GENERALIZATION OF TITCHMARSH’S THEOREM FOR
THE BESSEL TRANSFORM IN THE SPACE $L_{p,\alpha}(\mathbb{R}^+)$

MOHAMED EL HAMMA, RADOUAN DAHER

Abstract. In this paper, we prove a generalization of Titchmarsh’s theorem for the Bessel transform in the space $L_{p,\alpha}(\mathbb{R}^+)$ for functions satisfying the (ψ,p)-Bessel Lipschitz condition.

1. Introduction and preliminaries

In [2], we proved a generalization of Titchmarsh’s theorem for the Bessel transform in the space $L_{2,\alpha}(\mathbb{R}^+)$. In this paper we prove this generalization in the space $L_{p,\alpha}(\mathbb{R}^+)$, where $1 < p \leq 2$ and $\alpha > -\frac{1}{2}$. For this purpose, we use a Bessel generalized translation.

$L_{p,\alpha}(\mathbb{R}^+)$, $1 < p \leq 2$, is the Banach space of measurable functions $f(t)$ on \mathbb{R}^+ with the finite norm

$$\|f\|_{p,\alpha} = \left(\int_{0}^{\infty} |f(x)|^p x^{2\alpha+1} dx \right)^{1/p},$$

where α is a real number, $\alpha > -\frac{1}{2}$.

Received: 18.09.2012, Revised: 7.11.2012.
Key words and phrases: Bessel operator, Bessel transform, Bessel generalized translation.
Let
\[B = \frac{d^2}{dx^2} + \frac{2\alpha + 1}{x} \frac{d}{dx} \]
be the Bessel differential operator.

For \(\alpha \geq -\frac{1}{2} \), we introduce the Bessel normalized function of the first kind \(j_\alpha \) defined by
\[j_\alpha(z) = \left(\frac{1}{\Gamma(\alpha+1)} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(n+\alpha+1)} \left(\frac{z}{2} \right)^{2n} \right) , \]
where \(\Gamma \) is the gamma-function (see [4]). Moreover, from (1) we see that
\[\lim_{z \to 0} \frac{j_\alpha(z) - 1}{z^2} \neq 0 \]
by consequence, there exist \(c > 0 \) and \(\eta > 0 \) satisfying
\[|z| \leq \eta \implies |j_\alpha(z) - 1| \geq c|z|^2. \]
The function \(y = j_\alpha(z) \) satisfies the differential equation
\[By + y = 0 \]
with the initial conditions \(y(0) = 1 \) and \(y'(0) = 0 \). \(j_\alpha(z) \) is function infinitely differentiable, even, and, moreover entire analytic.

In \(L_{p,\alpha}(\mathbb{R}+) \), consider the Bessel generalized translation \(T_h \) [4] defined by
\[T_h f(t) = c_\alpha \int_0^\pi f(\sqrt{t^2 + h^2 - 2th\cos \varphi}) \sin^{2\alpha} \varphi d\varphi, \]
where
\[c_\alpha = \left(\int_0^\pi \sin^{2\alpha} \varphi d\varphi \right)^{-1} = \frac{\Gamma(\alpha+1)}{\Gamma(\frac{1}{2})\Gamma(\alpha+\frac{1}{2})}. \]
The Bessel transform we call the integral transform from [3, 4, 5]
\[\hat{f}(\lambda) = \int_0^\infty f(t) j_\alpha(\lambda t) t^{2\alpha+1} dt, \ \lambda \in \mathbb{R}^+. \]
The inverse Bessel transform is given by the formula
\[f(t) = \left(2^\alpha \Gamma(\alpha + 1)\right)^{-2} \int_0^\infty \hat{f}(\lambda) j_\alpha(\lambda t) \lambda^{2\alpha+1} d\lambda. \]

The following relation connect the Bessel generalized translation and the Bessel transform, in [1] we have
\[(\hat{T}_h f)(\lambda) = j_\alpha(\lambda h) \hat{f}(\lambda). \]

We have the Hausdorff–Young inequality
\[\| \hat{f} \|_{q,\alpha} \leq C \| f \|_{p,\alpha}, \]
where \(\frac{1}{p} + \frac{1}{q} = 1 \) and \(C \) is a positive constant.

