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Abstract. The article deals with an HM-network with time-dependent service rates of ap-
plications in the systems. The presented methods for finding the expected income systems:
the direet method, Laplace transforms, the method of difference scheme, are implemented
using the software package Mathematica. Expected earnings are important for solving
problems of optimization and control of HM-nctworks. which are used in practice us
stochastic models of various ohjects in computer technology, insurance. logistics. and
medicine.

Introduction

Consider a HM (Howard-Matalytski)-network of arbitrary structure with the
same Lype ol requests consisting of 7 quening systems (QS) S,.5,.....S,. A re-
quest moving from one QS to another QS brings the last QS some income and
respectively, the income of first system is reduced by that value |1]. Consider the
case where incomes from the transitions between the states of the network are
deterministic (unctions, depending on the network conditions and time, and the
qucuing network is a single line. It is assumed that the parameters ol the requests
service in the QS are time-dependent, therefore if at time ¢ service in the QS §,is
requested, then in interval [rir+ Ar] the service will end with the probability
MDA+ o(AL), =14

The paper presents methads {or (inding the expected income systems in the
network during time ¢ provided that we know of their income in the initial time.
The examples of an [IM-network in predicting incomes Irom inter-bank payment
in a bank nciwork, the Internet, insurance companics and logistic transport systems
at the cost of flexible computing clusters are described in | 1].

1. Expected incomes of networks systems

Let us denote by v (k.7} - the tull expected income which is received by system
§; inatime 7, if during the initial moment of time the network is in state k: £ (£)

i

- the income of system S, in unit of time, when the network is in state k3 7, - the
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vector with dimension 7 with zero components, behind exception component @,
which is equal to 1; 5, (k+1{,7)- the income of system §;, when the network
makes a transition from state (k,1) to state (k +/,.6+Af) during time At
— R, (k—1,.t+Af) - the income of this system if the network makes a transition
from state (k,7) 1o state (X —7,. 1+ Af); r,.).(k +h =1+ A - the income of sys-
tem §; (the expense or loss of system S ), when the network changes state [tom
(k.1) 10 (k+1,—7 .0+ Ar) during Af, i, j=Ln.

Suppose that the network is in state (k.7). During time interval Az, the network
may either be in state & or change its state to (k— ) (k+T)(k+1,—1 ). i j= Ln.
If the network remains in state (k.7 +A¢). then the expected income of system S, is
cqual 0 s(k)Ar plus the cexpected income v (k,¢), which it will
receive at the remaining ¢ time units. The probability of such an event is equal to
-+ k DAL+ 0(Ar), where (-)—{l’xzo’ he Heaviside functi

/L+;ﬂ1(f)ll( j)) +o(A), where t(x 0.x<0, the Heaviside function.
If the network makes a transition to state (k+1{,.1+ At) with probability
Apo:Af +0(Ar). then the income of system S, is cqual to [y, (k +1,0)+v,(k+1.1)],
and if to state (k—/,.+ Af) with probability (¢ ik, }p, At+0{At), then the
income of this system equals [-R (k-1 t)+v,(k—1.0)]. i=1n. Similarly, if
the network passes from state (k.f) (o state (k+7,—1 ¢+ At) with probability
,uj(l)u(kj)pﬁm+0(A!), it brings to system S; the income rk+ 1, =1 1) plus
the expected income of the network over the remaining time under the assumption
that the initial network state was (k + £, — 1.,.,1) .

Then, vsing the total probability formula for conditional expectation, we can
obtain a system of difference-dillerential equations (DDE):

Ak _ i+
dt

+ 4 Dk D)+ 3 [Apy v e+ F )+ (k) p vtk =1 0]+
1 i
3 [0tk ) p v e 1 — 1 6yt (k) pyv, e — 1+ 1.0]+

ﬁi:‘l‘
+ Z[,a‘,(f)u(k‘,)p‘,,:;:,(lc + 1 =1+ (Oulk Y perGe—1,+ 1 ,0]+

=l

i

+ D Atk p YUk T =T 0 FAP K+ 10 = 1 (Outk,) iRy (k= 1,.0) (1

voy=1

T

The number of equations in this system equals the number of the network states.
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For a closed networks system ol equations (1) reduces to a system ol linitely
many lincar non-unilorm DDE which in the matrix form can be rewritlen as

dv,(t)

= Q.+ ANV, (1), i=Ln (2)
dt

where Vi"'(l)=(1-’,-(l,l)..A.,1-',.(L.!)] - the vector of incomes of system §,, L - the
number ol network stales.

