ORTHOGONALLY PEXIDER FUNCTIONS MODULO
A DISCRETE SUBGROUP

WIRGINIA WYROBEK-KOCHANEK

Abstract. Under appropriate conditions on abelian topological groups G and H, an orthogonality $\perp \subset G^2$ and a σ-algebra \mathfrak{M} of subsets of G we prove that if at least one of the functions $f, g, h : G \to H$ satisfying

$$f(x + y) - g(x) - h(y) \in K \quad \text{for } x, y \in G \text{ such that } x \perp y,$$

where K is a discrete subgroup of H, is continuous at a point or \mathfrak{M}-measurable, then there exist: a continuous additive function $A : G \to H$, a continuous biadditive and symmetric function $B : G \times G \to H$ and constants $a, b \in H$ such that

$$\begin{cases} f(x) - B(x, x) - A(x) - a \in K, \\ g(x) - B(x, x) - A(x) - b \in K, \\ h(x) - B(x, x) - A(x) - a + b \in K \end{cases}$$

for $x \in G$ and

$$B(x, y) = 0 \quad \text{for } x, y \in G \text{ such that } x \perp y.$$

Let G and H be groups and $\perp \subset G^2$ an orthogonality. We say that a function $f : G \to H$ is orthogonally additive, if

$$f(x + y) = f(x) + f(y) \quad \text{for } x, y \in G \text{ such that } x \perp y.$$
In the paper [3] J. Brzdęk considers the Rätz orthogonality (cf.[5]) and, under some assumptions, gives a description of orthogonally additive functions modulo a discrete subgroup, i.e. functions \(f : G \to H \) such that

\[f(x + y) - f(x) - f(y) \in K \quad \text{for} \quad x, y \in G \quad \text{such that} \quad x \perp y, \]

where \(K \) is a discrete subgroup of \(H \). In the papers [7] and [4] authors prove similar theorems (for continuous or measurable functions), but for the orthogonality defined by K. Baron and P. Volkmann in [2], which includes the Rätz orthogonality.

Now we would like to obtain some similar results for the Pexider difference instead of the Cauchy difference, i.e. we assume that functions \(f, g, h : G \to H \) are orthogonally Pexider modulo a discrete subgroup, which means that they satisfy

\[f(x + y) - g(x) - h(x) \in K \quad \text{for} \quad x, y \in G \quad \text{such that} \quad x \perp y, \]

where \(K \) is a discrete subgroup of \(H \). We start with the following result.

Lemma. Let \(G \) be a groupoid with a neutral element, \(H \) an abelian group, \(K \) a subgroup of \(H \). Let \(\Delta \subset G \times G \) be a set with

\[(0, x), (x, 0) \in \Delta \quad \text{for all} \quad x \in G. \]

If functions \(f, g, h : G \to H \) satisfy

\[f(x + y) - g(x) - h(y) \in K \quad \text{for} \quad (x, y) \in \Delta, \]

then the following are true:

(a) There are functions \(k_1, l_1 : G \to K, \varphi_1 : G \to H \) and constants \(a, b \in H \) such that

\[\varphi_1(x + y) - \varphi_1(x) - \varphi_1(y) \in K \quad \text{for} \quad (x, y) \in \Delta \]

and

\[\begin{cases} f(x) = \varphi_1(x) + a, \\ g(x) = \varphi_1(x) + k_1(x) + b, \\ h(x) = \varphi_1(x) - k_1(x) + l_1(x) + a - b \end{cases} \]

for all \(x \in G \).
There are functions \(k_2, l_2 : G \to K \), \(\varphi_2 : G \to H \) and constants \(a, b \in H \) such that

\[
\varphi_2(x + y) - \varphi_2(x) - \varphi_2(y) \in K \quad \text{for } (x, y) \in \Delta
\]

and

\[
\begin{align*}
 f(x) &= \varphi_2(x) + k_2(x) + a, \\
 g(x) &= \varphi_2(x) + b, \\
 h(x) &= \varphi_2(x) + l_2(x) + a - b
\end{align*}
\]

for all \(x \in G \).

There are functions \(k_3, l_3 : G \to K \), \(\varphi_3 : G \to H \) and constants \(a, b \in H \) such that

\[
\varphi_3(x + y) - \varphi_3(x) - \varphi_3(y) \in K \quad \text{for } (x, y) \in \Delta
\]

and

\[
\begin{align*}
 f(x) &= \varphi_3(x) + k_3(x) + a, \\
 g(x) &= \varphi_3(x) + l_3(x) + b, \\
 h(x) &= \varphi_3(x) + a - b
\end{align*}
\]

for all \(x \in G \).

Moreover, each of assertions (a), (b), (c) gives a complete description of solutions of (2), that is, every triple \((f, g, h)\), being of one of the forms described above, is a solution of (2).

