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Abstract. In this páper, the results of numerical studies on the divergence and flutter insta- 
bility and vibration of a geometrically nonlinear column subjected to generalized load are 
presented. The system is loaded by axially applied external force P. The direction of action 
of the force is dependent on follower factor rp The Hamilton principle was used to formu- 
late the boundary problem. Due to the geometrie nonlinearity, the solution to the problem 
was performed by means of the perturbation method. The main purpose of this paper is to 
investigate the influence of the location of the crack on divergence and flutter loading as 
well as natural vibration frequency. The presented results of numerical calculations also 
concern the influence of rotational spring stiffness and follower factor 7 on the investigated 
Parameters.

Introduction

The study on natural vibration, divergence and flutter instability of geometrical
ly nonlinear slender Systems subjected to generalized loading hâve been the sub- 
ject of numerous scientific investigations. The first papers in this field already 
appeared in the 1960s. Among others, the influence of the follower factor, asym- 
metry of the bending rigidity coefficient and stiffness of the supporting springs in 
the examined Systems on the type of instability, bifurcation (divergence) and criti- 
cal (flutter) loading were investigated.

In this study, the problem of the natural vibration of a geometrically nonlinear 
column consisting of three rods with divergence and flutter instability is taken into 
account. In the investigated system, the first element is a continuous rod and rods 
two and three are connected by a pin, strengthened by a rotational spring with 
stiffness C. In the physical system, the pin and the spring can represent the internai 
crack or connection of two rods made of two different materials. The scientific 
research of columns with cracks were performed by Kukla [1] and Wang [2].The 
investigated column is loaded by external force P. The direction of action of the 
force is dépendant on follower factor tp The numerical calculations of divergence 
and flutter instability were performed by Przybylski [3], and Tomski [4]. The prob-
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lem of instability and natural vibration has been formulated by means of Hamil- 
ton’s principle [5]. Due to geometrie nonlinearities, the solution to the problem has 
been performed by use of the small parameter method [6]. The main purpose of 
this study is to investigate the influence of the location of a crack on the diver
gence and flutter loading and natural vibration frequency. The presented results of 
the numerical calculations also concern the influence of the rotational spring stiff- 
ness and follower factor // on the investigated parameters.

1. Formulation of the problem

Fig. 1. Nonlinear system under considération 
subjected to generalized load

Fig. 2. Exempláry models of real life 
structures

In Figure 1 the nonlinear cantilever column under investigation is presented. 
Member I consists of rod (1), and member II éléments are rods (2) and (3) con- 
nected by a pin strengthened by a rotational spring of stiffness C. The smaller val
ue of C, the greater the crack. The investigated system is loaded by a concentrated 
axially applied force P at the point of connection of rods (1) and (3). The deflec- 
tion angles of these rods are identical. The direction of action of the force is de- 
pendant on follower factor r). The rods hâve length /, =1,2,3 respectively. The 
physical structures of the considered system are shown in Figure 2: a) two coaxial 
tubes, b) tube and rod, c) fiat frame.
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The problem presented in this páper has been formulated by means of the 
Hamilton principle:

Ą(T-V-Ln)dt = 0 (1)

where kinetic T and potential V energy and work L„ of non-conservative forces are 
expressed by the following formulas:

T = (2)

Ln=11P3W^ 
d.v.

(4)

Introducing kinetic (2) and potential (3) energy and work (4) into (1) and per
forming the variational and intégration operations, and assuming that virtual longi
tudinal and transversal displacements for i = 1,2,3 are arbitrary and independent 
for 0 <a,< the following équations of motion in a transversal direction were 
obtained:

The compressive axial force is defined as foliows:

/ r "i2>
= _£;Ą , ; = 1,2,3

d.v 2 d.v
\ L J 7

(6)

Introducing the définition of axial force (6) into the équation of motion, équation 
(5) has the form:
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(7)

The axial displacement in each rod is expressed by the formula:

(8)
ctv.

Il I A S‘(t)X‘
(Ji(xi,t) =----------

2

z = 1, 2, 3

£i7y>^+Si(/)a5^+Ma^^=o . = 1.2,3 
dxi dxi dt

Introducing geometrical boundary conditions into the variational équation:

Wl(p,t)=Wl'(Xl,t^ = W2(0,t)=W2 (x2,t^ = 0, w'^tl 1 =w’(x3,tl l ,
I X| — l) IX-i—U ''l- řl 1-Ï3 — £3

W2(Z2,t) = W3(0,t), W1(Z1,/)= W3(Z3,i), t/1(0,i) = t/2(0,i)=0,
U2(l2,t) = U3(0,t), Ul(ll,t)=U3(l3,t). (9 a-k) 

the following set of natural boundary conditions were obtained:

E^WÎ'^t] +£3/3W,"(x3,t^i_;3 =0.

