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Abstract. In the paper the example of inverse problems application in the thermal theory of 
foundry processes is discussed. The solidification of typical binary alloys is considered,  
at the same time the macro model basing on the substitute thermal capacity is taken into  
account (fixed domain approach). The information necessary in order to determine the kinetics 
of casting solidification results from the knowledge of cooling (heating) curves at the selected 
set of points from casting and/or mould sub-domains. The identified value corresponds to  
the volumetric latent heat of alloy and, as will be shown, the knowledge of this parameter  
allows to determine the course of solidification, in particular the changes of temporary values 
of volumetric solid state fraction at the points selected from casting domain. The inverse  
problem considered is solved using the gradient method. On the stage of numerical simulation 
the FDM algorithm is used. In the final part of paper the example of computations is shown. 

1. Mathematical formulation of the problems 

The energy equation describing the casting solidification is of the following form 
[1, 2] 

 ( ) ( ) ( ) ( ) ( ), ,
, ST x t f x t

c T T T x t L
t t

λ
∂ ∂

= ∇  ∇  + ∂ ∂
 (1) 

where ( )c T  is a volumetric specific heat, ( )Tλ  is a thermal conductivity, L is  

a volumetric latent heat (this parameter is assumed to be unknown), Sf  is a volumetric 

solid state fraction at the considered point from casting domain, T, x, t denote the 
temperature, geometrical co-ordinates and time. The form of equation (1) shows that 
only conductional heat transfer is considered and the convection in the molten metal 
is neglected. 

Terms containing the derivatives of temperature and fS with respect to time can 
be joined together and then, after the simple mathematical manipulations [1, 2], 
one obtains the modified form of equation (1), namely 
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,

T x t
C T T T x t

t
λ

∂
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where 

 ( ) ( ) d

d
SfC T c T L

T
= −  (3) 

The function ( )C T  is called a substitute thermal capacity [1, 2]. It should be 

pointed out, that the typical binary alloys solidify in an interval of temperature 

,S LT T   . The sub-domain corresponding to this interval constitutes a mushy zone 

( )0, 1Sf ∈ , for : 1S ST T f< =  (solid state), while for : 0L ST T f> =  (molten 

metal). Additionally for sub-domains of solid and liquid d d 0Sf T =  and equation 

(3) determines the temperature field in whole, conventionally homogeneous,  
casting domain. One can see, that the knowledge of temperature-dependent  

function Sf  allows to determine the course of ( )C T  for ,S LT T T ∈   , but  

the other approach is also acceptable. One can assume directly the form of ( )C T  

fulfilling the condition resulting from the simple physical considerations, namely 

 ( ) ( )d
L

S

T

P L S

T

C T T c T T L= − +∫  (4) 

where Pc  is a mushy zone volumetric specific heat (for instance ( )0.5P S Lc c c= + ). 
Equation determining a temperature field in a mould sub-domain is the following 

 ( ) ( ) ( ) ( ),
,m

m m m

T x t
c T T T x t

t
λ

∂
 = ∇ ∇ ∂

 (5) 

where cm is a mould volumetric specific heat, mλ  is a mould thermal conductivity.  

In the case of typical sand molds on the contact surface casting-mould the continuity 
of temperature and heat flux can be accepted 

 

( , )( , )

:

( , ) ( , )

m
m

c

m

T x tT x t

n nx

T x t T x t

λ λ ∂∂− = − ∂ ∂∈Γ 
 =

 (6) 

where n∂ ∂  denotes a normal derivative. 
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On the external surface of the system the condition in a general form 

 0

( , )
: ( , ), 0

T x t
x T x t

n

 ∂∈Γ Φ = ∂ 
 (7) 

is given, at the same time the typical formula determining a heat exchange between 
mould and environment is the following 

 [ ]0

( , )
: ( , )m

m m a

T x t
x T x t T

n
λ α∂

∈Γ − = −
∂

 (8) 

where α  is a heat transfer coefficient, aT  is an ambient temperature. For time 0t =  
the initial values 

 ( ) ( )0 00: ( , 0) , ( , 0)m mt T x T x T x T x= = =  (9) 

are also known. 

2. Substitute thermal capacity 

In literature one can find also the “direct” definitions of ( )C T , in other words the 

form of function ( )C T  is assumed a’priori, for example [3] 

 ( ) 2 3 4
0 1 2 3 4 , ,S LC T a a T a T a T a T T T T = + + + + ∈    (10) 

where , 0, 1, 2, 3, 4ea e=  are the coefficients and they can be found on the basis of 

conditions assuring the continuity of C1 class and physical correctness of 
approximation, namely  
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T

=

=

=

=

=

=

 (11) 

and additionally the condition (4) must be also fulfilled. 
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The number of unknown parameters corresponds to the number of conditions and 
one can find the values of ea , in particular [4] 
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The course of substitute thermal capacity found using the approximation (10) for  
Al-Si alloy (5% Si) is shown in Figure 1. 
 

