GYÖRGY TARGOŃSKI, MAREK CEZARY ZDUN

GENERATORS AND CO-GENERATORS OF SUBSTITUTION SEMIGROUPS

Abstract. In this note we give the form of generators and co-generators of semigroups of "substitution operators" in Banach space $C([a, b])$. We also establish some properties of these operators related to Schröder equation.

0. Introduction. Let us assume that:

(i) f is defined and continuous in $[a, b]$ (*) (we admit $b = \infty$), strictly increasing and of class C^1 in $[a, b)$, $f'(a) \neq 0$, furthermore $a < x < f(x) < b$ for $x \in [a, b)$ (b is therefore a fixed point of f).

THEOREM 0.1 ([5], [6]). Let $\{f^t, t > 0\}$ be an iteration semigroup of $f(\ast)$ such that all f^t are continuous in $[a, b]$ and of class C^1 in $[a, b)$.

Then:

1° The following representation is valid

\[f^t(x) = h(t + h^{-1}(x)), \quad t > 0, \quad x \in [a, b), \]

where h maps $[0, \infty)$ onto $[a, b)$ in a strictly increasing way. Moreover, h is of class C^1 in $[0, \infty)$ and h^{-1} is of class C^1 in $[a, b)$.

2° All functions $f^t, t > 0$ satisfy (i).

3° The derivative

\[(0.2) \quad g(x) := \frac{\partial f^t(x)}{\partial t} \bigg|_{t=0}, \quad x \in [a, b], \]

exists, $g(b) = 0$, g is continuous in $[a, b]$ and $g > 0$ in (a, b).

4° The integral

\[(0.3) \quad \int_a^b \frac{du}{g(u)} \]

diverges.

Received November 06, 1979.

(*) continuity at $b = \infty$ is equivalent to saying that $\lim_{x \to b^-} f(x) = 0$.

(**) i.e. $f^t([a, b]) \subset [a, b)$, $f^t \circ f^s = f^{t+s}$ for $t, s > 0$ and $f^1 = f$. 169
All semigroups considered in this paper satisfy the assumptions of Theorem 0.1.

Let now

(0.4) \[T^t \varphi : = \varphi \circ f^t, \quad t > 0 \]

be a semigroup of operators ("substitution operators") on \(C([a, b]) \) with the sup-norm (***)

In this paper, we shall determine first the form and some properties of the infinitesimal generator of the semigroup (0.4), the same investigation on the co-generator will be carried and next out.

1. Infinitesimal generators. We consider the infinitesimal generator of a semigroup (0.4)

(1.1) \[A \varphi : = \lim_{t \to 0^+} \frac{T^t - I}{t} \varphi \]

(in the sense of the norm) defined in a domain \(D(A) \). As it is well known, \(D(A) \) is dense and \(A \) is closed (cf. [4]). Denoting the range of \(A \) by \(R(A) \), we prove:

THEOREM 1.1.

\[D(A) = \{ \varphi \in C ([a, b]) \cap C^1([a, b]) : \lim_{x \to b^-} \varphi'(x) g(x) = 0 \}, \]

\[R(A) = \{ \psi \in g \cdot C ([a, b]) \cap C([a, b]) : \]

\[\psi(b) = 0 \text{ and the improper integral } \int_{a}^{b} \frac{u}{g(u)} \, du \text{ exists and is finite} \}

and

\[(A \varphi) (x) = \begin{cases} g(x) \varphi'(x), & x \in [a, b) \\ 0, & x = b. \end{cases} \]

Proof. From Theorem 1 in [4, Ch. IX. § 4] it follows, that \(I-A \) has an inverse \(J = (I-A)^{-1} \) defined on \(C([a, b]) \) and continuous. Moreover

\[J \varphi = \int_{0}^{\infty} e^{-t} (T^t \varphi) \, dt \]

in the sense of the Riemann integral in the Banach space \(C([a, b]) \). Furthermore we have ([4, Ch. IX, Cor. 2])

