NOWHERE DENSE CHOICES AND π-WEIGHT

Abstract. The paper is devoted to inequalities between $\pi_0(X)$ and $\pi_d(X)$ where

$$\pi_0(X):=\min\{\pi(U): U \text{ open and non-empty subset of } X\},$$

$$\pi_d(X):=\min\{|\mathcal{B}|: \text{every open and dense subset of } X \text{ contains an element from } \mathcal{B}\}.$$

From these definitions $\pi_d(X) \leq \pi_0(X)$ for every space X. In the paper we construct a space X for which $\pi_d(X) = \omega_1$ and $\pi_0(X) = 2^{\aleph_0}$.

We shall define two cardinal functions π_d and π_0. We shall give conditions which ensure that $\pi_d(X) = \pi_0(X)$ and give a consistent example of a space X such that $\pi_d(X) < \pi_0(X)$.

Recall that for a topological space X, $\pi(X)$ denotes that least cardinal of a π-base for X, i.e.:

$$\min\{|\mathcal{B}|: \text{for each non-empty open } U \subseteq X, \text{ there is } B \in \mathcal{B} \text{ such that } B \subseteq U\}.$$

For a space X we denote by $\pi_0(X)$ the cardinal:

$$\min\{\pi(U): U \text{ is a non-empty open subset of } X\}.$$

And we denote by $\pi_d(X)$ the cardinal

$$\min\{|\mathcal{B}|: \text{for each dense open } U \subseteq X, \text{ there is } B \in \mathcal{B} \text{ such that } B \subseteq U\},$$

where such families \mathcal{B} are called π_d-bases for X. All other terminology used in this article can be found in one of the standard textbooks [1], [3] or [5]. Furthermore we shall assume that all topological spaces under consideration are regular.

Motivation for the two new definitions comes from the following question.

QUESTION. Given a collection \mathcal{U} of non-empty open subsets of a space X, can I pick a point $x(U) \in U$ for each $U \in \mathcal{U}$ such that $\{x(U): U \in \mathcal{U}\}$ is nowhere dense?

Note that $x: \mathcal{U} \to X$ can be considered as a choice function. The question asks for a choice function with nowhere dense image, hence the first half of our title. Now suppose that \mathcal{U} is a π-base for an open subset $G \subseteq X$. Clearly, the image
any choice function on \(\mathcal{U} \) is dense in \(G \), giving a negative answer to the question and the second half of our title.

A moment’s thought will convince the reader that the question has a "NO" answer iff \(\mathcal{U} \) is a \(\tau_d \)-base for \(X \). Therefore the question has a "YES" answer for all collections \(\mathcal{U} \) such that \(|\mathcal{U}| \leq \kappa \) iff \(\tau_d(X) > \kappa \). The argument in the previous paragraph then shows that \(\tau_d(X) \leq \tau_0(X) \).

These considerations were first made by M. van de Vel. E. K. van Douwen observed that if \(\tau_d(X) = \omega \), so does \(\tau_0(X) \) and communicated the general problem of the relationship between \(\tau_d \) and \(\tau_0 \) to us.

We first draw some easy conclusions.

THEOREM 1. For each space \(X \) we have

(a) \(\tau_d(X) \leq \tau_0(X) \),
(b) \(\tau_0(X) \leq 2^{\tau_d(X)} \),
(c) \(\tau_0(X) \leq \tau_d(X) \cdot \tau_X(X) \).

Proof. (a) is above. To prove (b), let \(\mathcal{A} \) be a \(\tau_d \)-base of \(X \) of cardinality \(\tau_d(X) \). For each \(A \in \mathcal{A} \) pick \(X(A) \in A \). Then \(X(A) : A \in \mathcal{A} \) must be dense in some open set \(U \). Since \(X \) is regular we must have

\[\tau_0(X) \leq \tau(U) \leq 2^{\tau(U)} \leq 2^{\tau_d(X)}. \]

Let us continue and prove (c). For each \(A \in \mathcal{A} \), pick a local \(\pi \)-base \(\mathcal{B}(A) \) for \(\tau(X) \) such that \(|\mathcal{B}(A)| \leq \tau_X(X) \). It is now easy to check that \(\bigcup \{ \mathcal{B}(A) : A \in \mathcal{A} \} \) forms a \(\pi \)-base for \(U \) and verifies (c).