2. Main Result

In this section we give the main result of this paper. We need first to define \((\psi,p)\)-Bessel Lipschitz class.

Definition 2.1. A function \(f \in L_{p,\alpha}(\mathbb{R}_+) \) is said to be in the \((\psi,p)\)-Bessel Lipschitz class, denoted by \(\text{Lip}(\psi,\alpha,p) \), if
\[\| T_h f(t) - f(t) \|_{p,\alpha} = O(\psi(h)) \quad \text{as } h \to 0, \]
where
1. \(\psi(t) \) is a continuous increasing function on \([0,\infty)\),
2. \(\psi(0) = 0 \),
3. \(\psi(ts) = \psi(t)\psi(s) \) for all \(t,s \in [0,\infty) \).

Theorem 2.2. Let \(f(t) \) belong to \(\text{Lip}(\psi,\alpha,p) \). Then
\[\int_r^\infty |\hat{f}(\lambda)|^q \lambda^{2\alpha+1} d\lambda = O(\psi(r^{-q})) \quad \text{as } r \to +\infty. \]
Proof. Let \(f \in Lip(\psi,\alpha,p) \). Then we have
\[
\|T_h f(t) - f(t)\|_{p,\alpha} = O(\psi(h)) \quad \text{as } h \to 0.
\]
From formulas (3) and (4), we obtain
\[
\int_0^\infty |1 - j_\alpha(\lambda h)|^q \hat{f}(\lambda)^{q \lambda^{2\alpha + 1}} d\lambda \leq C^q \|T_h f(t) - f(t)\|_{p,\alpha}^q.
\]
From (2), we have
\[
\int_{\frac{n-1}{n}}^{\frac{n}{n}} |1 - j_\alpha(\lambda h)|^q \hat{f}(\lambda)^{q \lambda^{2\alpha + 1}} d\lambda \geq \frac{c^q \eta^2 q}{d^{2q}} \int_{\frac{n}{n}}^{\frac{n}{n}} \hat{f}(\lambda)^{q \lambda^{2\alpha + 1}} d\lambda,
\]
d > 1, 0 < h ≤ 1. It follows from the above consideration that there exists a positive constant \(K_d \) such that
\[
\int_{\frac{n}{n}}^{\infty} \hat{f}(\lambda)^{q \lambda^{2\alpha + 1}} d\lambda \leq K_d \psi(q)(h) = K_d \psi(h^q).
\]
Then
\[
\int_r^{d r} |\hat{f}(\lambda)|^{q \lambda^{2\alpha + 1}} d\lambda \leq C_d \psi(r^{-q}) \quad \text{for all } d > 1
\]
of course
\[
\int_r^{d^{n-1} r} |\hat{f}(\lambda)|^{q \lambda^{2\alpha + 1}} d\lambda = \left(\int_r^{d r} + \int_{d r}^{d^2 r} + \ldots + \int_{d^{n-1} r}^{d^n r} \right) |\hat{f}(\lambda)|^{q \lambda^{2\alpha + 1}} d\lambda.
\]
Therefore
\[
\int_r^{\infty} |\hat{f}(\lambda)|^{q \lambda^{2\alpha + 1}} d\lambda \leq C_d (1 + \psi(d^{-q}) + \psi^2(d^{-q}) + \ldots) \psi(r^{-q}).
\]
For fixed \(d_0 \) such that \(\psi(d_0^{-q}) < 1 \) we have
\[
\int_r^{\infty} |\hat{f}(\lambda)|^{q \lambda^{2\alpha + 1}} d\lambda \leq C_1 \psi(r^{-q}),
\]
where \(C_1 = C_{d_0}(1 - \psi(d_0^{-q}))^{-1} \).
Finally, we get
\[
\int_{r}^{\infty} |\widehat{f}(\lambda)|q\lambda^{2\alpha+1}d\lambda = O(\psi(r^{-q})) \quad \text{as } r \to \infty.
\]
Thus, the proof is finished. \qed

Acknowledgement. The authors would like to thank the referee for his valuable comments and suggestions.

References

Department of Mathematics
Faculty of Sciences Ain Chock
University of Hassan II
Casablanca
Morocco
e-mail: m_elhamma@yahoo.fr
e-mail: rjdaher024@gmail.com