „ ln(iV)
w=PorD=W <5)

In the case of most 3D fractals, 2 > D > 3 (with some exceptions, e.g. Cantor dust 
with D-1.89).

The aim of this work is to détermine the method of construction of fractals 
based on convex uniform polyhedra, which is possible by the analysis of Archime­
dean solids, and détermine the contraction ratios and Hausdorff dimensions for the 
fractals defined above.

2. Construction of Archimedean fractals

Let us consider Archimedean solid Ąf with vertices vn e R3 inscribed in 
sphere P e R3 of unit radius R with the central point of c = [0,0,0]. Applying 
contraction mapping procedure (2), one obtains n contractions scaled 1/r times, 
where one of the vertices of the given contraction coincides with one of the verti­
ces of Ąf.

Consider the fist example - one of the simplest Archimedean solids - the trun- 
cated tetrahedron, Ą)'3'3', which contains 4 triangulär and 4 hexagonal faces. The 
truncation was realized from the tetrahedron, thus a similar principle as for the 
Sierpiński tetrahedron could be used. To détermine the contraction ratio for A^3’3!, 
only the hexagonal face could be considered: r will be the same as for the Sier­
piński hexagon. It could be calculated from the formula (cf. [7]):

1r = —
2

tan—int
m I

tan—I—int
m m 1

m — 1
4

(6)

where m is the number of vertices of a regulär polygon, m > 5 . Having the con­
traction ratio and coordinates of the vertices of the polyhedron [11], it is possible
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to détermine the central points of circum-spheres for A^3'3! and the next itérations 
and place in those central points the contractions scaled by 1/r.

Proposition. Let (Af ) be a finite number of contractions of Af in ternis of 

the Definition. Then central points c, of the contractions could be determined 

recursively from the vertices of Af .

Proof. Because A^ is a semi-regular polyhedron, it can be inscribed into 
a sphere with radius R and v„ e P. Considering the strict self-similarity between 
Af and Af+1 and the fact that r(S ) is unique, one could conclude that

k.)= r(s)-R (7)

which ends the proof.
Truncated tetrahedron A^3'3' and the two first approximations of the truncated 

octahedron fractal are presented in Figure 1.

Fig. 1. Construction of truncated tetrahedron fractal

Fig. 2. Construction of cuboctahedron fractal

Similarly, it is possible to construct fractals for other Archimedean solids: 
cuboctahedron A^1’ 2^3'3^ and small rhombicuboctahedron A^1’ 2^4'3^, which are pre­

sented in Figures 2 and 3, respectively. The contraction ratios for these fractals 
were calculated based on the cross-sections of the polyhedra by the plane through 
the edges. In the first case, one obtained a hexagon (r - 3) and in the second case - 
an octagon (r = 2 + ^/2).
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Fig. 3. Construction of the small rhombicuboctahedron fractal

The above-presented two methods of fractals construction could not be applied 
to other, more complex Archimedean solids, thus the next method should be intro- 
duced.

Let A^(, |f3 4\ be the truncated octahedron inscribed in the circum-sphere of 

a unit radius with the central point of c - [0,0,0]. For the construction of the first 
itération of a2,j^'4^ one chooses one of its faces as the base (in this case the 
hexagonal one). Considering the above-mentioned considérations, six of its con­
tractions will be placed on the base (see Fig. 4). Taking into account the strict self- 
similarity between any two itérations, the contraction ratio could be determined as 
a ratio of the side lengths sk/sk+1 of Ak and Aj’+1 (Fig. 5).

Fig. 4. Contractions Fig. 5. Dimensions of contractions

Having the coordinates of the vertices, one determined vectors lí and b and the 
angle between them for determining p. Now, the side length of the contraction 
could be determined as st+1 - (s*. - p)/2.