(1.3) \[AJ = J-I. \]

As seen above \(D(J) = C([a, b]) \) and \(R(J) = D(A) \). Put \(\psi : = J \varphi \), where \(\varphi \in C ([a, b]) \). From (1.2) and (0.1) we have

\[(***) \text{ if } b = \infty, \text{ then } C ([a, b]) \text{ denotes the space of all continuous and bounded functions } h \text{ in } [a, \infty) \text{ such that the finite limit } \lim_{x \to b^-} h(x) \text{ exists, } \|h\| = \sup_{x \in [a, b)} |h(x)|. \]
\[\psi(x) = \int_0^\infty e^{-t} \varphi(f^t(x)) \, dt = \int_0^\infty e^{-t} \varphi(h(t + h^{-1}(x))) \, dt = \int_{h^{-1}(x)}^\infty e^{h^{-1}(x)-u} \varphi(h(u)) \, du = e^{h^{-1}(x)} \int_{h^{-1}(x)}^\infty e^{-u} \varphi(h(u)) \, du. \]

From this it follows that \(\psi \in C([a, b]) \cap C^1([a, b]) \). Further differentiating both sides of the last equality we get \(\psi'(x) = \frac{\psi(x) - \varphi(x)}{g(x)} \) for \(x \in [a, b] \), since \((h^{-1})' = 1/g\). Hence \(g(x) \psi'(x) = \psi(x) - \varphi(x) \) for \(x \in [a, b] \) (\(\varphi, \psi \in C([a, b]) \)). From the definition of \(\psi \) it follows that \(\psi(b) = \varphi(b) \). \(\varphi \) and \(\psi \) being continuous at \(b \), it follows that the limit of \(g(x) \psi'(x) \) at \(b \) exists and equals zero. Furthermore (see (1.3)) \(AJ \varphi = J \varphi - \varphi \) and this implies \(A \psi = \psi - \varphi = g \psi' \) in \([a, b]\). From this

\[A \psi = \begin{cases} g \psi' \text{ in } [a, b] \\ 0 \text{ in } b \end{cases}, \]

for \(\psi \in R(J) = D(A) \).

From our discussion it follows that

\[(1.4) \quad D(A) \subseteq \{ \varphi \in C([a, b]) \cap C^1([a, b]) : \lim_{x \to b-} \varphi'(x) g(x) = 0 \}. \]

We denote the set on the right-hand side of (1.4) by \(K \). Let \(\psi \in K \).
Then

\[(1.5) \quad \varphi(x) : = \begin{cases} \psi(x) - \psi'(x) g(x), & x \in [a, b] \\ \psi(b), & x = b \end{cases} \]

belongs to \(C([a, b]) \).

Put

\[(1.6) \quad \bar{\psi} : = J \varphi \in D(A) \subseteq K. \]

By (1.3), \(A \bar{\psi} = \bar{\psi} - \varphi \), therefore \(g(x) \bar{\psi}'(x) = \bar{\psi}(x) - \varphi(x) \) for \(x \in [a, b] \) and \(0 = \bar{\psi}(b) - \varphi(b) \). Hence

\[(1.7) \quad \varphi(x) = \begin{cases} \bar{\psi}(x) - \bar{\psi}'(x) g(x), & x \in [a, b] \\ \bar{\psi}(b), & x = b \end{cases}. \]

Put \(\omega = \psi - \bar{\psi} \), then by (1.5) and (1.7),

\[\omega(x) = \begin{cases} \omega'(x) g(x), & x \in [a, b] \\ 0, & x = b \end{cases}. \]

and \(\omega \in K \). So \(\omega(x) = \exp \int_a^x \frac{du}{g(u)}, \ x \in [a, b] \). If \(c \neq 0 \), then from (0.3) it follows that \(\lim_{x \to b-} \omega(x) = \pm \infty \), but \(\omega \in K \), so it is bounded in \([a, b]\), therefore \(c = 0 \) and \(\omega(x) = 0 \); hence \(\bar{\psi} = \psi \). Now from (1.6) it follows that \(\psi \in D(A) \), thus \(K = D(A) \).

