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Abstract

In thesis we study greedy algorithms for construction and optimization of partial
(approximate) decision rules.

The study of partial decision rules is based on the study of partial covers. We prove
that under some natural assumptions on the class NP, the greedy algorithm is close
(from the point of view of precision) to the best polynomial approximate algorithms
for minimization of the length of partial decision rules and minimization the total
weight of attributes in partial decision rule.

Based on an information received during the greedy algorithm work, it is possible
to obtain nontrivial lower and upper bounds on the minimal complexity of partial
decision rules. Theoretical and experimental results show that these bounds can be
used in practice.

We obtain a new bound on the precision of greedy algorithm for partial decision
rule construction that does not depend on the number of rows in decision table.

Under some assumptions on the number of rows and number of columns in decision
tables we prove that, for the most part of binary decision tables exist short irreducible
partial decision rules.

Theoretical and experimental results confirm the following 0.5-hypothesis for deci-
sion rules: for the most part of decision tables greedy algorithm during partial decision
rules construction chooses an attribute, that separates at least one-half of unsepa-
rated rows which should be separated. It means that greedy algorithm constructs
often short partial rules with relatively high accuracy.

Results of experiments with decision tables from UCI Repository of Machine
Learning Databases show that, the accuracy of classifiers based on partial decision
rules is often better than the accuracy of classifiers based on exact decision rules.



Streszczenie

Tematyka pracy zwigzana jest z badaniem algorytmow zachtannych dla konstruowa-
nia i optymalizacji czeSciowych (przyblizonych) regut decyzyjnych.

Przedstawione w pracy badania dotyczace cze$ciowych regut decyzyjnych opieraja
sie na wynikach badan uzyskanych dla problemu czesciowego pokrycia zbioru.

Zostato udowodnione, ze biorac pod uwage pewne zatozenia dotyczace klasy NP,
algorytm zachtanny pozwala uzyska¢ wyniki, bliskie wynikom uzyskiwanym przez na-
jlepsze przyblizone wielomianowe algorytmy, dla minimalizacji dtugosci czesciowych
regut decyzyjnych oraz minimalizacji catkowitej wagi atrybutéw tworzacych czesciowa
regute decyzyjna.

Na podstawie danych uzyskanych podczas pracy algorytmu zachtannego, dokonano
oszacowania najlepszych gornych i dolnych granic minimalnej ztozonosci czesciowych
regut decyzyjnych. Teoretyczne i eksperymentalne wyniki badan pokazaty mozliwosé
wykorzystania tych granic w praktycznych zastosowaniach.

Dokonano takze oszacowania granicy dokladnosci algorytmu zachtannego dla
generowania czeSciowych regut decyzyjnych, ktéra nie zalezy od liczby wierszy
w rozwazanej tablicy decyzyjne;j.

Biorac pod uwage pewne zalozenia dotyczace liczby wierszy i kolumn w tablicach
decyzyjnych udowodniono, ze dla wiekszosci binarnych tablic decyzyjnych istnieja
tylko krotkie, nieredukowalne czesciowe reguty decyzyjne.

Wymniki przeprowadzonych eksperymentow pozwolity potwierdzié¢ 0.5-hipoteze: dla
wiekszos$ci tablic decyzyjnych algorytm zachtanny w kazdej iteracji, podczas ge-
nerowania czesciowej reguly wybiera atrybut, ktory pozwala oddzieli¢ przynajmnie;
50% wierszy jeszcze nie oddzielonych.

W przypadku klasyfikacji okazalo sie, ze doktadnosé klasyfikatorow opartych na
czesciowych regutach decyzyjnych jest czesto lepsza, niz doktadnosé klasyfikatorow
opartych na doktadnych regutach decyzyjnych.
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Introduction

The subject matter of this thesis is connected with the following two problems of
data mining and knowledge discovery:

1. Representation of knowledge, contained in a decision table, in a form which is
convenient for understanding. The length of knowledge description is crucial in
this case.

2. Prediction of the value of decision attribute for a new object. The accuracy of
prediction is the most important aspect of this problem.

