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Abstract. The dual phase lag model (DPLM) based on the generalized form of Fourier law, 
in particular the introduction of two ‘delay times’ (relaxation time and thermalization 
time Tr) leads to the considered form of energy équation. This équation should be applied in 
the case of microscale heat transfer modeling. In particular, DPLM constitutes a good ap
proximation of thermal processes which are characterized by extremely short duration (e.g. 
ultrafast laser pulse), extreme température gradients and geometrical features of the domain 
considered (e.g. thin metal film). In this paper, the identification problem of two of the 
above mentioned positive constants r9, Tr is discussed and the thermal processes proceeding 
in the domain of thin metal film subjected to a laser beam are analyzed. At the stage of 
computations connected with the identification problem solution, evolutionary algorithms 
are used. To solve the problem, additional information concerning the transient température 
distribution on a metal film surface is assumed to be known.

Introduction

Let us consider the following form of generalized Fourier law

q(x, t + Tî) = -ÀV7’(x, t + fr) (1)

where q is the unitary heat flux, À, is the thermal conductivity, VT is the tempéra
ture gradient, T?, T-/ correspond to the relaxation time, which is the mean time for 
électrons to change their energy States and the thermalization time, which is the 
mean time required for électrons and lattice to reach equilibrium.

The DPLM équation can be, among others, reduced from the considérations 
concerning the parabolic two-temperature model [1-3]. This model in volves two 
energy équations determining the heat transfer in the électron gas and metal lattice. 
The équations creating the model discussed (in the case of metals) are of the form

ce(rJ^-V[Àe(Te)VTe]-G(Te-T;) (2)
dt
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ot
(3)

where Te = Te(x, t), Tt = Tfa, t) are the températures of the électrons and lattice, 
respectively, ce(Te), cz(7) ) are the volumétrie spécifie heats, Xe(Te), MTi) are the 
thermal conductivities, G is the coupling factor [1], which characterizes the energy 
exchange between phonons and électrons [4]. Equations (1), (2) under the assump- 
tion that volumétrie spécifie heats ce and c; are constant values, using a certain 
élimination technique can be substituted by a single équation containing a higher- 
order mixed derivative in both time and space. From équation (2) it results that

(4)

Putting (3) into (1), one has

- V(Xe VTJ + 7-V (5)
G dt2

this means

Ce Cl d2 TldT,
(ce+q) -7 +

(6)
v(à.vt;)

Denoting

(7)

finally, one obtains

dT(x,t) d2T(x,t)

(8)
vFàvt(x, t)l+rr v x---------

L J 3t

where T (x, t) = Tt (x, t) is the macroscopie lattice température [5], c = ct + ce is the 
effective volumétrie spécifie heat resulting from the serial assembly of électrons 
and phonons and X = [6].

In Figure 1 (see [11]), the numerical solution obtained on the basis of two tem
pérature parabolic models is shown (équations (2) and (3)). In particular, the heat-
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ing/cooling curves refer to the surface of domain (Ti) subjected to a laser pulse. 
The time for which the électrons and lattice températures are equalized correspond 
to the thermalization one Tr. Hence, it seems that the physical interprétation of this 
Parameter is self-evident.

Fig. 1. Changes of surface températures

The other approach to DPLM formulation is also possible and the details of the 
mathematical considérations leading to the same équation can be found in [3].

1. Internai heat source

In this paper the thermal interactions between external heating (laser beam) and 
the domain of metal film are taken into account by the introduction of a additional 
term supplementing the DPLM, in particular the function corresponding to volu
métrie internai heat sources, Q(x, t) is considered. This approach is often used [2] 
while the new form of energy équation in which Q(x, t) appears is the following:

3T(x, t) d2T(x,ť) 
~~dt +T" a? = V[XVT(x, t)] +

„I" aVT(x, t)~| c')Q(x. f)
ttV à,--------- — + ß(x, t) + r ———T L a? J ’ a?

(9)

The formula determining the capacity of internai heat sources is applied (ID prob
lem [7, 8]) takés the form of 

Q(x, t) = A 1-fi T ---------ioexPTT t 0
£_ (f 2/J
8 K

(10)
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where IQ is the laser intensity which is defined as the total energy carried by a laser 
pulse per unit cross-section of the laser beam, tp is the characteristic time of a laser 
puise, 5 is the characteristic transparent length of irradiated phonons called the 
absorption depth and R is the surface reflectivity, = 4 ln2. The local and tempo- 
rary value of Q results from distance x between the surface subjected to laser 
action and the point considered. Using this approach, the no-flux boundary condi
tions for x = 0 and x = L should be assumed.

In Figure 2, the metal film subjected to a laser beam is shown, at the same time, 
the geometrical features of the domain considered allows one to treat the problem 
as a ID one.