The formula for \(R(A) \) can be verified directly.
2. Co-generators. The notion of co-generator of a semigroup of operators (in Hilbert space) has been introduced by B. Sz. Nagy and C. Foiaș (see [2, Ch. III, 8] and [3]). We generalize this notion to Banach space.

Let \(X \) be a Banach space, \(\{T^t, t \geq 0\} \) be a continuous semigroup with infinitesimal generator \(A \). From the properties of the resolvent it follows, that \(A-I \) has an inverse \(-J = (A-I)^{-1} \) defined in all \(X \) and continuous. Moreover, (1.3) holds. Therefore we can define the co-generator

\[
T := (A + I) (A - I)^{-1}
\]

defined in all \(X \). From (1.3) it follows that \(T = -(I + A)J = -J - AJ = I - 2J \). \(T \) is continuous. Let \(T^t \) be given by (0.4). We now determine the co-generator for \(T^t \). Let \(\phi \in C([a, b]) \). Put \(\psi := (A-I)^{-1} \phi \), so \(\psi \in K \). From (\(A-I \)) \(\psi = \phi \) follows, that

\[
\phi = -\psi + \psi' \psi
\]
in \([a, b]\) has exactly one solution because of 4° in Theorem 0.1. This solution is

\[
\psi(x) = \int_a^x \frac{\phi(u)}{g(u)} \left(\exp - \int_a^u \frac{1}{g(t)} \, dt \right) \, du \exp \int_a^x \frac{1}{g(u)} \, du.
\]

Then, \(T\psi = (A+I)\psi = g\psi' + \psi = 2\psi + \phi \), so

\[
(T\phi)(x) = \phi(x) + 2 \exp \int_a^x \frac{1}{g(u)} \, du \int_a^x \frac{\phi(u)}{g(u)} \left(\exp - \int_a^u \frac{1}{g(t)} \, dt \right) \, du.
\]

Remembering (0.1), we can write

\[
(T\phi)(x) = \phi(x) + 2 e^{h^{-1}(x)} \int_0^{h^{-1}(x)} \phi(h(t)) e^{-t} \, dt = \phi(x) - 2e^{h^{-1}(x)} \int_a^x \phi(s) [e^{-h^{-1}(s)}]' \, ds.
\]

Put \(u(x) = e^{-h^{-1}(x)} \) in (2.5) and (0.1). Then \(f'(x) = u^{-1} [e^{-t} u(x)] \), for \(t > 0 \) and

\[
(T\phi)(x) = \phi(x) - \frac{2}{u(x)} \int_0^x \phi(s) u'(s) \, ds,
\]

where \(u \) satisfies the Schröder equation \(u(f(x)) = e^{-1} u(x) \).

3. Some properties of the infinitesimal generator. Consider \(A \), the infinitesimal generator of our semigroup. According to the expression for \(A \) given in Theorem 1.1, \(Af_1 = Af_2 \) implies \(f_1 - f_2 = \text{const} \). So, \(A \) is "invertible up to an additive constant". We introduce the linear operator

\[
(B\psi)(x) := \int_a^x \frac{\psi(u)}{g(u)} \, du.
\]
We restrict the domain of B in such a way that $D(B) = \{ \varphi \in D(A) : \varphi(a) = 0 \}$, B is invertible and \[B^{-1} = A_{|R(B)} \cdot \]

THEOREM 3.1.

\[(B \varphi)(x) = \int_0^\infty \varphi(f^t(x)) \, dt + \int_a^b \frac{\varphi(u)}{g(u)} \, du, \quad \text{for } \varphi \in D(B). \]

Proof. Let $\varphi \in R(A)$. In the integral $\int_a^b \frac{\varphi(u)}{g(u)} \, du$ (it exists as an improper integral according to our assumption) we can put (because of (0.1) and (0.2)) $g = h \circ h^{-1}$; substituting $u = h(t+h^{-1}(x))$ we obtain

\[\int_0^\infty \varphi(h(t+h^{-1}(x))) \, dt = \int_0^\infty \varphi(f^t(x)) \, dt. \]

Further we find (3.2) by definition of B. Introducing

\[C \varphi := \int_0^\infty \varphi(f^t(\cdot)) \, dt \]

we can define (according to Theorem 3.1) C on $D(B) = : D(C)$. From (3.1) it follows that $AC = I$ in $D(B)$. We have thus obtained.