These two aims (short description and high accuracy) seem to be incompatible.
However, it is known that classifiers with shorter description are often more precise.
This dissertation is one more confirmation of this fact.

In this thesis, we study one of the main notions of rough set theory: the notion of
decision rule (local reduct) [45, 47, 48, 49, 56, 69].

Let T be a table with n rows labeled with nonnegative integers (decisions) and
m columns labeled with conditional attributes fi, ..., f,,. This table is filled by non-
negative integers (values of attributes). The table T is called a decision table. We say
that an attribute f; separates rows r; and 7o of T' if these rows have different values
at the intersection with the column f;. Two rows are called different if at least one
attribute f; separates these rows.

Let r = (by, ..., by) be a row of T labeled with a decision d. By U(T, r) we denote
the set of rows from 7" which are different from r and are labeled with decisions
different from d. Let o« € IR and 0 < o < 1. A decision rule

(fh :bil)/\"'/\(fit :blt) —d

is called an «a-decision rule for T and r if attributes f;,,..., f;, separate from r at
least (1 — «)|U(T,r)| rows from U(T,r).

Exact decision rules are widely used in rough set theory both for construction of
classifiers and as a way of knowledge representation [55]. In particular, the presence
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of decision rules with small number of attributes can simplify the understanding of
relationships among decision and conditional attributes. Note that notions similar to
the notion of decision rule are studied deeply also in test theory [6, 10, 65, 73, 76, 77],
where the notion of control test is not far from the notion of decision rule, and in
logical analysis of data (LAD) [1, 9], where pattern is an analog of decision rule.

The main idea of the thesis is the following: instead of exact decision rules we can
use partial (approximate) rules. Exact decision rules can be overfitted, i.e., dependent
essentially on the noise or adjusted too much to the existing examples. If decision
rules are considered as a way of knowledge representation, then instead of an exact
decision rule with many attributes, it is more appropriate to work with a partial
decision rule containing smaller number of attributes that separate from given row
almost all other rows with different decisions.

The considered idea is not new. For years, in rough set theory partial reducts and
partial decision rules (partial local reducts) are studied intensively by H.S. Nguyen,
A. Skowron, D. Slezak, Z. Pawlak, J. Wroblewski and others [2, 42, 43, 46, 47, 60,
61, 62, 63, 64, 71|. There is a number of approaches to the definition of approximate
reducts [62]. In [43, 61, 62, 63] it was proved that for each of the considered approaches
the problem of partial reduct minimization (construction of a partial reduct with
minimal cardinality) is N P-hard. The approach considered in [43] is similar to the
approach studied in this dissertation (see also [61, 63]). More detailed discussion of
partial decision rules considered in this thesis can be found in Chap. 5. Approximate
reducts are also investigated by W. Ziarko, M. Quafafou and others in the extensions
of rough set model such as variable precision rough sets (VPRS) [78| and alpha rough
set theory (a-RST) [51].

There are different measures of the quality of decision rules: the length of rule, the
total weight of attributes in decision rule, the support of decision rule, etc. We are
concentrate here on minimization of the length of rules (which allows us to design
more precise classifiers or obtain more compact representation of knowledge contained
in decision tables) or on minimization of the total weight of rules (which allows us to
minimize time complexity or cost, or risk of classifier work).

There are different approaches to construction of decision rules: brute-force ap-
proach which is applicable to tables with relatively small number of attributes, ge-
netic algorithms [64, 72|, simulated annealing [15], Boolean reasoning [42, 49, 56|, ant
colony optimization [23], algorithms based on decision tree construction [4, 14, 25, 52|,
different kinds of greedy algorithms [40, 42, 59].

Each method can have different modifications. For example, as in the case of
decision trees, we can use greedy algorithms based on Gini index, entropy, etc., for
construction of decision rules.
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In thesis we study mainly greedy algorithms for construction of rules. Of course,
these algorithms are not new, and were used by different authors [16]. Our choice is
connected with mathematical results obtained for greedy algorithms. In particular,
we prove that, under some natural assumptions on the class NP, greedy algorithms
are not far from the best polynomial algorithms for decision rules optimization.

