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Abstract. In the paper the pure metal crystallization process is considered. The cooling 

conditions of the metal domain are determined by the mould dimensions and thermophysi-

cal parameters of the mould material (volumetric specific heat and thermal conductivity). 

The mathematical model of heat transfer processes proceeding in the system metal - mould 

is created by the system of heat diffusion partial differential equations corresponding to 

the sub-domains considered supplemented by the adequate geometrical, physical and 

boundary-initial conditions. The sensitivity model determining the perturbations of thermal 

processes due to the perturbations of cooling processes can be constructed using the direct 

approach (differentiation with respect to parameters analyzed) or using the differential 

quotients. Both approaches will be discussed in the paper presented. 
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Introduction 

The models of thermal processes proceeding in domain of solidifying metal can 

be divided in to three groups: macro models, micro-macro models and micro ones 

[1-3]. In this paper the micro-macro approach is discussed. Such a model bases on 

the well-known Fourier equation with additional term controlling the crystallization 

process. At the stage of  this source function construction the thermal processes 

proceeding in the micro scale are taken into account. A capacity of source function 

is proportional to the crystallization rate, more precisely, to time derivative of func-

tion  fS (x, t) corresponding to the local and temporary volumetric fraction of solid 

state at the point considered [3-6] and the kinetics of nucleation and nuclei growth 

determines the local and temporary value of this function. It is assumed that the 

driving force of nucleation and nuclei growth is the undercooling below the solidi-

fication point T 
*
. 

The sensitivity model determining the changes of the transient temperature 

field due to the perturbations of parameters appearing in the energy equations and 

boundary-initial conditions can be found by the differentiation of successive equa-



R. Szopa, W. Tuzikiewicz, J. Siedlecki 116

tions and conditions with respect to parameter considered (direct approach [7-9]). 

In the case of micro-macro  models (mainly due to the complicated form of source 

function) the equations creating the sensitivity model are very complex both at the 

stage of mathematical manipulations and also at the stage of numerical modeling. 

In this place the simpler approach to the sensitivity functions modeling can be taken 

into account. The local and temporary values of the sensitivity function defined as 

a partial derivative of temperature with respect to parameter considered are found 

using the  differential quotients. The boundary initial problem describing the proc-

ess must be solved twice, the first solution corresponds to the basic input data (set 

of parameters p1,p2,pk,…pn), the second one corresponds to the input data contain-

ing the disturbed parameter pk+∆pk. Next, the temporary local values of the sensi-

tivity function (∆T/∆pk) can be found. 

It should be pointed out that the name ‘crystallization’ used in this paper 

corresponds to the metal solidification analyzed in the micro scale. 

1. Mathematical model of the process 

The equation describing the solidification process is of the form 

 [ ]
( , )( , )

: ( ) ( ) ( , ) S
f x tT x t

x c T T T x t L
t t

∂∂
∈Ω =∇ λ ∇ +

∂ ∂
 (1) 

where c (T ) is a volumetric specific heat of  material, λ (T ) is a thermal conductiv-

ity, L is a volumetric latent heat, T = T (x, t), fS  = fS (x, t) denote the temperature and 

the local volumetric solid state fraction. 

Now, the following function should be introduced 

 ( , ) ( , ) ( , )x t N x t V x tω =  (2) 

where N is a nuclei density [nuclei/m
3 
], V is a single grain volume. The formula (2) 

is more complicated in the case of different grain volumes and then the integral 

form determining ω (x, t) should be introduced. 

The most simple model of pure metal crystallization is based on the assumption 

 ( , ) ( , )
S
f x t x t= ω  (3) 

and then 

 
( , ) ( , )
S
f x t x t

t t

∂ ∂ω
=

∂ ∂
 (4) 

This so-called ‘linear model’ [4] determines the geometrical volume (volume frac-

tion) and it is the correct assumption at the first stages of crystallization. To take 

into account the geometrical limitations of growth in the final stages of the process 

(collisions between growing grains) the following modification of equation (4) is 

introduced by Mochnacki and Szopa [10, 11] 
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 [ ]
( , ) ( , )

1 ( , )
n

S

S

f x t x t
f x t

t t

∂ ∂ω
= −

∂ ∂
 (5) 

where n ≥0. 