We shall see that for many types of spaces we actually have \(\tau_d \) equal to \(\tau_0 \).

We begin with the following useful lemma.

LEMMA 2. Suppose \(\tau_0(X) = \kappa \), \(\mathcal{A} \) is a family of \(< \kappa \) non-empty open subsets of \(X \) and \(\mathcal{B} \) is a family of \(\leq \kappa \) non-empty open subsets of \(X \). Then there is a family \(\mathcal{C} \) of \(\lambda \) non-empty open sets precisely refining \(\mathcal{B} \) such that no \(A \in \mathcal{A} \) is covered by finitely many members of \(\mathcal{C} \). Furthermore \(\mathcal{C} \) can be chosen as a subfamily of any given \(\pi \)-base for \(X \).

Proof. Enumerate \(\mathcal{B} \) as \(\{ B_\alpha : \alpha < \lambda \} \). We construct \(\mathcal{C} = \{ C_\alpha : \alpha < \lambda \} \) by recursively constructing \(C_\alpha \) for \(\alpha < \lambda \) with the inductive hypothesis at \(\beta < \lambda \) that for each \(\alpha < \beta \), \(C_\alpha \) is a non-empty open subset of \(B_\alpha \) such that no \(A \in \mathcal{A} \) is covered by finitely many members of \(\{ C_\alpha : \alpha < \beta \} \).

At stage \(\beta \) note that \(\tau(B_\beta) \geq \kappa \), and

\[|\{ A \setminus \bigcup_{\alpha \in F} C_\alpha : A \in \mathcal{A} \text{ and } F \in [\beta]^{< \omega} \}| < \kappa. \]

Hence there is some open \(G \subset B_\beta \) such that for all \(A \in \mathcal{A} \) and for all \(F \in [\beta]^{< \omega} \)

\[(A \setminus \bigcup_{\alpha \in F} C_\alpha) \setminus G \neq \emptyset. \]

Now pick a non-empty open \(C \) in our given \(\pi \)-base such that \(C_\beta \subset G \). This completes the induction and the proof.

The next lemma reduces the problem to considerations involving \(\pi \)-weight.
LEMMA 3. If X is a space, then X has an open subspace Y such that
\[\pi_d(Y) \leq \pi_d(X) \leq \pi_0(X) \leq \pi_0(Y) = \pi(Y). \]

Proof. Let \(\mathcal{A} \) be a \(\pi_d \)-base for X. It suffices to prove that there is an open \(Y \subseteq X \) such that \(\pi_0(Y) = \pi(Y) \) and \(\{ Y \cap A : A \in \mathcal{A} \} \) is a \(\pi_d \)-base for Y.

Suppose not. Consider a maximal pairwise disjoint family of open sets \(\mathcal{U} \) such that for all \(U \in \mathcal{U}, \pi_0(U) = \pi(U) \). For each \(U \in \mathcal{U}, \) pick \(G(U) \), an open dense subset of \(U \) such that for all \(A \in \mathcal{A}, \) if \(U \cap A \neq \emptyset \) then \((U \cap A) \setminus G(U) \neq \emptyset. \) Since \(\bigcup \mathcal{U} \) is dense in \(X \), so is \(G = \bigcup \{ G(U) : U \in \mathcal{U} \} \) and no \(A \in \mathcal{A} \) is contained in \(G \), contradicting that \(\mathcal{A} \) is a \(\pi_d \)-base.

We can now state some theorems.

THEOREM 4. If X is a locally compact space, then \(\pi_d(X) = \pi_0(X) \).

