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THE ALIENATION PHENOMENON AND ASSOCIATIVE
RATIONAL OPERATIONS

Roman Ger

Abstract. The alienation phenomenon of ring homomorphisms may briefly
be described as follows: under some reasonable assumptions, a map f between
two rings satisfies the functional equation

(∗) f(x+ y) + f(xy) = f(x) + f(y) + f(x)f(y)

if and only if f is both additive and multiplicative. Although this fact is
surprising for itself it turns out that that kind of alienation has also deeper
roots. Namely, observe that the right hand side of equation (∗) is of the form
Q(f(x), f(y)) with the map Q(u, v) = u+v+uv being a special rational asso-
ciative operation. This gives rise to the following question: given an abstract
rational associative operation Q does the equation

f(x+ y) + f(xy) = Q(f(x), f(y))

force f to be a ring homomorphism (with the target ring being a field)?
Plainly, in general, that is not the case. Nevertheless, the 2-homogeneity of

f happens to be a necessary and sufficient condition for that effect provided
that the range of f is large enough.

1. Motivation

The alienation phenomenon discovered and named so by J. Dhombres [2]
consists in the statement that a map f between two rings that satisfies the
functional equation
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(∗) f(x+ y) + f(xy) = f(x) + f(y) + f(x)f(y)

establishes a homomorphism of the rings in question. In particular, from the
equality of sums the equality of summands is derived. Although, with no
additional assumptions upon f , that is not the case, among numerous other
alienation type results, we have for instance the following one (cf. R. Ger &
L. Reich’s paper [5]; see also [3] and [4]):

Proposition. Let X and Y be two unitary rings and let Y be commutative
with no zero divisors. Assume that a map f : X −→ Y satisfies equation (∗)
for all x, y ∈ X. Then either f is a ring homomorphism or f is even, f(2x) ≡ 0
on X and f is constant on the cosets forming the elements of the quotient ring
X/2X.

This fact is surprising for itself but it turns out that that kind of alienation
has also deeper roots. Namely, observe that the right hand side of equation
(∗) is of the form

Q(f(x), f(y))

with the map

Q(u, v) = u+ v + uv

being a special rational associative operation. This gives rise to the following
question: given an abstract rational associative operation Q does the equation

(Q) f(x+ y) + f(xy) = Q(f(x), f(y))

force f to be a ring homomorphism (with the target ring being a field)?
As we shall see later on, in general, that is not the case. Nevertheless, the

2-homogeneity of f that kills nonhomomorphic solutions of (∗), will prove to
be a necessary and sufficient condition for that effect provided that the range
of f is large enough. As a matter of fact, we shall show (Theorem 2) that the
only associative rational operations Q admitting 2-homogeneous solutions f
of equation (Q) with card f(X) > 4 are of the form

Q(u, v) = κuv + u+ v, κ 6= 0.

Note also that the associative rational operation associated with (∗), i.e.,

Q(u, v) = u+ v + uv
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may be represented in the form

Q(u, v) = ϕ−1(ϕ(u)ϕ(v))

where ϕ stands for a homography

ϕ(u) =
1

u+ 1
.

It seems worthwhile to remark at this place that Q(u, v) = ϕ−1(ϕ(u)ϕ(v))
admits also a more convenient representation of that form with another ho-
mography, namely ϕ(u) = u+1, because it exhibits two things simultaneously:
there are two essentially different multiplicative generators of the same ratio-
nal associative operation and one of them has a singularity whereas the other
has not.

In the present paper we offer some results whose statements will be given
in the next section with proofs presented in Section 3.

2. Main results

In what follows X will stand for a unitary ring with unity e and F will
denote a real closed field. In particular, F is formally real, i.e a sum of squares
of elements of F vanishes if and only if each of these elements is equal to zero.
Moreover, for each element a of F either a or −a is a square and charF = 0.
A. Cheritat [1] has shown that any nontrivial associative rational operation
Q from a suitable subdomain of F × F into F admits a representation of the
form

Q(u, v) = ϕ−1

(
ϕ(u) + ϕ(v)

1 + ωϕ(u)ϕ(v)

)
with some constant ω ∈ F and with a homography

ϕ(u) =
au+ b

cu+ d
such that ad− bc 6= 0.

It is not hard to check that the following forms of an associative rational
operation Q spoken of are the only possible ones:

(A) Q(u, v) = ϕ−1(ϕ(u) + ϕ(v))
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or

(M) Q(u, v) = ϕ−1(ϕ(u)ϕ(v))

or

(T) Q(u, v) = ϕ−1

(
ϕ(u) + ϕ(v)

1− ϕ(u)ϕ(v)

)
,

with a homography

(G) ϕ(u) =
au+ b

cu+ d
such that ad− bc 6= 0 .