COROLLARY 3.1. C defined by (3.3) has the property $AC = I$ in $D(C)$.

We are now going to consider some properties of C.

THEOREM 3.2. $C(\varphi \circ f^s) = (C \varphi) \circ f^s$, $s > 0$.

Proof.

\[C(\varphi \circ f^s) = \int_0^\infty \varphi(f^s(f^t(x))) \, dt = \int_0^\infty \varphi(f^t(f^s(x))) \, dt = (C \varphi) \circ f^s. \]

An immediate consequence is.

COROLLARY 3.2: If $\varphi \in D(C)$ satisfies a Schröder equation

\[\varphi(f(x)) = s \varphi(x), \text{ for an } s > 0, \]

then $C \varphi$ satisfies the same equation.

Another observation concerning the Schröder equation is the following.

THEOREM 3.3. Let $\varphi \in D(C)$, then the following two statements are equivalent:

(a) φ is eigenfunction of C.

(b) For every $t > 0$ there exists a λ_t such that

\[\varphi(f^t(x)) = \lambda_t \varphi(x). \]
Proof. (a) \Rightarrow (b): Let $\varphi \in D(C)$ and $C\varphi = \mu \varphi (\mu \neq 0)$ then $A\varphi = \mu A\varphi$, but $A = I$ in $D(C)$, so $\varphi = \mu A\varphi = g \varphi'$ in $[a, b)$ (see Theorem 1.1). This differential equation has exactly one-parameter family of solutions:

$$\varphi(x) = k \exp \frac{1}{\mu} \int_a^x \frac{1}{g(u)} du.$$

One finds (cf. (0.1) and (0.2)) $\varphi(x) = k \exp \frac{1}{\mu} h^{-1}(x)$. From (0.1) we have $h^{-1}(f^t(x)) = t + h^{-1}(x) t > 0, x \in [a, b))$. From this it is easily verifiable that φ satisfies (b).

(b) \Rightarrow (a). From the definition, λ_t is determined uniquely. For all $t, s > 0$ we have $\varphi(f^{t+s}(x)) = \lambda_{t+s} \varphi(x)$, moreover from (b) follows

$$\varphi(f^{t+s}(x)) = \varphi(f^t(f^s(x))) = \lambda_t \varphi(f^s(x)) = \lambda_t \lambda_s \varphi(x).$$

Thus $\lambda_{t+s} = \lambda_t \lambda_s (t, s > 0)$.

The continuity of $t \mapsto \lambda_t$ now follows from Theorem 0.1 and from the continuity of φ. Therefore (cf. [1] p. 38) since $\lambda_t \neq 0 (***)$, $\lambda_t = \gamma^t$, for some fixed $\gamma > 0$. So $\varphi(f^t(x)) = \gamma^t \varphi(x), t > 0, x \in [a, b)$, Now $C\varphi = = \int_0^f \varphi(f^t(x)) dt = \int_0^\infty \gamma^t \varphi(x) dt$. Thus $C\varphi = \mu \varphi$ and (a) is satisfied with $\mu = \int_0^\infty \gamma^t dt$. Since φ is continuous in b, the inequality $0 < \gamma < 1$ must be satisfied, thus the integral defining μ exists.

In closing we remark: it follows from our above considerations that the spectrum of C is the interval $(-\infty, 0)$.

(***) $\lambda_t = 0$ would imply $\varphi = 0$ (cf. (b) in Theorem 3.3), but this is impossible.

REFERENCES