Proof. Setting \(y = 0 \) in (2), by (1) we get

\[
\mu(x) := f(x) - g(x) - h(0) \in K \quad \text{for } x \in G
\]

and setting \(x = 0 \) we have

\[
\nu(y) := f(y) - g(0) - h(y) \in K \quad \text{for } y \in G.
\]

In particular,

\[
f(0) - g(0) - h(0) \in K.
\]
Denote $a = f(0)$, $b = g(0)$ and define $\varphi_i, k_i, l_i : G \to H$ for $i = 1, 2, 3$ by

\[
\begin{align*}
\varphi_1 &= f - a, \\
k_1 &= g - \varphi_1 - b, \\
l_1 &= h + k_1 - \varphi_1 - a + b, \\
\varphi_2 &= g - b, \\
k_2 &= f - \varphi_2 - a, \\
l_2 &= h - \varphi_2 - a + b, \\
\varphi_3 &= h - a + b, \\
k_3 &= f - \varphi_3 - a, \\
l_3 &= g - \varphi_3 - b.
\end{align*}
\]

Using (4), (5), (2) and (6) for every $(x, y) \in \Delta$ we get

\[
\begin{align*}
\varphi_1(x + y) - \varphi_1(x) - \varphi_1(y) &= f(x + y) - a - f(x) + a - f(y) + a \\
&= f(x + y) - \mu(x) - g(x) - h(0) - \nu(y) - g(0) - h(y) + a \in K; \\
\varphi_2(x + y) - \varphi_2(x) - \varphi_2(y) &= g(x + y) - b - g(x) + b - g(y) + b \\
&= f(x + y) - \mu(x + y) - h(0) - g(x) + \mu(y) - f(y) + h(0) + b \\
&= f(x + y) - \mu(x + y) - g(x) + \mu(y) - \nu(y) - g(0) - h(y) + b \in K; \\
\varphi_3(x + y) - \varphi_3(x) - \varphi_3(y) &= h(x + y) - a + b - h(x) + a - b - h(y) + a - b \\
&= f(x + y) - g(0) - \nu(x + y) + \nu(x) - f(x) + g(0) - h(y) + a - b \\
&= f(x + y) - \nu(x + y) + \nu(x) - \mu(x) - g(x) - h(0) - h(y) + a - b, \\
&\in K.
\end{align*}
\]

We also have

\[
\begin{align*}
k_1(x) &= g(x) - f(x) + a - b = -\mu(x) - h(0) + a - b \in K, \\
k_2(x) &= f(x) - g(x) + b - a = \mu(x) + h(0) + b - a \in K, \\
k_3(x) &= f(x) - h(x) + a - b - a = \nu(x) + g(0) - b \in K, \\
l_1(x) &= h(x) + k_1(x) - f(x) + a - a + b = -\nu(x) - g(0) + k_1(x) + b \in K, \\
l_2(x) &= h(x) + k_2(x) - f(x) + a - a + b = -\nu(x) - g(0) + k_2(x) + b \in K, \\
l_3(x) &= g(x) + k_3(x) - f(x) + a - b = -\mu(x) - h(0) + k_3(x) + a - b \in K
\end{align*}
\]

for $x \in G$. \qed

The part (b) of this lemma in the case when $\Delta = G^2$ was also obtained by K. Baron and PL. Kannappan in [1], even under some weaker assumptions. Some variations of (2) for functions with values in groupoids were studied by J. Sikorska in [6].

We work with the orthogonality proposed by K. Baron and P. Volkmann in [2], assuming additionally that the last condition in the following definition holds:
Let G be a group such that the mapping

$$x \mapsto 2x, \quad x \in G,$$

is a bijection onto the group G. A relation $\perp \subset G^2$ is called orthogonality if it satisfies the following three conditions:

(i) $0 \perp 0$; and from $x \perp y$ the relations $-x \perp -y$, $\frac{x}{2} \perp \frac{y}{2}$ follow.

(ii) If an orthogonally additive function from G to an abelian group is odd, then it is additive; if it is even, then it is quadratic.

(iii) $x \perp 0$ and $0 \perp x$ for every $x \in G$.

For a subset U of a given group and for $n \in \mathbb{N}$ the symbol nU denotes the set $\{nx : x \in U\}$.