E^W^Ą^ +PW'(Xl,tlrli + E3J3W3,n(x3Ą^ =0,

E2J2W’”{x2,tl^ + S2W’(x2Ą^-E3J3W’’\x3Ą^-S3W’(x3Ą^ =0,

-E3J3W3'\x3^__o + c[w3'(x34x__o -W/(*2<J= 0,

E2J2W2"(x2,tl^ -c[w3'(x3,tt^0 ~W2 (*2< J= 0,

S2=S3, St + S^P (lOa-g)

The small parameter £ method [6] has been used to solve the boundary prob
lem. According to this method, the longitudinal and transversal displacements, 
axial force and vibration frequency of each rod are written in a power sériés:

&d=Éd + or dvl ) m;(£d=uia^)+^£lnui2n r)+o(£2K+‘)
n=l n=l

ki^)=kio + Î£2nki2n^)+O(£2N+') a2 = O)a2 + ^E2nü)i22 + O(e2N+') (lla-d)

The magnitudes obtained from équations (lla-d) are introduced into the équa
tion of motion, axial force and boundary conditions. Then, the terms are grouped 
at the same power of small parameter e, which leads to an infinite sequence of 
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équations. The solution presented in this paper was obtained on the basis of a sys
tem of équations with the small parameter in the first power.

2. Results of numerical calculations

At the beginning, the relation curves force p versus natural vibration frequency 
co for different a follower factor and crack location has been presented (Figs 3 and 
4). The continuous curves stand for the divergence instability and the dotted curves 
stand for the flutter instability. With the increasing value of follower factor rj, the 
increase of the maximum magnitude of the external load has been achieved irre
spective of the location of the crack. The crack location changes the natural vibra
tion frequency of the system. It has been concluded that if the crack is located near 
the free end of the column, the point at which the system loses instability through 
flutter occurs for a smaller follower factor value. For example, when the stiffness 
of the rotational spring is equal to one and the pin is located in the middle of the 
column, the flutter instability occurs for an p greater than 0.5, while for location 
d2 = 0.7, the flutter begins with an // greater than 0.4. The point at which the natu
ral vibration frequency curves cross each other has also been found. At this point 
the force and vibration frequency does not dépend on the follower factor.

Fig. 3. Influence of follower factor on 
natural vibrations, c = 1, <72 = 0.5, r,„ = 0.76

Fig. 4. Influence of follower factor rj on 
natural vibrations, c = 1, d2 = 0.7, r„, = 0.76

The next step in the numerical calculations project was to investigate the loca
tion of the crack on the shape modes. The sample results of this study are present
ed in Table 1.
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Table 1

Influence of location of crack on shape mode, c = 1

It has been concluded that for c > 5, the location of the pin has no influence on 
the shape modes, while for smaller c values, the shape modes vary on each other. 
As shown in Table 1, when c = 1, translation of the crack along the columns length 
changes the shape modes. When the crack is located near the free end of the sys
tem, the shape mode is close to the linear system, that is why the external load 
value in this location is the greatest.

The relation force-crack location for a different spring stiffness and follower 
factor is presented in Figures 5 and 6.

Fig. 5. Influence of crack location on maximum load for different spring stiffness, 
>7 = 0, r„. = 1, r,„ = 0.76
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Fig. 6. Influence of crack location on maximum load for different spring stiffness, 
;/ = 0.3, r„. = 1, r,„ = 0.76

When the rotational spring stiffness tends towards infinity, the change in loca
tion of the pin has no influence on the bearing capacity of the system. Réduction of 
the stiffness of the connection between rods 2 and 3 up to 5, with translation of the 
pin along the columns length from the fixed end up to free one causes the 
capacity of the system to stabilize. Further réduction of connection stiffness 
c allows one to obtain greater load changes under the influence of the pin localiza- 
tion. With c = 0, the bearing capacity of the column is the smallest. Despite chang
es of the rotational spring stiffness which connects rods 2 and 3, the maximum 
external load value stabilizes when the pin is located close to the free end of the 
column.

Conclusions

In this paper the influence of the crack location along the column length on the 
divergence and flutter load and natural vibration of a geometrically nonlinear co
lumn subjected to generalized load P is presented. After analysis of the results of 
numerical calculations it was found that:
- For c < 5 the location of the pin has a great influence on the critical loading 

and natural vibration frequency. By changing the location of the pin, instability 
régions can be controlled.

- When the crack is located near the free end of the column, the influence of the 
spring stiffness on the maximum loading and natural vibration frequency is 
negligible.

- There is a value of rotational spring stiffness above which the location of the 
pin has no influence on the investigated parameters. This effect occurs for 
c > 5.
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- Points in which, irrespective of the follower factor, the natural vibration fre- 
quency is constant were found.

- It has been concluded that the influence on the type of instability (divergence 
or flutter) also has the direction of action of the external load, which is de
pendent on follower factor 77.

Nomenclature

A, Cross section area Bending stiffness ratio EJ,/E2J2
E, Young’s modulus rw Bending stiffness ratio E2JJ EJ

J, Area moment of inertia k, Non-dimensional axial force Sjf/EJj
P External force Wj Non-dimensional transversal displacement H'//
C Rotational spring stiffness Ui Non-dimensional axial displacement U/l
U, Axial displacement di Non-dimensional length of a rod Z,/1
W; Transversal displacement íi, T Non-dimensional space and time variable, respectively

7 Follower factor C Non-dimensional spring stiffness CI/iEJ,+ E2J2)

Pi Density of a material itp Non-dimensional natural frequency /jlpAJ/ EJ.)
Natural vibration frequency P Non-dimensional external load PZ2/(E|7|+ E2J2)
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