Proof. By Lemma 3 we can assume \(\pi_0(X) = \pi(X) \) without loss of generality. Let \(\kappa = \pi_0(X) > \pi_d(X) = \lambda \) and show a contradiction.

Let \(\mathcal{A} \) be a collection of open sets, of size \(\lambda \), such that for each dense open \(V \subseteq X \) there is some \(A \in \mathcal{A} \) such that \(A \) is compact and \(A \subseteq V \). Let \(\mathcal{B} \) be a \(\pi \)-base for \(X \) of size \(\kappa \). By Lemma 2, we can choose \(\mathcal{C} \) as in the statement of the lemma. Since \(\mathcal{C} \) refines \(\mathcal{B} \), \(\bigcup \mathcal{C} \) is dense, hence there is a compact \(\overline{A} \subseteq \bigcup \mathcal{C} \) which contradicts the other property of \(\mathcal{C} \).

THEOREM 5. \(\pi_d(X) = \pi_0(X) \) if either (i) \(X \) is locally connected, or (ii) \(X \) is a linearly ordered topological space.

Proof. We first show that in each case (i) and (ii) there is a \(\pi \)-base \(\mathcal{U} \) for \(X \) such that if \(U \in \mathcal{U} \) and \(\mathcal{V} \) is a pairwise disjoint subcollection of \(\mathcal{U} \) such that \(U \subseteq \bigcup \mathcal{V} \) then there is some \(V \in \mathcal{V} \) such that \(U \subseteq V \). For case (i) this is immediate. For case (ii), let \(\mathcal{U} \) be the collection: \(\{ \{ P \} : p \text{ is isolated} \} \cup \{ (a, b) : a \text{ has no immediate successor and } b \text{ has no immediate predecessor} \} \).

We now use this property of \(\mathcal{U} \) to complete the proof that \(\pi_d(X) = \pi_0(X) \). Let \(\mathcal{A} \subseteq \mathcal{U} \) be a subcollection of size \(< \pi_0(X) \). For each open \(V \) there is some \(U(V) \in \mathcal{U} \) such that no element of \(\mathcal{A} \) is contained in \(U(V) \). Let \(\mathcal{V} \) be a maximal pairwise disjoint subcollection of \(\{ U(V) : V \text{ is open in } X \} \); \(\bigcup \mathcal{V} \) is dense, showing that \(\mathcal{A} \) is not a \(\pi_d \)-base for \(X \).

It is not true that \(\pi_d(X) = \pi_0(X) \) for every \(X \), but we only have consistent counterexamples. These use the following lemma.

LEMMA 6. If \(X \) is a non-separable Lusin space of cardinality \(\omega_1 \), then \(\pi_d(X) \leq \omega_1 \).

Proof. Enumerate \(X \) as \(\{ x_\alpha : \alpha \in \omega_1 \} \). Since every nowhere dense subset of \(X \) is countable, the following collection forms a \(\pi_d \)-base:

\[\{ X \setminus \text{cl}(\{ x_\beta : \beta \in \alpha \}) : \alpha \in \omega_1 \}. \]

In [6], there is constructed a dense Lusin subspace \(Y \) of \(2^\kappa \), under the assumption BACH plus \(\omega_1 < \kappa < 2^{\omega_1} \). For this space we have \(\pi_0(Y) = \kappa \) and \(\pi_d(Y) = \omega_1 \).

We shall show that the inequality \(\pi_0(X) \leq 2^{\pi_d(X)} \) is sharp by showing that it is relatively consistent that \(2^{\omega_1} \) is "anything reasonable" and there is a space \(X \) with \(\pi_d(X) = \omega_1 \) and \(\pi_0(X) = 2^{\omega_1} \). This is accomplished by Lemma 6 and the following theorem.
THEOREM 7. CON (ZFC plus $2^{\omega_1} = \kappa$) implies CON (ZFC plus $2^{\omega_1} = \kappa$ plus there is a dense Lusin subspace of 2^κ of cardinality ω_1).

