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Abstract. The dual phase lag model (DPLLM) based on the generalized form of Fourier law.
in particular the introduction of two ‘delay times™ (relaxation time T, and thermalization
time Tz} leads to the considered form of energy equation. This equation should be applied in
the case of microscale heat transfer modeling. In particular, DPLM constitutes a good ap-
proximation of thermal processes which are characterized by extremely short duration (e.g.
ultrafast laser pulse). extreme temperature gradients and geometrical features of the domain
considered {(e.g. thin metal film). Tn this paper, the identification problem of two of the
above mentioned positive constants T,. T, is discussed and the thermal processes proceeding
in the domain of thin metal film subjected to a laser beam are analyzed. At the stage of
computations connected with the identification problem solution. evolutionary algorithms
are used. To solve the problem. additional information concerning the transicnt temperature
distribution on a metal film surface is assumed to be known.

Introduction
Let us consider the following form of generalized Fourier law
q(x,!+’r,!)=—kV'1'(x,!+r,) (1

where ¢ is the unitary heat flux, 2 is the thermal conductivity, VT is the tempera-
ture gradient, T, Tr correspond Lo the relaxation time. which is the mean time for
electrons to change their energy states and the thermalization time, which is the
mean time required {or electrons and lattice to reach equilibrium.

The DPLM cquation can be, among others, reduced from the considerations
concerning the parabolic two-temperature model |1-3|. This model involves two
energy cquations determining the heat transfer in the electron gas and metal lattice.
The equations creating the model discussed (in the case of metals) are of the form

(1) L=V, VT |-G(T.-T) @)
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where 7, = T.(x, 1), T, = Ti(x, 1) are the temperatures of the clectrons and lattice,
respectively, ¢ (7,), ¢(T; ) are the volumetric specilic heats, A.(T,), (T} arc the
thermal conductivities, G is the coupling factor | 1], which characterizes the energy
cxchange between phonons and electrons [4]. Equations (1), (2) under the assump-
tion that volumetric specific heats ¢, and ¢, are constant values, using a certain
elimination technique can be substituted by a single equation containing a higher-
order mixed derivative in bath time and space. From cquation (2) it results that
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Putting (3) into (1), one has
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finally, one obtains
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where T(x, 1) = T (x, #) is the macroscopic lattice temperature [S]. ¢ = + ¢, is the
effective volumetric specific heat resulting from the serial assembly of electrons
and phonons and L= . [6].

In Figure 1 (sce [11]), the numerical solution obtained on the basis of two lem-
perature parabolic models is shown (equations (2) and (3)). In particular, the heat-
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The same equations are accepled for the nodes close o the boundaries. It is cnough
to assume that the thermal resistances in directions 'to the boundary' are sufficient-
ly big (c.g. 10'°) and then the non-{lux condition is taken into account. The starting
point of the numerical simulation process results from the initial conditions, in
particular T"=7' =71,.i=1.2, ... N. As was mentioned, the system of FDM
cquations (16) has been solved using the Thomas algorithm [9] for a three-
diagonal linear system of algebraic equations.

3. Inverse problem

To solve the inverse problem, the least squares criterion is applied

1 & &, .
S(Z'q, z‘,)=M—}_ZZ(7: _7;".') (23)

3
Ll

where T/ and T =T(.\;, !"') are the measured and estimated temperatures, re-

spectively and M is the number of sensors. The minimum of functional (23) has
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Table 2
Result of computations using EA
Design variable Exact value Found value Error. %
T 8.5.10™"* 8.499999. 107" 0
2 90-107" 89.99999. 107" 0

The application of evolutionary algorithms for the identification of problems
solutions is (Irom the numerical point of vicw) a time-consuming one. On the other
hand however, the mathematical and numerical problems connected with adequate
algorithm construction seem to be essentially simpler in comparison to the very
popular gradient methods.
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