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Abstract. In this paper we present an application of the system of two homogeneous linear
recurrence equations to evaluate the determinant of pentadiagonal matrix. The general con-
siderations are illustrated by two examples. It is shown that the proposed approach is suited
for implementation using computer algebra systems.
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Introduction

The subject of consideration is a pentadiagonal matrix of the form

4 = (1)

It means that 4, =[a,],,, Wwhere a, =0 for |z' - j| >2 . This type of matrices arises

for example in a numerical solution of differential equations by using the finite
element or finite difference methods. The aim of this paper is to derive a recurrence
relation for determinant of matrix under considerations. The numerical algorithms
for computing the determinant of pentadiagonal matrices were formulated in many
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papers, e.g. [1, 2]. Most of these algorithms were obtained under certain assump-

tions. For example in [2] it was obtained that det(A,,):Hx, if x,#0,
i=1

k=12,....n—1 where

d
Z2 i=2
Xy
zZ. = e,
! d! - y1—2
) _
! i=3,..,n
xl—l

In the present paper we are to show that determinant of pentadiagonal matrix of the
form (1) is a particular solution of a system of two linear recurrence equations. This
approach is available for every pentadiagonal matrix.

1. The main results

In order to derive recurrence relation for determinant of matrix (1) we introduce
two auxiliary pentadiagonal matrices of the form

l

hN
Il
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and

N

en—4 dn—4 a, 4 bn—4 Cn—4

Let us denote
W, =detd,, W,=detd,, W, =det4,.

Using the method of Laplace expansion with respect to the last row of matrix A4,
we obtain

Wn = aan—l - ann—l + enVVn—l (2)

Now, we are to derive recurrence relation for determinant W, . To this end we use
Laplace expansion with respect to last column of matrix A, ,, which leads to the
linear combination of two determinants. First of these determinants is equal to

W, , and for second determinant we apply Laplace expansion with respect to the

n-1>

last row and we obtain a linear combination of determinants 7, , and W, . Hence
Wy = byl =y ol Y, =, T, G

Subsequent considerations will be concerned with determinant 7, , . We start with
Laplace expansion with respect to the last column of matrix A,_,, which leads to
the linear combination of two determinants. The first of these determinants is equal
to VIN/n_z and for the second determinant we apply Laplace expansion with respect to

the last row and we obtain a linear combination of two determinants. The first of
them is equal to W,_, and for the second determinant we use Laplace expansion
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with respect to the last column, which leads to the linear combination of determi-
nants W _, and W _, . Finally we get

V7n—l = bn—an—Z —Ch2 (an—an—S - en—lcn—3Wn—4) 4)

Bearing in mind relations (2), (3) and (4) we obtain a system of two linear recur-
rence equations

Wn = aan—l - encn—Zan—an—S + cn—ZCn—3en—lean—4 _ann—l te b Wn—Z

n-n-1
- N (%)
Wn—Z = bn—ZWn—3 - cn—3dn—2Wn—4 + Cn—Sen—ZWn—4
where n > 4.
The above equations can be rewritten in the following form
Wn+4 = an+4Wn+3 _en+4cn+2an+3Wn+l + Cn+2cn+1en+3en+4Wn - dn+4Wn+3 + en+4bn+3Wn+2 (6)
Wn+2 = bn+2Wn+l _cn+1dn+2Wn + cn+len+2Wn

where ne N.

In order to obtain determinant W, of matrix A4, we must take into account the
system of equations (6) together with the initial conditions of the form

VIN/l = bl

I/IN/vz =ab, —cd,

= 0
W, =aa,-bd,

W; = aW, _d3W2 +ey(bb, —ca,)

3

W, =a,W;—dW; +e,bW, +e,c,(ce; —aa;)

Hence the value of determinant of pentadiagonal matrix 4, is the particular solu-

tion of the system of equations (6) fulfilling initial conditions (7). It can be
observed that the direct solution of the system of equations (6) can be obtained
only in some special cases. However, for an arbitrary but fixed »e N we can find

determinant W, using computer algebra systems such as Maple, Mathematica and
Matlab.

Remark 1.
If (ak),':=1 =a, (bk),?;ll =0, (ck):j =c, (a’k),':=2 =0, (ek)::3 =e in matrix (1),
then we have
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a 0 c
0 a 0 ¢
e 0 a 0 c

A = )]
e 0
e

a
0

L —nxn

QL O 0

In this case the system of equations (6) reduces to one recurrence equation of the
form

W, =aW,. —aceW,  +e’c’W, ©)

n+3 n+l n

with initial conditions
W,=a,W,=a*, Wy=a’—ace, W, =a* —2a’ce +e’c’ (10)

Hence the determinant of matrix (8) is the particular solution of equation (9) ful-
filling initial conditions (10). The above result was presented in paper [3].