Proof. We can suppose that we have

$$V \models \text{"ZFC plus CH plus } 2^{\omega_1} = \kappa".$$

We shall construct a generic extension of V in order to prove the theorem. We first describe a partial order \mathcal{P} in the model V. Using CH, let X be a dense Baire (for example, countably compact) subspace of 2^κ of size ω_1. Enumerate X as $\{x_\alpha : \alpha \in \omega_1\}$. Let $H(\kappa)$ be the collection of all finite partial functions from κ into 2. For each $e \in H(\kappa)$, denote by $[e]$ the set $\{f \in 2^\kappa : e \subseteq f\}$ which is an elementary open subset of 2^κ. Let \mathcal{D} denote the set

$$\{D \in [H(\kappa)]^{<\omega} : \bigcup \{[e] : e \in D\} \text{ is dense in } 2^\kappa\}.$$

Finally, let \mathcal{G} be the set

$$\{\langle Y, \mathcal{V} \rangle : Y \in [X]^{<\omega} \text{ and } \mathcal{V} \in [\mathcal{D}]^{<\omega}\}$$

with the ordering $\langle Y_1, \mathcal{V}_1 \rangle \leq \langle Y_2, \mathcal{V}_2 \rangle$ iff $Y_2 \subseteq Y_1$, $\mathcal{V}_2 \subseteq \mathcal{V}_1$ and for each $D \in \mathcal{V}_2$,

$$Y_1 \setminus Y_2 \subseteq \bigcup \{[e] : e \in D\}.$$

Let \mathcal{G} be \mathcal{P}-generic over V. We claim that $V[\mathcal{G}] \models "2^{\omega_1} = \kappa$ and there is a dense Lusin subspace of 2^κ of size $\omega_1."$.

Let $X^* = \bigcup \{Y : \text{for some } \mathcal{V}, \langle Y, \mathcal{V} \rangle \in \mathcal{G}\}$. Observe that P is countably closed and hence $V[\mathcal{G}]$ contains no new countable subsets of V. Since $V \models \text{CH}$ and P is 2^{ω_1}-centered, all cardinals are preserved. We know that $|X^*| = \omega_1$ by considering the following dense sets:

$$\{\langle Y, \mathcal{V} \rangle : \text{for some } \alpha > \beta, x_\alpha \in Y, \beta \in \omega_1\}.$$

It remains to show that X^* is a dense Lusin subspace of 2^κ. X^* is dense in 2^κ because the following sets are dense in P:

$$\{\langle Y, \mathcal{V} \rangle : Y \cap [\varepsilon] \neq \emptyset, \varepsilon \in H(\kappa)\}.$$

Note that for each $D \in \mathcal{D}$, the set $\{\langle Y, \mathcal{V} \rangle : D \in \mathcal{V}\}$ is dense. We will show that this implies that every dense open subset of X^* is co-countable. Let U be a dense open subset of 2^κ. Let E be a maximal pairwise disjoint collection of elementary open subsets of U. $|E| \leq \omega$ and hence $D = \{e : [e] \in E\} \in \mathcal{D}$. For some $\langle Y, \mathcal{V} \rangle$, $\langle Y, \{D\} \rangle \in \mathcal{G}$ and since elements of \mathcal{G} are compatible we have that $X^* \setminus U \subseteq Y$ and is hence countable.

We note that this proof can be generalized to obtain the following corollary.

COROLLARY 8. CON (ZFC plus $2^{(\omega_1)^+} = \kappa$) implies CON (ZFC plus there is a space X with $\pi_4(X) = \lambda^+$ and $\pi_0(X) = \kappa$).