The most important feature of this thesis is a serious mathematical analysis of
problems of partial decision rule construction, which is closely connected with results
of experiments. In many cases, experimental results led to important and unexpected
new statements, and mathematical analysis allowed us to choose new directions of
research in a well-grounded way.

The study of partial decision rules is based on the study of partial covers. Let
A = {ay,...,a,} be a nonempty finite set and S = {By,..., B, } be a family of
subsets of A such that By U...UB,, = A. Let « € IR and 0 < o < 1. A subfamily
Q ={Bi,,..., B} of the family S is called an a-cover for (A, S) if |B;, U...UB;,| >
(1—a)lAl.

There exists simple reduction of the problem of construction of a 0-cover with
minimal cardinality to the problem of construction of a 0-decision rule with minimal
length. There exists also the opposite reduction which is simple too. The similar
situation is with partial covers and partial rules (where o > 0). This fact allows us to
use various mathematical results obtained for the set cover problem by J. Cheriyan
and R. Ravi [7], V. Chvatal [8], U. Feige [11], D.S. Johnson [16], R.M. Karp [17],
M.J. Kearns [18], L. Lovéasz |24], R.G. Nigmatullin [44], R. Raz and S. Safra [53], and
P. Slavik [57, 58| for analysis of partial rules. In addition, we use a technique created
by D. Slezak [61, 63] for the proof of N P-hardness of partial reduct optimization.

Known and new (obtained in this thesis) results for covers and partial covers will
be useful for wider spectrum of problems considered in rough set theory, for example,
for the investigation of (i) reducts and rules for information systems, (ii) reducts and
rules for decision tables with missing values, (iii) subsystems of a given decision rule
system which “cover" the same set of rows, etc.

The thesis contains five chapters.

In Chap. 1, we prove that, under some natural assumptions on the class NP, the
greedy algorithm is close (from the point of view of precision) to the best polynomial
approximate algorithms for partial cover optimization.

Information about the greedy algorithm work can be used for obtaining lower
and upper bounds on the minimal cardinality of partial covers. We fix some kind of
information, and find the best lower and upper bounds depending on this information.
Theoretical and experimental (see also Chap. 4) results show that the obtained lower

bound is nontrivial and can be used in practice.
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We obtain a new bound on the precision of greedy algorithm for partial cover
construction that does not depend on the cardinality of covered set, and prove that
this bound is, in some sense, unimprovable.

We prove that for the most part of set cover problems there exist exact (and,
consequently, partial) covers with small cardinality. Results of experiments with ran-
domly generated set cover problems allow us to formulate the following informal
0.5-hypothesis: for the most part of set cover problems, during each step the greedy
algorithm chooses a subset which covers at least one-half of uncovered elements. We
prove that, under some assumptions, the 0.5-hypothesis is true.

The most part of results obtained for partial covers is generalized to the case of
partial decision rules.

In particular, we show that, under some natural assumptions on the class NP,
greedy algorithm is close to the best polynomial approximate algorithms for the
minimization of the length of partial decision rules.

Based on an information received during the greedy algorithm work, it is possible
to obtain nontrivial lower and upper bounds on the minimal length of partial decision
rules.

For the most part of randomly generated binary decision tables, the greedy al-
gorithm constructs simple partial decision rules with relatively high accuracy. In
particular, experimental and theoretical results confirm the following 0.5-hypothesis
for decision rules: in the most part of cases, greedy algorithm chooses an attribute
that separates at least one-half of unseparated rows which should be separated.

In Chap. 2, we study the case, where each subset used for covering has its own
weight, and we should minimize the total weight of subsets in partial cover. The
same situation is with partial decision rules: each conditional attribute has its own
weight, and we should minimize the total weight of attributes in partial decision rule.
The weight of attribute characterizes time complexity, cost or risk (as in medical or
technical diagnosis) of attribute value computation. The most part of results obtained
in Chap. 1 is generalized to the case of arbitrary natural weights.