Remark 2.
If (¢, )/ =0, (e,)r_5 =0 in (1), then we obtain the tridiagonal matrix of the form

a b
dy, a, b
dy ay by
A, = d, a, b (1)
d,y a,, b,
L d" a" nxn

In this case system of equations (6) reduces to one recurrence equation of the form
W =a,,W,,—d,,b,.W, (12)
fulfilling initial conditions
W=a, W,=aa,-bd, (13)

Hence the determinant of tridiagonal matrix (11) is the particular solution of equa-
tion (12) fulfilling initial conditions (13).
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2. Illustrative examples
Now, we are to illustrate the general results obtained in the previous section.

Example 1.
Now, we consider matrix (1) of order nxn setting (a,)/_, =1, (b).-; =0,

(Ck)]:’;lz :%, (d, )1?:2 =0, (ek):=3 =k —2. From (6) the determinant of this matrix

is given by the formula

+W

n+l

Wn+4 - W

n+3

~W, =0 (14)

with initial conditions

101 0
0
10 01 0 12
W,=1, W, = =1, Wy=0 1 0=0, W, = =0 (15)
0 1 101 0
10 1
020 1

Equation (14) is a fourth-order homogeneous linear recurrence equation with con-
stant coefficients. Following [4] we have that the general solution of equation (14)
is determined by the roots of the characteristic equation

A= +1-1=0 (16)

Roots of (16) are equal to A, =1, 4, =-1, 4, =%—§i, Ay =%+§i. Hence

the general solution of equation (14) has the form
Wn=Cl+C2(—1)"+C3cos%+C4sin% (17)

Taking into account initial conditions (15) we obtain the system of linear equations

1 -1 12 Bl 1
11 -2 B2 ]l
([ 0o [C| |o
11 -2 =B3/2] ¢ |0
Hence
1 1 1 3
Ci==, Cy=—, Cy=—, C, == 18
155 QT GEg. L=y (18)
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Substituting (18) to (17) we have the particular solution of equation (14) with ini-
tial conditions (15) in the form

. ! 1(—1)’7+lcosﬂ+ﬁsinM (19)
2 6 3 3 3 3

Formula (19) represents the determinant of the matrix under consideration.

Example 2.
Let us consider a special form of pentadiagonal matrix (1) in which elements on

diagonals are defined by sequences of the form (a, ), =k>, (b)) =k+1,
(e )il =2k-3, (d,);_, =3k+2, (e,)_, = 2k* . Moreover, assume that n=10",

i.e. matrix has the order 10*x10*. Bearing in mind (6) the determinant of this
matrix is given by the system of two linear recurrence equations with functional
coefficients of the form

W,..=m+4W, . —2n+4)>Qn+1)(n+3)°W,,  +

+3

+4Q2n+1)2n—-1)n+3)*(n+4)*W, —Gn+5W, , +2(n+4)* (n+4W,,, (20)

+3

W, =m+3W,,, —Q2n-1)Gn+5W,+2Q2n—-1)(n+2)’W,, n=12,..10" -4
with initial conditions
W,=2, Wy=11, W, =1, W,=-12, W,=—-49, W, =82 Q1)

Let us observe that now we are dealing with a system of two linear recurrence
equations with functional coefficients. It is impossible to solve this system using
known analytical methods. Therefore, we use the Maple system in order to calcu-
late the determinant of the matrix under consideration. To this end let us denote

F=W and apply the following syntax

a=[seq(n’,n=1..10000),0]:
b=[seq(n+1,n=1..10000),0]:
c=[seq(2n—-3,n=1..10000),0]:

d =[0,seq(3n+2,n=2..10000),0]:
e:=[0,0,seq(2n*,n =3..10000),0]:
F[1]=5[1]:
F[2]=all]-b[2]—c[1]-d[2]:
W]=1:
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W[2]=-12:
W[3]:=-49:
Wwi4]=82:

for n from 1 to 9997 do
Win+4]l=an+4]-Win+3]—e[n+4]-c[n+2]-aln+3]-W[n+1]+
c[n+2]-c[n+1]-e[n+3]-e[n+4]-Win]-d[n+4]- F[n+3]+
e[n+4]-b[n+3] Fln+2]:
Fn+2]l=cn+1]-e[n+2] - F[n]+b[n+2]-Wn+1]—c[n+1]-d[n+2]-W[n]:
end do:

print(evalf (W[10000]))

Finally we get 1.414983547x107"** as the value of the determinant of the matrix
under consideration. It can be emphasized that the above result was obtained with
Maple default precision (Digits = 10).

Conclusions

It was shown that the determinant of the pentadiagonal matrix can be obtained
as particular solution of the system of two homogeneous linear recurrence equa-
tions. The general considerations was illustrated by two examples. In Example 1
the direct formula for determinant was obtained. In Example 2 the implementation
of the proposed approach to Maple was presented. Moreover, it was presented that
the above way leads to one linear recurrence equation for a determinant of the
tridiagonal matrix.
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