Based on the above presented method, the following fractals could be con- 
structed: truncated octahedron fractal A^(,J^, icosidodecahedron fractal A^5'3!, 

truncated dodecahedron fractal A^5'3], truncated icosahedron fractal A$3'5 , small 
rhombiicosidodecahedron fractal A^1’ 2^'3^, great rhombiicosidodecahedron fractal 

Ag() 1215'3' and the fractals presented before as well. Their construction is presented 

in Figures 6-11, respectively.
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Fig. 6. Construction of truncated oc- 
tahedron fractal

Fig. 8. Construction of truncat­
ed dodecahedron fractal

Fig. 10. Construction of small 
rhombiicosidodecahedron fractal

Fig. 7. Construction of icosid 
odecahedron fractal

Fig. 9. Construction of truncated icosahe- 
dron fractal

Fig. 11. Construction of great rhombiico­
sidodecahedron fractal

Contraction ratios and Hausdorff dimensions for existing Archimedean fractals

Table 1

Schlafli symbol, S Contraction ratio, r Hausdorff dimension, D

r[3,3] 3 2.2618
îq 2 F3,3] 3 2.2618
řo.2Í4.3] 2 + 5/2 2.5882
^0,113,4] 4 2.2925
015,3] 4.2361 2.3561
rf5,31 6.8538 2.1271
r[3,5] 5.8544 2.3168

01.215,3] (5-7?)/(5-27Š 2.4729

řo,i,2 [5,3] 25/5/(5-25/5) 2.2404
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The Hausdorff dimensions for the presented fractals were calculated and tabu- 
lated in Table 1 together with the contraction ratios. In the cases of Ą[5,3], í[5,3] 
and í[3,5], the approximate values of the contraction ratios were given because of 
the high complexity of the form of their exact values.

3. Limitations of fractals construction based on Archimedean solids

In Section 2, nine of thirteen Archimedean solids were discussed and the frac­
tals based on them were defined. The last four Archimedean solids, which are uni­
form and semi-regular, are impossible for fractal construction.

Theorem. Let A,- be an Archimedean solid with vertices v„ e R3. Considering 

the définition, the Archimedean fractal based on A$ could be constructed if and 
only if the unique contraction ratio exists.

Proof. Following the presented method of fractals construction (see Sec. 1), the 
ratio between sk and jř+1 must be the same regardless of the chosen base. For 
instance, let us consider the application of a construction method to the truncated 
hexahedron A^4'3f As was presented in Figurel2, there are two possible bases: 
a triangular and octagonal. Since points v„(a^ ) are the prisoner points of (see 
[12] p. 74 for the définition), there is a relation between the contractions for arbi- 
trary itérations: v„(Ajç)=v„„(Ajç+1), thus w,(Ajç) has exactly one common point 

with Ak . Considering that all of the edges of Ak are equal: dist(B,C) = dist(C,D). 
However, proj(dist(A, B))^proj(dist(F,C)) and proj(dist(£,C))proj(dist(E,/.))). 
In such a situation one obtains multiple values of r, where q is the number of 
polygons types from which the polyhedron is composed. The contractions scaled 
by ïfrq are overlapped or disjointed or overlapped and disjointed simultaneously 
(Fig. 13), which is in conflict with the définition of an Archimedean fractal.

Fig. 12. Vertices of interest 
of truncated hexahedron

Fig. 13. Examples of overlapped (= 2 + 

and disjointed (/•, = 3.8476) contractions of 
truncated hexahedron
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Similarly, the great rhombicuboctahedron the snub hexahedron
A'/1'3' and the snub dodecahedron /\('/5'3 do not fulfill the Definition either and 
A^0-1-2 [|31, Aj'1'3 ', Aj'3'3 are not Archimedean fractals.

Conclusions

Archimedean fractals were introduced and the methods of their construction 
were proposed. The contraction ratios and Hausdorff dimensions were determined 
for existing Archimedean fractals. It was proven that not every Archimedean solid 
is able to construct a fractal with adjacent contractions. The presented methods of 
the fractal construction and the theorem could be extended to other uniform poly- 
hedra.
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