We generalize usual greedy algorithm with weights, and consider greedy algorithm
with two thresholds. The first threshold gives the exactness of constructed partial
cover, and the second one is an interior parameter of the considered algorithm. We
prove that, for the most part of set cover problems there exists a weight function
and values of thresholds such that, the weight of partial cover constructed by greedy
algorithm with two thresholds is less than the weight of partial cover constructed by
usual greedy algorithm. The same situation is with partial decision rules. Based on
greedy algorithm with two thresholds we create new polynomial time approximate
algorithms for minimization of total weights of partial covers and decision rules.
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Results of massive experiments with randomly generated set cover problems and
binary decision tables show that the new algorithms can be used in practice.

In Chap. 3, we consider binary decision tables with m conditional attributes, in
which the number of rows is equal to [m®], where « is a positive real number, and par-
tial decision rules that can leave unseparated from a given row at most 5 [(log2 m)ﬂ
different rows with different decisions, where (3 is a real number such that G > 1.

We show that for almost all such tables for any row with minor decision (minor
decision is a decision which is attached to at most one-half of rows of decision table)
the length of each irreducible partial decision rule is not far from «log, m and the
number of irreducible partial decision rules is not far from m®°e2,

Based on these results, we prove that there is no algorithm which for almost all
decision tables for each row with minor decision constructs the set of irreducible par-
tial decision rules and has for these tables polynomial time complexity depending on
the length of input. However, there exists an algorithm which for almost all decision
tables for each row with minor decision constructs the set of irreducible partial de-
cision rules and has for these tables polynomial time complexity depending on the
length of input and the length of output.

Chapter 4 is devoted to consideration of results of experiments with decision tables
from UCI Repository of Machine Learning Databases [41]. The aim of the first group
of experiments is to verify 0.5-hypothesis for real-life decision tables. We made ex-
periments with 23 decision tables. Results of 20 experiments confirm 0.5-hypothesis:
under the construction of partial decision rule, during each step the greedy algorithm
chooses an attribute which separates from r at least one-half of unseparated rows that
are different from r and have other decisions. It means that the greedy algorithm can
often construct short partial decision rules with relatively high “accuracy". In par-
ticular, for the cases, where 0.5-hypothesis is true, the greedy algorithm constructs a
partial decision rule with seven attributes only which separate from a given row at
least 99% of different rows with different decisions. Such short partial decision rules
are easy for understanding.

The aim of the second group of experiments is the comparison of accuracy of
classifiers based on exact and partial decision rules. The considered approach to
construction of classifiers is the following: for a given decision table and each row
we construct a (partial) decision rules using greedy algorithm. By removing some
attributes from this (partial) decision rule we obtain an irreducible (partial) decision
rule. The obtained system of rules jointly with simple procedure of voting can be
considered as a classifier [19, 20, 55|. We made experiments with 21 decision tables
using test-and-train method. In 11 cases, we found partial decision rules for which
the accuracy of the constructed classifiers is better than the accuracy of classifiers



Introduction 6

based on exact decision rules. We made also experiments with 17 decision tables
using cross-validation method. In 9 cases, we found partial decision rules for which
the accuracy of the constructed classifiers is better than the accuracy of classifiers
based on exact decision rules.

In Chap. 5, we consider an universal attribute reduction problem. Let T" be a deci-
sion table and P be a subset of pairs of discernible rows (objects) of T'. Then a reduct
for T relative to P is a minimal (relative to inclusion) subset of conditional attributes
which separate all pairs from P. Reducts for information systems, usual decision and
local reducts (decision rules) for decision tables, decision and local reducts, which are
based on the generalized decision, can be represented in such a form. We study not
only exact, but also partial reducts. Moreover, we consider a scenario of the work
with real data tables that can contain continuous variables, discrete variables with
large number of values, and variables with missing values.

Based on results from Chap. 1, we obtain bounds on precision of greedy algorithm
for partial super-reduct construction. We prove that, under some natural assumptions
on the class NP, the greedy algorithm is close to the best (from the point of view
of precision) polynomial approximate algorithms for minimization of cardinality of
partial super-reducts. We show that based on an information received during the
greedy algorithm work it is possible to obtain a nontrivial lower bound on minimal
cardinality of partial reduct. We obtain also a bound on precision of greedy algorithm
which does not depend on the cardinality of the set P.