The homography ϕ is then called a generator of the operation Q which,
a fortiori is termed additively, multiplicatively or tangentially generated pro-
vided that case (A), (M) or (T) does occur, respectively.

Theorem 1. Given a rational associative operation Q assume that a
map f : X −→ F satisfies equation (Q) for all x, y ∈ X such that the pair
(f(x), f(y)) falls into the domain of Q and card f(X) > 4. Then there exist
constants λ, µ, ν and σ in F such that

σ (f(x+ y) + f(xy)) f(x)f(y)

= λ (f(x+ y)− f(x)− f(y)) + µf(xy) + νf(x)f(y).

More precisely, if ϕ given by (G) stands for the generator of Q, then

(i) a 6= 0 = b 6= d, λ = µ = 1, ν = −2c
d and σ =

(
c
d

)2 provided that Q is
additively generated;

(ii) b = d 6= 0, λ = µ = 1, ν = −a+c
b and σ = ac

b2 provided that Q is
multiplicatively generated;

(iii) a 6= 0 = b 6= d, λ = µ = d2, ν = −2cd and σ = a2 + c2 provided that Q
is tangentially generated.

Theorem 2. Given a rational associative operation Q assume that a
map f : X −→ F satisfies equation (Q) for all x, y ∈ X such that the pair
(f(x), f(y)) falls into the domain of Q and card f(X) > 4. Then f is 2-
homogeneous, i.e.

f(2x) = 2f(x) for every x ∈ X,
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if and only if

Q(u, v) = κuv + u+ v, u, v ∈ X, κ 6= 0.

If that is the case, then f is additive and κf is multiplicative; moreover, Q is
multiplicatively generated by a generator ϕ given by the formula

ϕ(u) = κu+ 1, u ∈ F.

3. Proofs

We begin with the following

Lemma. Given elements λ, µ, ν and σ from the field F assume that a
nonzero map f : X −→ F satisfies equation

σ (f(x+ y) + f(xy)) f(x)f(y)

= λ (f(x+ y)− f(x)− f(y)) + µf(xy) + νf(x)f(y)

for all x, y from X. If f is 2−homogeneous, then σ = 0.

Proof. Fix arbitrarily x, y from X and put 2x and 2y in place of x and
y, respectively, in the equation considered and apply the 2-homogeneity of f
to get

8σ (f(x+ y) + 2f(xy)) f(x)f(y)

= 2λ (f(x+ y)− f(x)− f(y)) + 4µf(xy) + 4νf(x)f(y),

whence due to the fact that charF = 0 we obtain

4σ (f(x+ y) + 2f(xy)) f(x)f(y)

= λ (f(x+ y)− f(x)− f(y)) + 2µf(xy) + 2νf(x)f(y).

Subtracting the original equation side by side from the latter one we infer that

(∗∗) σ (3f(x+ y)f(x)f(y) + 7f(xy)f(x)f(y)) = µf(xy) + νf(x)f(y).
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Replacing here again x and y by 2x and 2y, respectively, and subtracting (∗∗)
side by side from the resulting equation we derive the relationship

σ (f(x+ y)f(x)f(y) + 7f(xy)f(x)f(y)) = 0

valid for all x, y ∈ X. Applying the duplication of arguments once again and
subtracting the resulted equation from the latter one side by side we conclude
that

σf(xy)f(x)f(y) = 0

for all x, y ∈ X. If σ were different from 0, we would obtain the equality

f(xy)f(x)f(y) = 0 for all x, y ∈ X.

Now, fix arbitrarily an x ∈ X such that f(x) 6= 0. Then, for every y from X
we have f(xy)f(y) = 0; in particular, setting here y = x we get f

(
x2

)
= 0.

Therefore, for every x ∈ X either f(x) = 0 or f
(
x2

)
= 0. In particular,

f(e) = 0 where e stands for the unit element of the ring X. Hence, on setting
y = e in (∗∗) we obtain the equality µf(x) = 0 satisfied for every x ∈ X. Since
f 6= 0 it forces µ to vanish which allows to rewrite (∗∗) in the form

f(x)f(y) 6= 0 implies 3σf(x+ y) + 7σf(xy) = ν,

the implication being valid for all x and y from X. Put here y = x to get

f(x) 6= 0 implies 6σf(x) + 7σf
(
x2

)
= 6σf(x) = ν

which states that f assumes two values only including 0 = f(e). Since f 6= 0
we must have f(X) = {0, c} with c = f(x0) 6= 0 for some x0 ∈ X. This is
not possible because then f(2x0) = 2f(x0) = 2c 6∈ {0, c}. This condratiction
shows that actually we have to have σ = 0, which completes the proof. �

To proceed, for brevity, put

domϕ :=

{
F whenever c = 0
F \ {−d

c} otherwise,

and

domϕ−1 :=

{
F whenever c = 0
F \ {ac } otherwise.