2. About solution methods of system (2)

The decision of system (2) can be found, using the Laplace transformation
method. Let ¢;(s). G,(s). W(s) - the vector of Laplace transformations of

functions v.(j.1), Q). AN, i=r1, respectively. Then  sU(s)-Vi0) =G (s) +
+f:(W(s).U,(s)). Solving this (unctional cquation with respect 1o U (s), we will
receive:

Uis)=F (GAs),W(s). i=La (3)

Taking the inverse Laplace transformations (tom both parts of cquality (3), it is
possible to find functions v, (7.1, i=1,L.

Example 1. We will consider the Laplace transformations method on an example
ol a closed network with small dimensions. Let there be a network with the
following parameters: # =2, the number of requests in the network. and K =2, a
the matrix of transitions probabilitics ol requests between QS networks

(01 (4)
211 0

The intensily of service is sct by the {unctions g, (t) = at. f,(ry=¢""". As the

P=|n,

network is closed, the number of its states is equal to L=C""j_, =3, then will be
states (0,2), (1.1), (2,0). Let us designate them respectively 1. 2, 3. Let us assume
that incomes rik.f), Rik,f) do not depend on time and are equal to
rih=6, r(2)=4, r(3)=3, RM=2, R2)=1, R(3)=5. System (2) in this

casc looks lIike:
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J VL) =3-4¢ = 2670y (L) +5¢7 0 (2.1)
V(2,00 =1-2¢7" +6at +any (L) + (=™ — @ (2,0)+ 37" (3,1) (5)
‘v‘l'(l, ty=0+42at +atv(2,)—2atv(3,1)

Let us define for it a vector of entry conditions: V(() = (34.25,10) .

Vectors @ (7)., Q,(2), matrix A(#) in this case look like:

( 3-407 5-6¢7"
O =|1=-26"+6ar |. Q,(1)=|1-6¢"" +8at
O+ 2at 3+ lat
27" 5 0
A= —at—¢"" 3
0 at —2at

Integrating the left and right parts of equality (2) Itom O to 1, we receive:

r r !
[dV,-(u) =JQ,- (#)du + [A(«)V,-(u)du (6)
Q0 [i

Q

We take the Laplace transformation from the left and right parts. From the pro-
pertics of Laplace the transformation [2]. it is said that cxpressions U ,.(.v)—M,
RY

’
arc transformations ol Laplace ol functions JdV,(u) .
0

G, (y) ()_,,U,-(x) _aU,.'(.\*)

s B s

1] I I
_[Q(u')du, Je""’l{(u)du, J.m.(V,.(u)du respectively. Using these relations, from
3] 3] 0
(6). we received the following system of equations:
2 5) q

34 2 6e™" 3 Sey {8) + 4700 5(8)

Uls)y——=—-
/(8) 3 s os—1 s—1 s—1
s o 2,0 . . o N . . —> .
Wy -B8 2 2 dyy 2 6 dy ), S U )
- s s s-1 s s s—1 s s—1

Sa’ 3a

U_‘(s)—9= , +i—ﬁU'2(s)+
R A S s

Ul

§
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From the lirst equation having received U (s)

o .~ _
Uis)= 23y IL S (7+U-’_E:‘_)) and having substituted it into the second and
ss=1+e™)  (s=1+e7)

through U, (5):

third equations, we will lead the received system to the following system ol differ-
cntial cquations:

(6™ — als—1+¢") Uis) _[ 2us N e ] U (s)— el

- Usis)=
ss—1+¢") (s—1+e")y s5-1 s—1 7
_Ja+27s 4¢" B 23ae™"s _ 23a(s-1 @)
s s=1 ss—1+e?Y ss—1+¢")

CU )+ 38U U =1 14
3 s s s

Solving the given system by means of the Mathematica package, we receive

expressions for functions U, (s), U,(s), U.(s). For example, the expression for
U, (s) looks likes:

>t 2 P LT ,—h

Uis)= 3e 4 _ 12as . e {(s=3) 4 2(s 3)€ﬂ

B (5= (s=D7("=Ds—=1+e™)  s(s+1D{s+2) (s+1)°
. =P _ s

L B —+ > T+ s-lte ; 443 4

(s+2)s+4) s s(s=3)y  als—=3)

+2¢7" l n s—1 L b . 3e™s + 207 (s =3)(s -4

(=2 s=5 (s=1y sGs+DisS=1) (s+2)(s+3)
. )_/, .
N das 4 iSe _+ 11 e ©)
(s+2(s+4)  SG-1)7  afs+1(s=3)°

Taking the inverse Laplace transformation (rom them, we will receive expres-
sions for expected incomes v;(j,7), i=1,n For example, for income v,(2,7)

when ¢ =1, b=1 wereceive:

— I+ — 2”_: S
W2 =t 2L g5 120 e BT e 1 2
. 9 e 8 4 8 4 e
5 2 Il‘—. 3r Sr —r ) _I} ) “_1,
S S B 7 A S —+ A (10)
3e 27 3e - b t
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2¢” _Em—l—:y _E -1-r