The last equation can be written in the form 

 
[ ]

d ( )
d

1 ( )

S

n

S

f

f

ω

= ω

− ω

 (6) 

and the solution fulfilling the condition ω = 0:  fS  = 0 is the following: 

 [ ]
1

1( ) 1 ( 1) 1 n
S
f n −ω = − − ω+  (7) 

One can see that for n = 0 one obtains the linear model, while for n = 1 one has 

 [ ]
1

1

1

lim 1 ( 1) 1 1 exp( )n

n

n −

→

− − ω+ = − −ω   (8) 

The formula (8) corresponds to the well-known Kolmogoroff exponential model 

[2, 3, 5]. 

Summing up, the source term in energy equation (1) is equal to 

 1
( , ) d ( ) ( , ) ( , )

[( 1) 1]
d

n

S S n
f x t f x t x t

L L L n
t t t

−

∂ ω ∂ω ∂ω
= = − ω+

∂ ω ∂ ∂
 (9) 

Equation (1) corresponding to the metal domain should be supplemented by the 

similar equation determining the thermal processes in a mould sub-domain, this 

means 

 
( , )

: ( ) λ ( ) ( , )m

m m m m

T x t
x c T T T x t

t

∂
 ∈Ω =∇ ∇ ∂

 (10) 

where cm and λm denote the mould volumetric specific heat and mould thermal 

conductivity (the considerations presented below concern the constant values of 

cm and λm). 

On the external surface of the system the boundary condition in a general form 

 
( , )

( , ), 0m

m

T x t
T x t

n

 ∂
Φ = 

∂ 
 (11) 

is assumed (∂/∂n denotes a normal derivative). 
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On the contact surface between metal and mould the continuity condition is given 

 

( , )( , )
λ λ

:

( , ) ( , )

m

m

m

m

T x tT x t

n nx

T x t T x t

∂∂
− = −

∂ ∂∈Γ 
 =

 (12) 

The initial temperatures for t = 0 are also known 

 
0 0

0 : ( ,0) , ( ,0)
m m

t T x T T x T= = =  (13) 

where 
0
T  is the pouring temperature, 

0m
T  is the mould initial temperature. 

2. Sensitivity analysis with respect to the cooling conditions 

At first, the sensitivity model concerning the mould thermal conductivity will 

be discussed. Using the direct version, one should differentiate the basic model 

with respect to λm meaning 
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2
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     ∂∂ ∂ ∂ ∂
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 (14) 

The model (14) was created under the assumption that the thermophysical parame-

ters of metal domain are the constant (taking into account the small interval of 

temperatures in which the crystallization process occurs  this assumption is quite 

acceptable). Additionally, on the external surface of the mould the Robin condition 

is introduced (α  is the heat transfer coefficient). Denoting / λ
m

U T= ∂ ∂  and 

/ λ
m m m

U T= ∂ ∂  one obtains the following model of sensitivity with respect to the 

mould thermal conductivity 
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 (15) 

Now, the problem of source function Q in the sensitivity equation for metal domain 

will be explained. As previously mentioned, the driving force of nucleation and 

nuclei growth is an undercooling below solidification point T
*
. According to the 

literature, e.g. [2] one can assume that a local and temporary number of nuclei 

(nuclei density) is proportional to the second power of undercooling below the 

temperature T
*
 

 
2

2 *
( , ) ( , ) ( , )N x t T x t T T x t = η ∆ = η −   (16) 

The nucleation  stops  when  ∆T (x, t + ∆t ) < ∆T (x, t ), additionally for T (x, t ) > T
* 
: 

N (x, t ) = 0 - see: Figure 1 [6], at the same time η is the nucleation coefficient. 
 