 
Fig. 1. Substitute thermal capacity 

It is assumed that in the formula determining ( )C T  the parameter L is unknown and 

the first stage of the algorithm reduces to the solution of inverse problem concerning 
this parameter identification. Next using the definition (3) one has 

 2 3 4
0 1 2 3 4

d
, ,

d
S

P S L

f
c L a a T a T a T a T T T T

T
 − = + + + + ∈    (13) 



Kinetics of casting solidification - an inverse approach 173

and next 

 0 2 3 4 5
1 2 3 4

1 1 1 1

2 3 4 5
P

S

c a
f T a T a T a T a T C

L L L L L

−
= − − − − +  (14) 

The constant C results from the condition : 0L ST T f= =  and finally 

 
( ) ( ) ( )

( ) ( )

0 2 2 3 3
1 2

4 4 5 5
3 4

1 1

2 3
1 1

, ,
4 5

P
S L L L

L L S L

a c
f T T a T T a T T

L L L

a T T a T T T T T
L L

−
= − + − + − +

 + − + − ∈  

 (15) 

One can check that equation (15) fulfills the second condition, namely 
: 1S ST T f= = . The last formula determines the local and temporary value of Sf  

this means allows to predict the kinetics of casting solidification. 

3. Inverse problem 

In order to identify the value of L, the additional information connected with the 
course of the solidification process is necessary. So, we assume that the values f

d iT  

at the set of points ix  selected from the domain considered for times ft  are known 

 ( , ), 1, 2,..., , 1, 2,...,f f
d i d iT T x t i M f F= = =  (16) 

Now, the least squares criterion is applied [5-7] 

 ( ) ( )2

1 1

1 M F
f f

i d i
i f

S L T T
M F = =

= −∑∑  (17) 

where ( , )f f
i iT T x t=  is the calculated temperature at the point ix  for time ft  for 

arbitrary assumed value of L.  
The criterion (17) is differentiated with respect to the unknown volumetric latent 

heat L and next the necessary condition of optimum is applied 

 ( )
1 1

d 2
0

d
k

fM F
if f

i d i
i f

L L

TS
T T

L M F L= = =

∂
= − =

∂∑∑  (18) 

where k is the iteration number ( for 0kL k =  is the arbitrary assumed value of latent 

heat, while for 0kL k >  results from the previous iteration). The function f
iT  is 

expanded in the Taylor series using the known value of kL , this means 
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Putting (19) into (18) one has 
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or 
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where  

 ( )
k

f
k if

i

L L

T
Z

L
=

∂
=

∂
 (22) 

are the sensitivity coefficients and k  =  0, 1, ..., K.  
In order to determine the sensitivity coefficients appearing in equation (21), the 

direct approach of sensitivity analysis can be applied. It depends on the 
differentiation of governing equations creating the solidification model with respect 
to L. So, the following additional problem connected with the sensitivity analysis 
should be solved 
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This problem is strongly coupled with the basic one, because in order to find its 
solution, the time derivative ( ),T x t t∂ ∂  must be known. 
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4. Results of computations 

The casting-core-mould system shown in Figure 2 has been considered.  
The following input data have been introduced (Al-Si alloy): 32.943 M J m KSc = , 

3.0, 3.07p Lc c= = , 250 W mK, 177, 104S p Lλ λ λ= = = , 3990.6 M J mL =  

(this value is identified during the first stage of computations). 
 

 
Fig. 2. Casting-mould system 

Additionally it was assumed that the substitute thermal capacity of mushy zone 
results from formula (10). The volumetric specific heat of mould and core 

31.750 M J m Kmc = , while the thermal conductivity 1.0mλ = . The border and 

initial temperatures equal o577 CST = , o650 CLT = , o
0 660 CT = , o

0 20 CmT = . On 

a stage of numerical modelling the finite differences method (FDM) has been used. 
The casting-mould domain has been divided into 900 control volumes, time step 

0.001 st∆ = . The values of “measured” temperatures result from the direct prob-

lem solution (for above collected input data) or from this solution disturbed in 
random way (in order to be closer to the real measurements).  

In Figures 3 and 4 the cooling curves and kinetics of solidification at the points 
marked in Figure 2 are shown. They correspond to the real value of L.  
Figure 5 illustrates the temperature field in the system considered for times 5  
and 15 s. 

The iteration process of latent heat estimation starting from the value L = 0 is 
shown in Figure 6 (undisturbed data), at the same time the values of “measured” 
temperature f

d iT  correspond to node 3 (only one sensor has been taken into  

account). One can see that the number of iterations assuring the good identification 
is small. 
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Fig. 3. Cooling curves at the points 1, 2, 3 

 
Fig. 4. Kinetics of solidification at the points 1, 2, 3 

The second numerical experiment concerns the disturbed cooling curve at  
the point 3. The solution of direct problem is transformed in a random way and  
the final result is shown in Figure 7. Using this input data the good identification 
of latent heat has been obtained after 5 iterations. Summing up, the algorithm  
proposed is quite effective and exact even in the case of disturbations introduced 
during input data construction. 
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Fig. 5. Temperature distribution 

 
Fig. 6. Identification of latent heat 

 
Fig. 7. Disturbed cooling curve at the point 3 
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