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Abstract. In this páper, the solution of a dass of time fractional differential équations by 
using Green’s function method is presented. Green’s functions by using the Laplace trans
formation with respect to the time variable and the method of eigenfunction expansion with 
respect to space variables are derived. An analytical form of the solution to the problem in 
rectangular, polar and elliptical Coordinates has been given.

Introduction

The theory of differential équations of non-integer order is widely used in mod- 
eling varions physical processes [1, 2]. If possible, the analytical methods to solve 
initial-boundary problems with differential équations of non-integer order are ap- 
plied and in particular Green’s function method is used.

Green’s functions for fractional differential operators are of great interest to 
many authors (for instance the bookby Podlubny [3] and papers [4-6]). Fractional 
Green’s functions for linear many-term fractional-order differential équations with 
constant coefficients are presented in book [3]. The explicit représentation of 
a Green’s function for a space-time fractional diffusion équation is given in paper 
[4]. Fractional Green’s function associated with the fractional reaction-diffusion 
équation is considered in [5]. The fundamental solution for a fractional diffusion- 
wave équation is derived in paper [6]. Papers [4-6] concern one dimensional Prob
lems.

Here we propose the application of Green’s function method to problems with 
partial differential équations including a Caputo derivative with respect to the time 
variable and standard Laplace operator with respect to space variables. Green’s 
functions in the form of a sériés of eigenfunctions of a Laplace operator in rectan
gular, polar and elliptical Coordinates are determined. Special cases of the present
ed fractional Green’s function are Green’s functions for a parameter denoting the 
order, which tends to an integer number. The obtained Green’s functions in these 
cases agréé with standard Green’s functions [7, 8].
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Problem formulation

The derivative of fractional-order oc of function g(t) in the sense of Caputo is 
defined by

oD“g(t) = -pr^—J(í--r)"_a_1gW(T)íZT (1)

where n = \a\ + 1, [er] dénotés the integer part of a In this paper we consider 
partial differential équations with a fractional-order derivative in the following 
form

[0Df-c2V2]<Z> = / (2)

where V2 is the Laplace operator and c is a real coefficient. This équation com- 
pleted with initial and boundary conditions will be considered in rectangular, polar 
and elliptical Coordinates. Note that équation (2) for er = 1 is the standard diffusion 
équation and for cr= 2 it is the standard wave équation.

In order to détermine the solution of équation (2), in the first step we use the 
Laplace transform with respect to the t variable. For function /(t) and its Laplace 
transform /(s) wehave

„ 2æ/

where s is a complex parameter. Moreover, we have [3]

l[0O(“/(í)] =sa (4)
k=0

Taking the Laplace transform in équation (2) and assuming zero initial condi
tions, we obtain

[.s^-c2 V2] 0 = /' (5)

The solution of équation (5) can be presented in the following form

0(í,X)=f7(í^)G(í,x;r^)^ (6)
D

where G is the Laplace transform of Green’s function, which satisfies the follow
ing differential équation

[s“-c2V2] G(s,x,T,^=e-Tsö(x-£) (7)
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where <?(•) is the Dirac delta function. Function G satisfies the same boundary 
conditions as function </>. The solution of équation (2) on the basis of (6) can be 
obtained in the form of

t
<p(t, x) = j j f(t G(i,x;w,ij)ćZlj du (8)

0 D

Our aim is firstly to dérivé the Laplace transform of Green’s function G and next 
Green’s function G.

Rectangular coordinates
Consider équation (7) in a rectangle D - {(x, y) : 0 < x < a, 0 < y < b}. In this 

case, the rectangular coordinates are applied and the Laplace transform of Green’s
32 32

function is a solution of équation (7) with V2 -—- H----- We assume that at
d x2 dy

the boundary of rectangle D, the Dirichlet conditions are satisfied

ÖL=ÖL = ». w

In order to solve équation (7) with boundary conditions (9), we consider at first 
the eigenproblem

V2d>(x,y)=-ia2d>(x,y) (10)

<Z>(0,y) = <Z>(a,y) = 0, <Z>(x,0)= ®(x,b) = 0 (11)

Eigenvalues a>mn and eigenfunctions <Pmn(x, y) are

J
 Z \2 Z \2í nitx ï î mit y | \ . niïx . miïy 4---- + =  Sin—^,n=l,2,... (12) 
y a J y b J a b

We seek the solution to boundary problem (7), (9) in the form of a double sériés of 
eigenfunctions:

G (s, x, y; r. ç. //) = JJ (x, y ) (13)
n=l m=l

We détermine coefficients Amn by substituting function G given by (13) into 
équation (7), multiplying both sides of the équation by d>kl(x, y) and integrating 
with respect to x and y in intervals |0.c/| and |0./?|. respectively. Using the orthogo- 
nality condition we obtain:



134 S. Kukla

eA — n j / a 11ab [s +c (ümn
(14)

As a resuit, we hâve the Laplace transform of Green’s function in the foliowing 
form:

—/ <. \ 4 e ST . mnx . mnE . nity . nnyG (s, x, y, T, Ç, rp = — y —-----—— sin-------sin----- sin —— sin —— (15)
ab n^s +c 0)n a a b b