 
Fig. 1. Temperature history at the point x from metal domain 

The rate of solid phase growth (equiaxial grains) is determined by  

 
d ( , )

( , )
d

m
R x t

T x t
t

= µ ∆  (17) 

where µ is the growth coefficient, R is grain radius, m∈[1, 2]. 
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Below, the very popular case this means the Kolmogoroff model is considered 

(n = 1). Then the source function (9) in equation (1) can be written as follows: 

 

2 3

0 0

4
4 π   µ   µ   dτ exp π  µ   dτ  

3

m m mS

t t
f

L N L T T N T
t

    ∂
 = ∆ ∆ − ∆      ∂      

∫ ∫  (18) 

Function (18) should be differentiated with respect to the parameter considered 

(e.g. mould thermal conductivity). Let us introduce the components 

 
1

4 π   µ  
m

F N L T= ∆  (19) 

 

2

2

0

 µ   dτm

t

F T
 

= ∆  
 
∫  (20) 

and 

 

3

3

0

4
 exp π  ν µ   dτ

3

m

t

F N T

  
 = − ∆     

∫  (21) 

Derivatives of the above components with respect to mould thermal conductivity 

are equal to  

 11
4 π     

λ

m

m

F
N L m T U

−
∂

= −
∂

 (22) 

 12

0 0

2 µ   dτ µ   dτ 2 ρ
λ

m m

S S

m

t t
F

T m T U - r
−

∂
= − ∆ ∆ =

∂
∫ ∫  (23) 

where 

 1

0 0

µ   dτ, ρ µ   dτm m

S S

t t

r T m T U
−

= ∆ = ∆∫ ∫  (24) 

Additionally 

 

3 2

13

0 0 0

4
 exp π  µ   dτ 4π µ   dτ µ   dτ

3

m m m

i

t t t
F

N T N T m T U
p

−

    ∂
 = − ∆ ∆ ∆      ∂      

∫ ∫ ∫  (25) 

or 

 
3 23

4
 exp π  4π ρ

3
S S S

i

F
N r N r

p

∂  
= − ∂  

 (26) 
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Using the formula concerning the product of three components one obtains 

 

3

4 1 2

4
                   4π  exp π  

3

4 π  µ  ρ 2 µ   ρ  µ  

S

m m m

S S S S S

Q N L N r

N T r T r m T U r
−

 
= − ⋅ 

 

 ∆ − ∆ − ∆ 

 (27) 

The last formula supplements the sensitivity model (15). From the numerical 

point of view, the numerical solution of the problem is not simple but possible. The 

essentially simpler approach consists of the application of differential quotients in 

the place of sensitivity functions. This method requires the knowledge of two basic 

solutions corresponding to λm and λm + λ
m
∆ . 

3. Example of computations 

Let us consider the aluminium plate (thickness G = 2 cm, 1D task) produced 

in a typical sand mould. Parameters of metal: λ = 150 W/mK, c = 3⋅10
6
 J/m

3 
K, 

L = 9.75⋅10
8
 J/m

3
, T

* 
= 660°C, parameters of mould: λm = 1.25 W/mK, cm = 

= 1.6⋅10
6
 J/m

3 
K. The constant number of nuclei N = 5⋅10

10
 nucl./m

3
 was assumed, 

growth coefficient µ = 3⋅10
−6
 m/sK, initial temperatures T0 = 690

o
C and Tm0 = 30°C, 

correspondingly. In Figure 2 the curves of sensitivity U for points x1 = 1.1 cm 

(metal domain) and x2 = 2.9, x3 = 4.4, x4 = 5.9 (mould) are shown. The result on the 

left-hand side corresponds to the solution based on the sensitivity model (15), while 

the result on the right-hand side corresponds to the solution obtained using the 

differential quotients, One can see that both solutions are practically the same. 

It should be pointed out that the basic problem and the sensitivity problem have 

been solved using the explicit scheme of finite difference method [12]. 

 

   

Fig. 2. Course of sensitivity function 
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