The alienation phenomenon and associative rational operations 81

Proof of Theorem 1 in the additive case (A). The functional equation
(Q) assumes the form

(QA) f(x+ y) + f(xy) = ϕ−1 (ϕ(f(x)) + ϕ(f(y)))

for all x, y ∈ X such that f(x) and f(y) belong to domϕ and ϕ(f(x))+ϕ(f(y))
belongs to domϕ−1.

In the case where c = 0 one has a 6= 0 6= d and equation (QA) reduces to

f(x+ y) + f(xy) = f(x) + f(y) +
b

a

for all x, y ∈ F , which forces b to vanish (take x = y = 0). Consequently, we
arrive at

(f(x+ y)− f(x)− f(y)) + f(xy) = 0

getting (i) with ν = σ = 0.
In what follows we shall assume that c 6= 0. Observe first that, by a direct

calculation, representation (A) with the generator ϕ given by (G) leads to

Q(u, v) =
c(2ad− bc)uv + ad2(u+ v) + bd2

−ac2uv − bc2(u+ v) + d(ad− 2bc)

which defines an associative rational operation on the set

domQ :=
{

(u, v) ∈ F × F : ac2uv + bc2(u+ v) = d(ad− 2bc)
}
.

In contrast to the map

(u, v) 7−→ ϕ−1(ϕ(u) + ϕ(v))

for which the arguments (−d
c , v) and (u,−d

c ) are off its domain, these singu-
larities are fortunately apparent for the map Q itself; we have simply

(1) Q

(
u,−d

c

)
= Q

(
−d
c
, v

)
= −d

c
for all u, v ∈ F \

{
−d
c

}
(a direct calculation). Note that α := f(0) 6= −d

c (i.e. α ∈ domϕ) since,
otherwise, we would have

f(x)− d

c
= f(x) + f(0) = Q(f(x), f(0)) = Q

(
f(x),−d

c

)
= −d

c
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provided that f(x) 6= −d
c ; thus f(x) ∈

{
0,−d

c

}
for all x ∈ X, contradicting

the assumption that f has at least 5 values.
Therefore, with γ := ϕ(α) one has

f(x) 6= −d
c

implies f(x) + α = ϕ−1(ϕ(f(x)) + γ)

whenever ϕ(f(x)) + γ ∈ domϕ−1, i.e. ϕ(f(x)) 6= a
c − γ. This forces γ to

vanish. In fact, suppose the contrary; then a
c − γ ∈ domϕ−1 and we would

have

f(x) + α = ϕ−1(ϕ(f(x)) + γ) whenever f(x) 6∈
{
−d
c
, ϕ−1

(a
c
− γ

)}
,

whence

a(f(x) + α) + b

c(f(x) + α) + d
=
af(x) + b

cf(x) + d
+ γ whenever f(x) 6∈

{
−d
c
, ϕ−1

(a
c
− γ

)}
.

Thus, for every x ∈ X we have either f(x) = −d
c or f(x) = ϕ−1

(
a
c − γ

)
or

−γc2f(x)2 + (ad− bc)α− γ(2cd+ c2α)f(x)− γ(cdα+ d2) = 0

which forces the image f(X) to be of the cardinality less or equal 4, contra-
dicting the assumption. Thus γ = 0 and, a fortiori, by repeating the same
reasoning (bearing γ = 0 in mind) we arrive at the equality (ad − bc)α = 0
forcing α to be 0. Consequently, in view of the inequality α := f(0) 6= −d

c , we
infer that d 6= 0.

The equality u = Q(u, 0) valid for sufficiently many u ∈ f(X) forces b to
vanish as well. Now, the map Q considered assumes the form

Q(u, v) =
2cduv + d2(u+ v)

−c2uv + d2
for all u, v ∈ F such that uv 6=

(
d

c

)2

.