We also note that this theorem gives a consistent example of an L-space of weight 2^{ω_1} where 2^{ω_1} is arbitrarily large. See [2], [4] and [6]. Now we will show that the existence of a dense subspace X of $2^{(2^{\omega_1})}$ such that $\pi_4(X) < \pi_0(X) = 2^{\omega_1}$ is denied by Martin's Axiom and is hence independent of ZFC.
Let X be a space and \mathcal{U} be a collection of subsets of X. We denote by $\mathcal{P}(X, \mathcal{U})$ the set

$$\{\langle S, \mathcal{V} \rangle : S \in [X]^{<\omega} \setminus \{\emptyset\}, \mathcal{V} \in [\mathcal{Y}]^{<\omega} \text{ and } S \cap \cup \mathcal{V} = \emptyset\}$$

with the partial ordering $\langle S_1, \mathcal{V}_1 \rangle \leq \langle S_2, \mathcal{V}_2 \rangle$ iff $S_2 \subseteq S_1$ and $\mathcal{V}_2 \subseteq \mathcal{V}_1$.

Theorem 9. Assume MA. If $\kappa \leq 2^{\omega}$ and X is a dense subspace of 2^κ, then $\pi_d(X) = \pi_0(X) = \kappa$.

Proof. We show that if $\lambda < \kappa$, then $\pi_d(X) > \lambda$. Suppose not and derive a contradiction by assuming that \mathcal{A} is a π_τ-base of size λ. Without loss of generality assume that each $A \in \mathcal{A}$ is an elementary open set. Since $\lambda < \kappa$ we can find $Y \in [\kappa]^{<\omega}$ such that the support of any $A \in \mathcal{A}$ is disjoint from Y. Let \mathcal{U} be the collection of all elementary open sets with support contained in Y.

Let us notice the following facts. \mathcal{U} is countable. If $A \in \mathcal{A}$ and $\mathcal{V} \in [\mathcal{U}]^{<\omega}$, then either $\cup \mathcal{V} = 2^\kappa$ or $X \cap (A \setminus \cup \mathcal{V}) \neq \emptyset$. If $\mathcal{U}' \subseteq \mathcal{U}$ such that for each $U \in \cup \mathcal{U}'$, $U \cap \cup \mathcal{U}' = \emptyset$ then $\cup \mathcal{U}'$ is a dense open subset of 2^κ.

Now consider $\mathcal{P}(X, \mathcal{U})$. From the above facts, we have that $\mathcal{P}(X, \mathcal{U})$ is σ-centered and that for each $A \in \mathcal{A}$, the set

$$\{\langle S, \mathcal{V} \rangle : S \cap (A \setminus \cup \mathcal{V}) \neq \emptyset\}$$

is dense in $\mathcal{P}(X, \mathcal{U})$. Furthermore, for each $U \in \mathcal{U}$ the set

$$\{\langle S, \mathcal{V} \rangle : U \cap \cup \mathcal{V} \neq \emptyset\}$$

is also dense in $\mathcal{P}(X, \mathcal{U})$.

Let $\mathcal{G} \subseteq \mathcal{P}(X, \mathcal{U})$ be a filter which meets each of the dense sets above; and let $G = \cup \{\cup \mathcal{V} : \text{for some } S, \langle S, \mathcal{V} \rangle \in \mathcal{G}\}$. Then G is a dense open set contradicting that \mathcal{A} is a π_τ-base for X.

Only MA for σ-centered posets was used above. In the following theorem we use only MA for a countable poset.

Theorem 10. Assume MA. If X is separable then $\pi_d(X) = \pi_0(X)$.

Proof. Since $\pi(X) \leq 2^{\text{card}(X)} \leq c$, it suffices to show that if $\pi_d(X) = \lambda < c$ then $\pi_0(X) = \lambda$. We suppose $\pi_0(X) = \kappa > \lambda$ and derive a contradiction. By Lemma 3 we can assume that $\pi(X) = \kappa$. We can also assume, without loss of generality, that X is countable and has no isolated points.