3¢ 2t -
+ 237+ te” 7+

\/; e f 4
3 4 3r

r1 o See! N r+e) 2 5 30 +53!3 + ot 2

+

+re' '+ S + +—t
e 9 e 4 2¢ 13e¢ 18

In Figure 1 the expected income of systemy §, for an initial condition ol nct-
work k& =(L1).

va(k,t
Ak
140
105
70
35
2 4 6 8 10 1

Fig. 1. Income of system in state k£ = (1,1)

Consider the case when the intensity of request service applications in the net-
work systems are step functions of time with several intervals of constancy that are
the same for all systems on the network:

il

u,. . e [0~t1]-

12y J—
wny=10 S (1

“,'“me ie l{ _l’—lvl
Then the system of equations (2) may be represented at different intervals in
a matrix form:

mn

dvi4 (s .
avi () )=Q;'“(:)+A"“vi"“u) (12)
df
where V' (1) = (3" (L) v (F,1))" - the vector of income S, on the ¢ time

interval. We define the vector of initial conditions: V.(0), V*'(z,_) = vl t)s

I}'—'
q= m Woe describe how to find the solution of (4) at various time intcrvals. Mul-

(iplying both sides of (6) by ¢™*"", we get



Muthod of finding meomes in HM-Networks with time-dependent jntensity of requests service 175

ewwhﬂu—m“uug:ﬂ{ef”uaﬂ:ef“gu) (13)
df /
which implics
V) =V,0)+ | 0 (ndT (14)
4]
that is
V=", 0)+ [ 00 (d T (15)
o
. o U @) o
where ¢ =T+ A+ A 2‘! +.ot A '! +... - the matrix exponential.
. il
-1

The number of states L =C,";_, is large enough even for a relatively small »
and K. and therefore the number of equations in (11) will also be large enough.
‘The direct method involves the problem of finding the exponent of a matrix with
constant clements. Implementing these algorithms in mathematical packages
requires huge expenditures of computer memory and CPU time. For more rapid
and cificient computation of matrix exponcnts, onc can usc a special algorithm for
“fast” computations | 3|, based on the formula:

2M

i, [ (A (Y ,
=Y y o (16)

~=(h S !

where N > 1, M >0 - are integers. The algorithm for finding matrix exponent

lefh . . . .
e*"" with this accuracy is as [ollows.

I
- {ay| _ {3 )
l. hnd”/\“““f, where HA ”—max Z‘(ﬂ )it|, where (a“"),/. - a component of
=1

l<izn ©

matrix A'?'.
2. For a given &, selected values M and N of the following relations:

J[z]+], ”/\"‘“

* — In -
f<y 2| N+l AN+D

t 1 !

A 1 -
V:_\:(N_!.l')e;’[;\‘llyi
%

B ]0, e

A(q.‘"“ An,."“.-\nl

where N may be found from incquality mﬁé

3. Weassume {:= 0 and organize a cycle.

N (g} N y
(A 1
4. We assume, that G:=z ' ) [Q—MW .
g 5. J
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5. Increment counter / per unit i :=i+1.

6. In 4 instead of G write G*.
7.1 i <M, then go to step 4.

Fag?
8. I i=M. then assume ¢ =G.

9. End ol algorithm.

Example 2. In this example, we consider the solution of equations (2) by the direct
method. Consider a closed network with the following parameters:n=4. K =4.

T=10, m=3. =4, 1,=6 and a matrix of transition probabilities between the
QS network applications

{
o L L1
3 3 3
p=lp,| =1 0 00
Ul
1 0 0 0
I 0O 0 0

The intensity of requests service is delined in the form:

20,1 [0,4], [12.1 e [0.4]. 12.2[04]. ’15,1 € (0,41,
(1) =<10.0€ (36]. w4, (1) =151 € (4.6]. g (N=11T.1€ @06 M,{t)=118,1€(4,6],
[ 1t e (6,10, 19,te (6.10]. 14.1€ (6.10). 113,1 € (6,10].

In this case, the number of states is L=C""_ =35, it is (0,0 .0.4), (0,0,1,3),
(0,0,2,2) and etc. We rename them respectively from 1 to 35. Let incomes
r(ky, R(k) have the values:

r(D=r23)=35, r=r(17)y=r(10)=r3d)=4, r(5)=r(5)=r(26)=r(32)=6.
r9)=8, r(6)=r29)=3, rn2)=r{l8)=r31)=9,

N =rl}=r(12)=r21=r(27)=7, r3)=10, r(8)=r(16)=r(28)=r(33) =2,
(I =r(20)=r(22y=r(24)=r(25)=r(30)=r(35) =1L R(13)= R(24)=1. R(33)=3,
R(7)=R(27)=2. R{1)= R(7) = R(§) = R(14) = R(18) = R(23) = 5. R(28)= R(29) =8,

R(2)y=R(10)=R(15)=R(16)=R(25)=R(34) =10, RO =R31)=9,
R(3)=R(B)=R(I )= R(30)=R(3 =T, R(5)=R(12)=R(2l)=4,
R(4)= R(19) = R(20) = R(22) = R(26) = R(35) = 6.