Equation (Q) leads now to

( c
d

)2

(f(x+ y) + f(xy)) f(x)f(y)

= f(x+ y)− f(x)− f(y) + f(xy)− 2
c

d
f(x)f(y)

which states nothing else but (i). �
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Proof of Theorem 1 in the multiplicative case (M). The functional
equation (Q) assumes the form

(QM) f(x+ y) + f(xy) = ϕ−1 (ϕ(f(x))ϕ(f(y)))

for all x, y ∈ X such that f(x) and f(y) belong to domϕ and ϕ(f(x))ϕ(f(y))
belongs to domϕ−1. In the case where c = 0 one has a 6= 0 6= d and equation
(QM) reduces to

f(x+ y) + f(xy) =
a

d
f(x)f(y) +

b

d
(f(x) + f(y)) +

b

a

(
b

d
− 1

)
for all x, y ∈ F , which applied for y = 0 gives(

1− aα

d
− b

d

)
f(x) =

(
b

d
− 1

)(
α+

b

a

)
, x ∈ F,

with α := f(0). Since f is nonconstant we derive easily that b = d getting

f(x+ y) + f(xy) =
a

b
f(x)f(y) + f(x) + f(y) for all x, y ∈ X

which states nothing else but (ii) with c = 0.
In what follows we shall assume that c 6= 0. Similarly as in the previous

case we show that the singularities at the points (−d
c , v) and (u,−d

c ) are
apparent only, because having now

(2) Q(u, v) =
(a2d− bc2)uv + bd(a− c)(u+ v) + bd(b− d)

ac(c− a)uv + ac(d− b)(u+ v) + ad2 − b2c

we get (1) as well.
Now, setting γ := ϕ(α) and applying (QM) for y = 0 we infer that

(3) f(x) + α = Q(f(x), α) for sufficiently many x ∈ X.

Consequently,

f(x) 6= −d
c

implies f(x) + α = ϕ−1(γϕ(f(x))

whence

a(f(x) + α) + b

c(f(x) + α) + d
= γ

af(x) + b

cf(x) + d
whenever f(x) 6= −d

c
.
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Thus,(
f(x) +

d

c

)
(ac(1− γ)f(x)2 + (ad+ acα+ bc− γbc− γacα− γad) f(x)

+ (adα+ bd− γbd− γbcα)) = 0

for sufficiently many x ∈ X, forcing the equality γ = 1 and, a fortiori, (ad−
bc)α = 0 because of the assumption that card f(X) > 4. Hence

f(0) = α = 0 as well as f(x) = Q(f(x), 0) =
bd(a− c)f(x) + bd(b− d)

ac(d− b)f(x) + ad2 − b2c
,

by means of (3) and (2). This, in turn, implies that b = d whence finally

Q(u, v) =
b(a+ c)uv + b2(u+ v)

−acuv + b2
for all u, v ∈ F such that acuv 6= b2.

In particular, we have obviously b 6= 0.
Equation (Q) leads now to the equality

ac

b2
(f(x+ y) + f(xy)) f(x)f(y)

= f(x+ y)− f(x)− f(y) + f(xy)− a+ c

b
f(x)f(y)

valid for all x, y ∈ X, which states nothing else but (ii). �

Proof of Theorem 1 in the tangential case (T). The equation (Q)
assumes the form

(QT) f(x+ y) + f(xy) = ϕ−1

(
ϕ(f(x)) + ϕ(f(y))

1− ϕ(f(x))ϕ(f(y))

)
,

for all x, y ∈ X such that f(x) and f(y) belong to dom ϕ and (ϕ(f(x)) +
ϕ(f(y)))/(1−ϕ(f(x))ϕ(f(y)) belongs to domϕ−1. We omit somewhat tedious
but basically simple calculations needed to obtain the explicite form of the
corresponding two place function Q; it reads as follows:

(4) Q(u, v) =
(2acd− bc2 + a2b)uv + a(b2 + d2)(u+ v) + b(b2 + d2)

−a(a2 + c2)uv − b(a2 + c2)(u+ v) + ad2 − ab2 − 2bcd
.
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With the aid of the notation applied in the previous cases, from equation (QT)
we derive the equality

(5) (a(f(x) + α) + b)

(
1− γ af(x) + b

cf(x) + d

)
=
af(x) + b

cf(x) + d
(c(f(x) + α) + d) + γ (c(f(x) + α) + d)

valid for all x ∈ X such that the denominator in question does not vanish (like
in the previous cases the singularities are apparent). The latter equation, after
further natural rearrangements, leads easily to the conclusion stating that the
image of X under f is contained in the set of zeros of a polynomial of at
most second degree with the leading coefficient equal to γ(a2 + c2). Since the
field F in question is formally real and the coefficients a and c cannot vanish
simultaneously we infer that γ = 0. This, in turn, reduces formula (5) to the
following one:

a(f(x) + α) + b =
af(x) + b

cf(x) + d
(c(f(x) + α) + d)

from which we derive the vanishing of the constant term:

