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Abstract. The one-dimensional time-fractional advection-diffusion equation with the 

Caputo time derivative is considered. The fundamental solution to the Cauchy problem 

is obtained using the integral transform technique. The numerical results are illustrated 

graphically. 

Introduction 

In the last few decades, a considerable research effort has been expended to the 

study of fractional differential equations which have many applications in physics, 

geophysics, geology, chemistry, rheology, engineering and bioengineering (see, for 

example, [1-8] and references therein). The time-fractional diffusion-wave equa-

tion is a mathematical model of important physical phenomena ranging from 

amorphous, colloid, glassy and porous materials through fractals, random and 

disordered media to comb structures, dielectrics, semiconductors, polymers and 

biological systems. The time-fractional advection-diffusion equation can be inter-

preted in terms of diffusion or heat conduction with additional velocity field, trans-

port processes in porous media and groundwater hydrology. In the case of the frac-

tional advection-diffusion equation, as a rule, different numerical methods have 

been used to find the solution: the implicit difference method based on the shifted 

Grünwald approximation [9] and the explicit difference method [10], the fractional 

variational method [11], the finite volume method [12], etc. In [13, 14] the solution 

to one-dimensional time-fractional advection-diffusion equation was obtained 

in terms of the H-function. 

In this paper, we get the fundamental solution to the Cauchy problem for the 

time-fractional advection-diffusion equation in terms of the Mittag-Leffler function. 

The Laplace transform with respect to time and the exponential Fourier transform 

with respect to the space coordinate are used. The results of numerical calculations 

are illustrated graphically. 
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1. Formulation of the problem 

Consider the time-fractional advection-diffusion equation 
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where: 0,0,10,0, >>≤<∞<<∞<<∞− vatx α . In equation (1) αα

tT ∂∂ /  is 

the Caputo fractional derivative of the order α : 
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Here ( )xΓ  is the gamma function. 

In what follows we will study the fundamental solution to the Cauchy problem 

for the time-fractional advection-diffusion equation (1) with the initial condition 

 ( ) ( )xpxT δ
0

0, = , (3) 

where ( )xδ  is the Dirac delta function. In the initial condition (3) we have intro-

duced the constant multiplier 0p  to obtain the nondimensional quantity displayed 

in figures. 

The zero condition at infinity is also assumed:  
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2. Method of solution 

To solve the Cauchy problem under consideration we use the Laplace transform 

with respect to time .t  For the function ,)(tT ,0 ∞<< t  this transform is defined as 
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with the inverse carrying out according to the Fourier-Mellin formula 

 { } ( ) ∫
∞+

∞−

−

==

ic

ic

ts
dssTe

i
tTsTL ,)(

2

1
)(

**1

π
 (6) 

where c  is a fixed positive number. 
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For the Laplace transform rule the Caputo fractional derivative requires the 

knowledge of the initial values of the function and its integer derivatives of the 

order :1,,2,1 −= nk K  
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Applying the Laplace transform to equation (1) while taking into account the initial 

condition (3) and the rule (7) gives 
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Next, we use the exponential Fourier transform with respect to the spatial coordi-

nate x: 
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The Fourier transform of the derivative of a function is defined by the following 

relation:  
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Application of the exponential Fourier transform (9) to equation (8) using (11) 

leads to 
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and in the transform domain we get 
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Inversion of the Laplace and Fourier transforms results in the solution: 
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To obtain (14) the following formula [1] 
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has been used, where )(zE
α

 is the Mittag-Leffler function in one parameter α  

having the series representation 
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For negative real values of the argument the Mittag-Leffler function )( xE −
α

 can 

be calculated as the integral [15]: 
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Next, we recast the argument of the Mittag-Leffler function in the solution (14) as 
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and use the substitution 

 
a

v
i
2

−= ξη  (19) 

which allows us to rewrite the solution (18) in the form 
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and consequently as 
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In the particular case 1=α  the Mittag-Leffler function ( ) z

ezE =
1

, hence for the 

classical advection-diffusion equation we have 
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Since [16] 
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then 
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and we get the known fundamental solution of the classical advection-diffusion 

equation 
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3. Numerical results 

In numerical calculations we use the following nondimensional quantities: 
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Hence, the nondimensional solution takes the form 
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The results of numerical calculations for different values of the order α  of the 

fractional derivative and of the drift parameter v  are shown in Figures 1-4. 
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Fig. 1. Dependence of the fundamental solution to the Cauchy problem 

on distance; 1=α  

 

Fig. 2. Dependence of the fundamental solution to the Cauchy problem 

on distance; 5.0=α  

 



Fundamental solution to the Cauchy problem for the time-fractional advection-diffusion equation 101

 

Fig. 3. Dependence of the fundamental solution to the Cauchy problem 

on distance; 0=v  

 

Fig. 4. Dependence of the fundamental solution to the Cauchy problem 

on distance; 1=v  
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Conclusions 

We have considered the time-fractional advection-diffusion equation with the 

Caputo fractional derivative in the case of one spatial coordinate. The fundamental 

solution to the Cauchy problem has been obtained using the integral transform 

technique. The numerical results show the significant influence of the order of 

fractional derivative on the solution. In the case of the standard advection-diffusion 

equation ( 1=α ) the quantity v  only causes a drift of the maximum value of the 

solution in the x-direction ( vtx −  in the solution (26), see Fig. 1). In the case 

of time-fractional advection-diffusion equation with 10 <<α  drift leads to the 

decreasing of the maximum value of the fundamental solution (see Fig. 2). 
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