We define the vector of initial conditions:

V(0)=(7.49,10,7.8,5,9.5,10,2,7,1,1,5.5,1,2,3,1.2.4,6,7.8,2.3.4,1.2.3,1.2.1,1)

Performing all the necessary calculations, we obtain the following system of
differential equations for the incomes:
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"’"_; W o7v,in+67v, 04726 L2 670+ 67w 0 163
dt - ¢4 -
‘_""-} W 200,1) - 16v,1)+ 6,70, (1)~ 1833 —d"; W) 670, () + 6.7, (0 + 44
dt [414
d\.’i [‘f) d‘"b (1)
.h =—6,7v, (1) +6v), (1) +60,3; o =20v,(t)—16v, (1) +6,7v (1)—513;
& .
d"’;(z_) =67y (1) +6v,5 (1) +48 Det) 206, (1) = 167w (1) + 61 (1) ~ 1883,
dt [74]
dvj'(t) =20v, (N —=16w, (1) +6.7v, (1) +13,6; P _ =0, 70y (1) +0.7v (1) +42.3;
dt dt
d‘-’l; ) _ 6.7y, (N +6v, (N +42.3 _dv,;!(!) =20v5 (1) — L0y, (1) + 163, (1) + 28,6
c a
P 167250+ 415 T 20 (01670, 01+ 60 )+ 22
—""';(’) =200, (14 6T (-1427;, LD o675 (14670, (0447,
dt i
_‘1"’;" ) 20 (1) 46,7, (1); —‘1"1"’" ) = 200, (1)~ 167w,y (1) +6v,, (1) +100.7;
£
_""l; D 201, (1)~ 161, (0 +6.7v0a =33 LD 670 (Y461 (1)-T6.7:
W) o Bn® _ g, 116 Dl o5 O g6 15y
dt dt = dt dt )
s _ —6,7v, (1 +6,Tv4(1); Do) g, D20 —10vy5 (0 -19,;
dt h di dt B
D) 10y, (1) -112;
dt -
d"z;) (0 _ —0,7v,, (1) + 6,7y, (1) +48.7; () =—16.7v (1) +6.7v5 (1) - 22;
df ot
D _ 67 in+6vsm+227 B0 - o 134,
i 3 ~ d "
(D) _ g dval) —10v,,(1)—95; Dl _ o,
dt di ' dr

It is a system of lincar non-homogencous dillerential equations with constant
coefficients. Solving it with the Mathematica package, we can obtain expressions
for the incomes, for example, v (k1) =56+ 181+4.2¢7 + 2137 +8.24°1"

We desceribe another way of finding the expected incomes. From the system of
lincar inhomogencous differential cquations (2), we can move 1o a system of dil-
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ference equations. We divide time interval [0,'1'] by net {f_,-}f:-":l with step £,

. 7 -V
1, =ty+jh 1, =0, th, We assume dti(rj):Vi(!j_l) Vi) Then we
! N dt h
Vi, D=Va )+ Q0 )+ AUV, ()R,
obtain the difference scheme: . Tr . — . The
\l!,- =t,+ jh. 1,=0, h=—_ i=lLan
: N

initial conditions are as follows: V,(0)=0, Q;(0)=0. Then for each 7 =1, + jh
we oblain a system of linear algebraic equations, solving them with the help of the
Mathematica package, we obtain values V, (¢, ).V, (¢, )..... Vi (f,).

Example 3. We will consider a closed network with following parameters: # = 5,
K=10.7=0.01, ¥ =10, N = 1000. The number of its states equal L =1001. Let us
designate states from 1 o 1001, Let the intensity ol scrvice of requests lor every
QS look like:

HO=14+20 (D =1+1, (0 =145, g, ()=1+3, 4 1)=1+8

Vj(k,l
80

A

60

40

20

Y

2 4 6 8 10

Fig. 2. Income of system in state k = (1,2,2,1)

For cach node of the net we make a system of lincar algebraic equations and by
solving we receive values of incomes at the indicated points. On them it is possible
Lo construct a graph of functions v, (4.7). [n Figure 2 the expected income of sys-
tem §, for an initial condition of a network & =(1.2.2.1).
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