Let \mathcal{A} be a π_d-base for X of cardinality λ, and let \mathcal{B} be a π-base for X of cardinality κ. Let \mathcal{C} be the family obtained from Lemma 2. Let \mathcal{D} be a complete pairwise disjoint subfamily of \mathcal{C} such that $\cup \mathcal{D}$ is dense in X. Let $\mathcal{U} = \{D \setminus F : D \in \mathcal{D}$ and $F \in [X]^{<\omega}\}$.

Now consider $\mathcal{P}(X, \mathcal{U})$. This is countable, and each set $\{\langle S, \mathcal{V} \rangle \in \mathcal{P}(X, \mathcal{U}) : S \cap (A \setminus \cup \mathcal{V}) \neq \emptyset\}$, where $A \in \mathcal{A}$, is dense in $\mathcal{P}(X, \mathcal{U})$. Also each set $\{\langle S, \mathcal{V} \rangle \in \mathcal{P}(X, \mathcal{U}) : D \cap \cup \mathcal{V} \neq \emptyset\}$, where $D \in \mathcal{D}$, is also dense. MA allows us to find a filter $\mathcal{G} \subseteq \mathcal{P}(X, \mathcal{U})$ which meets each of the above dense sets.

Let $G = \cup \{\cup \mathcal{V} : \langle S, \mathcal{V} \rangle \in \mathcal{G}$ for some $S\}$. Since \mathcal{G} meets each of the first type of dense set, no $A \in \mathcal{A}$ is contained in G. Since \mathcal{G} meets each of the second type of dense set and X has no isolated points, G is a dense open subset of X. This contradicts that \mathcal{A} is a π_d-base for X. 89
The result of van Douven that $\pi_d(X) = \omega$ implies $\pi_0(X) = \omega$ can be gleaned from the proof of this last theorem. If \mathcal{A} is a countable π_d-base for X, let Y be a countable subset of X meeting each set in \mathcal{A}. Now follow the proof of Theorem 10 for the subspace $\text{Int}(Y)$ of X. MA is not needed since only countable many dense sets need to be met. However, van Douwen’s original proof is easier and more straightforward.

We have one more result about π_d and π_0. It uses the following lemma, which is of independent interest.

Lemma 11. If X has no isolated points and $c(X) = \omega$, then either there is a Suslin tree of open subsets of X or there is a countable collection of open subsets of X such that for each $F \in [X]^{<\omega}$, $\cup \{C \in \mathcal{C} : C \cap F = \emptyset\}$ is dense.

Proof. We build a tree of open subsets of X, by recursion on the levels of the tree, starting with $T_0 = \{X\}$. If level T_α has been defined and $t \in T_\alpha$ we define the node of t, $N(t)$, to be a maximal non-trivial collection of open subsets of t such that for all $U, V \in N(t)$, $U \cap V = \emptyset$. Let $T_{\alpha+1} = \cup \{N(t) : t \in T_\alpha\}$.

If $\text{lim}(\lambda)$ and we have T_α for all $\alpha < \lambda$, consider the tree $\cup \{T_\alpha : \alpha \in \text{Lim} \}$. For each branch b of this tree consider $\text{Int}(\cap b)$. Let $T_\alpha = \{\text{Int}(\cap b) : b \text{ is a branch of } \cup \{T_\alpha : \alpha < \lambda \} \}$.

Note that since $c(X) = \omega$ this recursion stops after at most ω_1 steps and that the resulting tree T has no uncountable chains or antichains.

If T is not a Suslin tree, then $|T| = \omega$. In this case, let $\mathcal{G} = T$. Since \mathcal{G} is closed under finite intersections, it only remains to prove that for any $x \in X \cup \{C \in \mathcal{G} : x \in C\}$ is dense. To this end let $p \in X$ and show that p is in the closure of $\cup \{C \in \mathcal{G} : x \in C\}$. However, this result is obtained by a straightforward consideration of the ways in which p and x can ”leave” the tree construction and is therefore left for the reader (i.e. it is messy to write out).