Finally, Green’s function, as an inverse transform of (15), has the form of

e x 4(t-r)a1^, / ? 2 i \«\ • mnx ■ ■ n^y ■ n^y
G(t,x,y;T,^= 7 \Eaa[-c2(4nn{t-T) sin------ sin-----sin —-sin —

ab ' a a b b
(16)

where t > T and £œ^(z) is the Mittag-Lefler function defined by [3]:

Polar coordinates
Differential équation (5) in a circular/annular region should be written in polar 

coordinates. This équation for Green’s function has the following form:

[s“-c2V2] G y r, </r, t, p, e) = Ô^r ~ â(</> - 0)e~TS (18)
r

i r-z2 13 1 32 . z-iox i i- -i -i
where V =—— H--------F—------ Equation (18) obliges in the circle region:

3r2 r dr r2 dfi2

r<b. We assume the Dirichlet condition on the boundary, i.e. g| = 0. We find 

the solution of this équation in the form

G (s, r, (jr, T, p, 0) - g m(s, r-, T, p) cos m(0- 0) (19)

where functions gm (s, r; r, p) satisfy the équation

' 32 ! 1 3 
y r2 r dr

g,n(s> GT,p) = S^r-p) .
Inr

(20)

We seek a solution of équation (20) in the sériés form of eigenfuctions of the 
following problem:
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í 12 i 7 2 A
+ -2L ^(r)<+oo for Q<r<b, *^(h)=0

\d r rar r J
(21)

The solutions to this eigenproblem create a sequence of functions

(22)

where Jm are Bessel functions of the first kind of order, m and ü)mn (m - integer, 
n - natural) are the roots of équation

(23)

Next we assume that

00 / X
&,n A-r g p)=S A»,A ■ (24)

n=l

Substituting sériés (24) into équation (20) and using the orthogonality condition of
functions (22) in interval |0./?|. we obtain coefficients Amn in the form of 

where

dmn = 27t\rJ2((omnr)dr = 7t:b2 J2(a),nnb). (26)
o

Finally, taking into account équations (19) and (24), (25), the Laplace transform of 
Green’s function is

G(s,r,</r,T,p,0) = £ Zg~ J mWnnP)-^------r^cosm(^-6») (27)
m=-oo n=l ^mn $ 5" C tynn

Hence, Green’s function has the form

G(t, r, </>', T, p, 0)

1 (f V1 V" An(tynnP) ( 2 2/. W 1 (
= Z Z---- f2G ,\------ Ea,a\~c (PnPt-T) )cosm(0-0)Ttb 7 \A!n,,b]

Elliptical coordinates
Differential équation (5) in an elliptical space domain we write in the elliptical 

coordinates. This équation has the following form [9]
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[s“ - c2 V2 ] G (s, 7; G 0) = fl (29)
h (cosh ç — cos 77)

where V2 = —77----- 5---------5—J —7 H------7 ■ The équation obliges in the ellip-
h (cosh £-cos 7)^8^ 87 J

btical region: Ç < ç,,, where - arctgh —, a and b are half axes of the ellipse 
a

which is the edge of the region. We assume the Dirichlet condition on the bounda- 
ry, i.e. Gl =0.

We seek the Laplace transform of Green’s function in the form of a sériés:

G (.v, 7; G C 0) = Ž t Amn 4>mn (£ 7) (30)
/n=0 n=l

where

&mn & 0) = Me,n & qmn ) me,n fa, qmn ) (31)

are the eigenfunctions of the problem presented in paper [8], qmn are roots of the 
équation which follows from boundary condition

MemfaQ,qJ=0. (32)

The angular and radial Mathieu functions mein{ri,q) and Mem(r],q} were in- 
troduced in [9]. Substituting function (31) into équation (30) and using the ortho- 
gonality condition we hâve

e~TS ( \ ( \
A,nn = --------------------------- 77---------7----- VMem Qmn ) m£,n Qmn J (33)

n h2 (cosh2 Ç- cos2 0)\sa+c2 a)2nn\

Green’s function has the form of

G(t,^7;G^ô)

(f _ OO oo / \ (34)
= ,7 -Z S (Í. 7w. (' - ďnh (cosh Ç - cos 0)m=o ll=1

Note, that for a = 1 and for a — 2, the Mittag-Lefler function has the form of [3]

£i.i(z)=g, e2,2(z)=^!è£ (35) 
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That way, Green’s functions for the standard diffusion équation (a = 1) and stand
ard wave équation (« - 2) as particular cases of the function given by (34) are:
- for a = 1:

1 OO OO / K (36)
= 7 2/ lU.X------- TT) (£ ~ ?)}

jr h (cosh Ç - cos 0),„=Oll=i

- for a = 2:

Ç, 0)

1 OO OO 1 , > (37)
=--- ,2Î ,2.------- rX] S S — ^,nn (£TT ch (cosh Q - cos 0)m=o „=1 ù)nm

Green’s function (37) for the standard wave équation in an elliptical region is de- 
rived also in paper [8].

Conclusions

The analytical form of solutions to initial-boundary problems with a differential 
équation including a Caputo derivative with respect to time and the Laplace opera
tor with respect to space variables is presented. Particular cases of the considered 
differential équation are classical diffusion and wave équations. The presented 
solutions, which concern 2D problems in rectangular, polar and elliptical Coordi
nates are expressed by Green’s functions corresponding to associated problems 
with homogeneous boundary conditions. The obtained Green’s functions can be 
used to dérivé solutions to the considered differential problems with time- 
fractional derivatives.
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