Theorem. Assume G is an abelian topological group such that the mapping (7) is a homeomorphism and every neighbourhood of zero in G contains a neighbourhood U of zero such that

$$U \subset 2U \quad \text{and} \quad G = \bigcup \{2^nU : n \in \mathbb{N}\}. $$

Let $\perp \subset G^2$ be an orthogonality, H an abelian topological group and K a discrete subgroup of H. Assume that functions $f, g, h : G \to H$ satisfy

$$f(x + y) - g(x) - h(y) \in K \quad \text{for} \quad x, y \in G \quad \text{such that} \quad x \perp y. $$

(i) If at least one of the functions f, g, h is continuous at a point, then there exist: a continuous additive function $A : G \to H$, a continuous biadditive and symmetric function $B : G \times G \to H$ and constants $a, b \in H$ such that

$$\begin{cases}
 f(x) - B(x, x) - A(x) - a \in K, \\
 g(x) - B(x, x) - A(x) - b \in K, \\
 h(x) - B(x, x) - A(x) - a + b \in K
\end{cases}$$

for $x \in G$ and

$$B(x, y) = 0 \quad \text{for} \quad x, y \in G \quad \text{such that} \quad x \perp y. $$

(ii) Let \mathcal{M} be a σ-algebra of subsets of G such that

$$x \pm 2A \in \mathcal{M} \quad \text{for all} \quad x \in G \quad \text{and} \quad A \in \mathcal{M}$$

and there is a proper σ-ideal \mathcal{I} of subsets of G with

$$0 \in \text{Int}(A - A) \quad \text{for} \quad A \in \mathcal{M} \setminus \mathcal{I}. $$
Assume moreover that H is separable metric and the following condition (G) is fulfilled:

(G) either G is a first countable Baire group, or G is metric separable, or G is metric and \mathcal{M} contains all Borel subsets of G.

If at least one of the functions f, g, h is \mathcal{M}-measurable, then there exist: a continuous additive function $A: G \to H$, a continuous biadditive and symmetric function $B: G \times G \to H$ and constants $a, b \in H$ such that (10) and (11) hold.

Moreover, each of assertions (i), (ii) gives a complete description of solutions of (9).

Proof. (i): Case 1. Assume that f is continuous at a point. Let $k_1, l_1 : G \to K, \varphi_1 : G \to H$ be as in Lemma (a). Then the function φ_1 is continuous at a point. According to Theorem 1 from [7] we get a continuous additive function $A: G \to H$ and a continuous biadditive and symmetric function $B: G \times G \to H$ such that

$$\varphi_1(x) - B(x, x) - A(x) \in K \quad \text{for } x \in G$$

and (11) hold. Then, according to (3),

$$f(x) - B(x, x) - A(x) - a = \varphi_1(x) + a - B(x, x) - A(x) - a \in K,$$

$$g(x) - B(x, x) - A(x) - b = \varphi_1(x) + k_1(x) + b - B(x, x) - A(x) - b \in K,$$

$$h(x) - B(x, x) - A(x) - a + b = \varphi_1(x) - k_1(x) + l_1(x) + a - b$$

$$- B(x, x) - A(x) - a + b \in K$$

for all $x \in G$.

Case 2. If the function g is continuous at a point then instead of Lemma (a) we use Lemma (b).

Case 3. If the function h is continuous at a point then we use Lemma (c).

(ii): If one of the functions f, g, h is \mathcal{M}-measurable then we use Theorem 1 from [4] instead of Theorem 1 from [7].

For $\perp = G^2$ some special cases were obtained in [1] (cf. Corollaries 6 and 7 there).

If in the Theorem G is Baire and we consider the Baire measurability, then we do not need to assume the first countability of G in order to get the factorization with a separately continuous biadditive term only (cf. Corollary 2 in [4]).

Corollary 1. Assume G is an abelian topological group such that the mapping (7) is a homeomorphism and every neighbourhood of zero in G contains a neighbourhood U of zero such that (8) holds. Let $\perp \subset G^2$ be an
orthogonality, H an abelian separable metric group, K a discrete subgroup of H and functions $f,g,h: G \to H$ satisfy (9). If G is Baire and at least one of the functions f,g,h is Baire measurable, then there exist: a continuous additive function $A: G \to H$, a function $B: G \times G \to H$ biadditive, symmetric and continuous in each variable, and constants $a,b \in H$ such that (10) and (11) hold.

If we take $\perp = G^2$, then our Theorem gives us Corollary 2 below. It also leads to another conclusions in the case when we consider Baire or Christensen measurability.

Corollary 2. Assume G is an abelian topological group such that the mapping (7) is a homeomorphism and every neighbourhood of zero in G contains a neighbourhood U of zero such that (8) holds. Let H be an abelian separable metric group, K a discrete subgroup of H, \mathfrak{M} a σ-algebra of subsets of G satisfying (12) and such that there is a proper σ-ideal \mathfrak{I} of subsets of G with property (13). If functions $f,g,h: G \to H$ satisfy

$$f(x + y) - g(x) - h(y) \in K \quad \text{for } x,y \in G$$

and at least one of them is \mathfrak{M}-measurable, then there exist a continuous additive function $A: G \to H$ and constants $a,b \in H$ such that

$$\begin{cases} f(x) - A(x) - a \in K, \\ g(x) - A(x) - b \in K, \\ h(x) - A(x) - a + b \in K \end{cases}$$

for $x \in G$.

Acknowledgement. The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice
Poland
e-mail: wwyrobek@math.us.edu.pl