Recall that the *Novak number* of a space X is

$$n(X) = \min \{\kappa : X \text{ can be covered by } \kappa \text{ nowhere dense sets}\}.$$

Corollary 12. If X has no isolated points, then $n(X) \leq 2^{c(X)}$.

Proof. This follows from the proof of the lemma since each element of T and each branch of T determine a nowhere dense set, and their union is all of X. The tree T has at most $(c(X))^+ \text{ elements and } 2^{c(X)} \text{ branches.}$

We use Lemma 11 in the following theorem.

Theorem 13. Assume MA. If $c(X) = \omega$ and $\pi(X) < c$, then $\pi_d(X) = \pi_0(X)$.

Proof. Suppose $\pi_d(X) < \pi_0(X)$. By Lemma 3 we can assume $\pi_0(X) = \pi(X)$. Let \mathcal{A} be a π_d-base for X of cardinality $\pi_d(X)$. By Lemma 2 there is a π-base \mathcal{C} such that no finite subcollection of \mathcal{C} covers any element of \mathcal{A}. Let \mathcal{C}_1 be a maximal pairwise disjoint subcollection of \mathcal{C}. By Lemma 11 obtain a countable collection \mathcal{C}_2 of open subsets of X such that for each $F \in [X]^{<\omega}$, $\cup \{C \in \mathcal{C}_2 : C \cap F = \emptyset\}$ is dense.

Let $\mathcal{U} = \{C_1 \cap C_2 : C_1 \in \mathcal{C}_1 \text{ and } C_2 \in \mathcal{C}_2\}$. Then \mathcal{U} has the following properties:

(i) no finite subcollection of \mathcal{U} covers an element of \mathcal{A};

(ii) for each $F \in [X]^{<\omega}$, $\cup \{U \in \mathcal{U} : U \cap F = \emptyset\}$ is dense.
Now, consider $\mathcal{P}(X, \mathcal{U})$. Since \mathcal{U} is countable, $\mathcal{P}(X, \mathcal{U})$ is σ-centered. By property (i) for each $A \in \mathcal{A}$ the set
$$\{\langle S, \mathcal{V} \rangle : S \cap (A \setminus \bigcup \mathcal{V}) \neq \emptyset\}$$
is dense in $\mathcal{P}(X, \mathcal{U})$. Fix a π-base \mathcal{B} of size $< C$. By property (ii), for each $B \in \mathcal{B}$ the set
$$\{\langle S, \mathcal{V} \rangle : \bigcup \mathcal{V} \cap B \neq \emptyset\}$$
is dense in $\mathcal{P}(X, \mathcal{U})$. Let $\mathcal{G} \subseteq \mathcal{P}(X, \mathcal{U})$ be a filter meeting each of the above dense sets. Let
$$G = \{\bigcup \mathcal{V} : \langle S, \mathcal{V} \rangle \in \mathcal{G} \text{ for some } S\}.$$
Then G is a dense open subset of X witnessing that \mathcal{A} is not a π_δ-base for X.

We could have eliminated the hypothesis "$\pi(X) < C$" from Theorem 13 if we could have constructed \mathcal{U} in the proof such that it "self-witnessed denseness" as in the proofs of Theorems 9 and 10. We need an extension of Lemma 10, which, in conclusion, we ask as a question.

QUESTION 14. Assume MA. Suppose X is a space with $c(X) = \omega$ and no isolated points. Does there exist a countable family \mathcal{U} of open subsets of X with the following two properties:
1. for each finite $F \subseteq X$, $\bigcup \{U \in \mathcal{U} : U \cap F \neq \emptyset\}$ is dense;
2. if $\mathcal{V} \subseteq \mathcal{U}$ such that for each $U \in \mathcal{U}$, $(\bigcup \mathcal{V}) \cap U \neq \emptyset$, then $\bigcup \mathcal{V}$ is dense in X?

REFERENCES