(ad− bc)α = 0

which forces α to vanish. In this situation d cannot vanish since, otherwise,
(cf. (4)) we would have

Q(u, v) =
(−bc2 + a2b)uv + ab2(u+ v) + b3

−a(a2 + c2)uv − b(a2 + c2)(u+ v)− ab2

whence for sufficiently many x ∈ X we would get

f(x) = Q(f(x), 0) =
ab2f(x) + b3

−b(a2 + c2)f(x)− ab2

forcing the coefficient −b(a2 + c2) to vanish which implies b = 0 = d and
contradicts the basic assumption that ad− bc 6= 0. Therefore,

0 = γ = ϕ(α) = ϕ(0) = b,
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which implies that a 6= 0 and (cf. (5)):

Q(u, v) =
2cd uv + d2(u+ v)

−(a2 + c2)uv + d2

whence for every x, y ∈ X we obtain

f(x+ y) + f(xy) = Q(f(x), f(y)) =
2cd f(x)f(y) + d2(f(x) + f(y))

−(a2 + c2)f(x)f(y) + d2

and, finally,

(a2 + c2)(f(x+ y) + f(xy))f(x)f(y)− d2f(x+ y)− d2f(xy)

= −2cdf(x)f(y)− d2f(x)− d2f(y).

The latter formula states nothing else but (iii) and the proof has been com-
pleted. �

Proof of Theorem 2. Assuming that Q has the form spoken of we get
immediately that the map g := κf yields a 2-homogeneous solution to (∗)
which on account of the Proposition forces g to be a homomorphism, i.e. g
is both additive and multiplicative. Therefore, f itself is additive and κf is
multiplicative, as claimed.

To prove the converse, apply Theorem 1 and the Lemma with the notation
therein to state that case (iii) is excluded because we would have to have
a2 + c2 = σ = 0 forcing a and c to vanish which contradicts the inequality
ad− bc 6= 0. Assume (i). Then c = 0 = ν, λ = µ = 1 and a 6= 0 = b 6= d which
gives

f(x+ y)− f(x)− f(y) + f(xy) = 0, x, y ∈ X.

Setting here y = e we infer that f(x + e) = f(e), x ∈ X, which states that
f is constant, contradicting the assumption about the range of f. Thus, the
only possible case is the remaining one, i.e. (ii). The equality σ = 0 implies
now that either a or c vanishes. In the case where a = 0 we are faced to the
multiplicative generator ϕ of the form

ϕ(u) =
b

cu+ b
with b 6= 0 6= c,

which implies the representation

Q(u, v) = κuv + u+ v, (u, v) ∈ F × F, with κ :=
c

b
.
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Finally, if a 6= 0 = c and b = d 6= 0 as well as ν = −a/b, we get

ϕ(u) = κu+ 1, u ∈ X, where κ :=
a

b
6= 0,

which generates multiplicatively a rational associative operation

Q(u, v) = κuv + u+ v, (u, v) ∈ F × F, with κ :=
a

b
6= 0,

and finishes the proof. �

4. Concluding remarks

The chief point of the proof of Theorem 2 was to solve the functional
equation

σ (f(x+ y) + f(xy)) f(x)f(y)

= λ (f(x+ y)− f(x)− f(y)) + µf(xy) + νf(x)f(y)

in the class of 2-homogeneous mappings f. It would be desirable to solve this
equation with no assumptions whatsoever upon the unknown function f . It
seems to be a difficult task. On the other hand such a knowledge would
elucidate how far from the alienation phenomen we stay dealing with general
associative rational operations occurring at the right hand side of the equation
discussed.

In the present paper solutions with no more than four values have been
brushed off. However, they do exist even in the very simple case of the uni-
tary ring X = Z of all the integers and the real closed field F = R of the
reals. For instance, equation (∗) corresponding to the canonical associative
rational operation Q(u, v) = uv + u+ w, u, v ∈ R, admits an even and hence
nonhomomorphic solution

f(x) =

{
0 for x ∈ 2Z,
−1 for x ∈ 2Z + 1.

Although it might be of interest to determine all solutions of that kind, we
realize that they should be disregarded while considering conditions implying
the alienation phenomenon.

Finally, it should be emphasized that our strong assumptions upon the tar-
get field eliminate, for instance, the field of all complex numbers. As a matter
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of fact, these assumptions are essential merely in the case of tangentially gen-
erated associative rational operations. Nevertheless, the problem discussed
here remains open for the fields that are not real closed.
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