Fig. 2. Domain considered

x

2. Numerical solution based on FDM (direct problem)

At the stage of numerical modeling, the finite différence method in the version 
proposed by Mochnacki and Suchy [9] has been used. Therefore, the following 
basie energy équation (ID problem) is considered

(H)

The differential mesh is created as a Cartesian product of spatial A;, and time A, 
meshes. The time grid is defined as follows:

Ar : t <t <t <t <oo ( 12)

while the spatial mesh is shown in Figure 3.
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It is visible that the boundary' nodes are located at a distance of 0.5 h from the real 
boundaries (this type of discretization assures a very simple and exact approximation 
of boundary conditions [9]).

l-l l Z+l
o I o I o I O I 0*0 • O I O I o I o 

1-0.5 1+0.5
o I o I o I o

Fig. 3. Spatial mesh

The FDM approximation of the spatial differential operator can be taken as fol- 
lows [9]:

a f , ar ---  À---  
a % i a x

y Z _rT-f
•-1 • T
zdr1

y Z  y Z 
2/+l Łi m

fl/-1

where T, +1 = T,_ i = Uh are the mesh shape functions, while

j 0.5/z 0.5/z j 0.5/z 0.5/zR' —------- 1--------- R' —------------1---------
/+1 àA1 àA1 ’ ' 1 zA1

(13)

(14)

are the thermal résistances between node i and adjoining nodes i + 1, i - 1. Index/in 
formula (13) shows that the implicit differential scheme will be used here, at the 
same time, the thermal conductivities are taken for time d-1 to obtain the linear form 
of final FDM équations. The FDM approximation of équation (11) for transition 
d-1 —» t} is of the form

—------l---- + C T —-------- -------- l-----=
At ' (At)2

(15)

and the last formula can be written as follows

+ (2,1^ =

D Tf:1 + E Tf~l + F T1-1 + -
(At)2

ag Y
C C 3t J.

i = l, 2,..., N

(16)



194 B. Mochnacki, M. Parach

where

»P ( T T ( T
A =-- 1 + — L Ct=--------- 1 + ^cR{~\ AtJ cRf+;\ At

1 ( T
B =----- 1 + ^- -A-C

At\ AtJ

T , Tr T.+l Tr
l~ cRj_J At’ cRf~l At

1 ( 2t
E =----- 1 + —q- \-D -F

Aty At J

Finally,

AjJ^+Bj/ +(3^= Gf

where

Gf = D, T^1 + £, T/-1 + Ft T^1 +

Tf-i _QL_\( 92 Y 
(Az)2 ' c c di J.

(17)

(18)

(19)

(20)

(21)

(22)

The same équations are accepted for the nodes close to the boundaries. It is enough 
to assume that the thermal résistances in directions ’to the boundary’ are sufficient- 
ly big (e.g. 1O10) and then the non-flux condition is taken into account. The starting 
point of the numerical simulation process results from the initial conditions, in 
particular Tj = Tj = To, i = 1, 2, N. As was mentioned, the system of FDM 
équations (16) has been solved using the Thomas algorithm [9] for a three- 
diagonal linear system of algebraic équations.

3. Inverse problem

To solve the inverse problem, the least squares criterion is applied
1 M F ?

(23)

where 7/ and l\f = ljx!.t3'^ are the measured and estimated températures, re- 

spectively and M is the number of sensors. The minimum of functional (23) has 
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been found using evolutionary algorithms. Hence, the direct problems hâve been 
solved and the results allow one to détermine the time dependent surface tempera
turę (x = 0). Because the température history resulting from the numerical solution 
for the basie input data is very close to the experimental ones quoted in [10] - Fig
ure 4, therefore this undisturbed numerical solution is assumed to be a base of the 
identification problem solution Çmeasured surface temperaturę’). Therefore, the 
laser parameters determining the capacity of internal source function Q(x, t) and 
also the thermal conductivity and volumétrie spécifie heat of gold are known, pa
rameters t9, Tr should be determined (from the practical standpoint the experi
mental estimation of t9, Tr is not easy).

Fig. 4. Comparison to experimental data 110]

In Figures 5 and 6, an example of a direct problem solution is shown. The layer 
is subjected to a short-pulse laser irradiation whose parameters are equal to: 
R = 0.93 (reflectivity), Io = 13.7 J/m2 (intensity), tp = 0.1 ps = 10-13 s (time of laser 
puise), § = 15.3 nm (absorption depth). The following parameters of thin gold film 
are assumed: thermal conductivity /. = 317 W/(mK), volumétrie spécifie heat 
c = 2.4897 MJ/(m3K), relaxation time r9 = 8.5 ps, thermalization time r-/ = 90 ps. 
The initial température equals To = 20°C (see [11-13]).

Using the algorithm presented in the previous chapter under the assumption 
that N = 200 and Ař = 0.005 ps, the transient température field has been found. 
In Figure 5 the température profiles are shown, while Figure 6 illustrâtes the courses 
of heating (cooling) curves at points selected from the domain considered.
The identification of ‘delay’ times has been done using evolutionary algorithms. In 
Table 1 the algorithm parameters are collected. The results obtained are presented in 
Table 2 and they are quite satisfactory.
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Table 1

Evolutionary algorithm parameters

No. of génér
ations

Number 
of chromosomes

Prob, of 
uniform 
mutation

Prob, of non- 
uniform muta

tion

Prob, of 
arithmetic 
crossover

Prob, of 
cloning

50 20 20% 30% 50% 10%
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Resuit of computations using EA

Table 2

Design variable Exact value Found value Error, %

8.5-10-12 8.499999-10“12 0

90-IO"12 89.99999-IO"12 0

The application of evolutionary algorithms for the identification of problems 
solutions is (from the numerical point of view) a time-consuming one. On the other 
hand however, the mathematical and numerical problems connected with adéquate 
algorithm construction seem to be essentially simpler in comparison to the very 
popular gradient methods.
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