Experimental and theoretical results obtained in this thesis show that the use
of partial decision rules instead of exact ones can allow us to obtain more compact
description of knowledge contained in decision tables, and to design more precise
classifiers. This is a reason to use partial decision rules in data mining and knowledge
discovery for knowledge representation and for prediction.

The results obtained in this thesis can be useful for researchers in such areas as
machine learning, data mining and knowledge discovery, especially for those who are
working in rough set theory, test theory and logical analysis of data.

An essential part of software used in experiments described in Chaps. 1 and 4
will be accessible soon in RSES — Rough Set Exploration System [54] (Institute of
Mathematics, Warsaw University, head of project — Professor Andrzej Skowron).



1

Partial Covers and Decision Rules

In this chapter, we consider theoretical and experimental results on partial decision
rules. These investigations are based on the study of partial covers.

Based on the technique created by Slezak in [61, 63], we generalize well known
results of Feige [11]|, and Raz and Safra [53] on the precision of approximate poly-
nomial algorithms for exact cover minimization (construction of an exact cover with
minimal cardinality) to the case of partial covers. From obtained results and results
of Slavik [57, 58] on the precision of greedy algorithm for partial cover construction it
follows that, under some natural assumptions on the class N P, the greedy algorithm
for partial cover construction is close (from the point of view of precision) to the best
polynomial approximate algorithms for partial cover minimization.

An information about the greedy algorithm work can be used for obtaining lower
and upper bounds on the minimal cardinality of partial covers. We fix some kind of
information, and find the best lower and upper bounds depending on this information.

We obtain a new bound on the precision of greedy algorithm for partial cover
construction which does not depend on the cardinality of covered set. This bound
generalizes the bound obtained by Cheriyan and Ravi 7] and improves the bound
obtained by Moshkov [27]. Based on the results of Slavik [57, 58] on the precision of
greedy algorithm for partial cover construction, we prove that obtained bound is, in
some sense, unimprovable.

We prove that for the most part of set cover problems there exist exact (and,
consequently, partial) covers with small cardinality. Experimental results allows us
to formulate the following informal 0.5-hypothesis for covers: for the most part of set
cover problems, during each step the greedy algorithm chooses a subset which covers
at least one-half of uncovered elements. We prove that, under some assumption, the
0.5-hypothesis for covers is true.

The most part of results obtained for partial covers is generalized to the case of
partial decision rules. In particular, we show that
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e Under some natural assumptions on the class NP, greedy algorithm is close to
the best polynomial approximate algorithms for the minimization of the length of
partial decision rules.

e Based on an information received during the greedy algorithm work, it is possible
to obtain nontrivial lower and upper bounds on the minimal length of partial
decision rules.

e For the most part of randomly generated binary decision tables, greedy algorithm
constructs simple partial decision rules with relatively high accuracy. In particular,
experimental and theoretical results confirm the 0.5-hypothesis for decision rules.

This chapter is based on papers [31, 38, 79|.
The chapter consists of three sections. In Sect. 1.1, partial covers are studied. In
Sect. 1.2, partial decision rules are considered. Section 1.3 contains short conclusions.

1.1 Partial Covers

This section consists of six subsections. In Sect. 1.1.1, main notions are described.
In Sect. 1.1.2, known results are considered. In Sect. 1.1.3, polynomial approximate
algorithms for partial cover minimization (construction of partial cover with minimal
cardinality) are studied. In Sect. 1.1.4, upper and lower bounds on minimal cardi-
nality of partial covers based on an information about greedy algorithm work are in-
vestigated. In Sect. 1.1.5, an upper bound on cardinality of partial cover constructed
by the greedy algorithm is considered. In Sect. 1.1.6, exact and partial covers for
the most part of set cover problems are discussed from theoretical and experimental

points of view.

1.1.1 Main Notions

Let A = {ay,...,a,} be a nonempty finite set and S = {B;}icq1,..m} = {B1,-- -, B}
be a family of subsets of A such that By U...U B,, = A. We assume that S can
contain equal subsets of A. The pair (A, S) is called a set cover problem.

Let I be a subset of {1,...,m}. The family P = {B; };¢; is called a subfamily of S.
The number |I| is called the cardinality of P and is denoted by |P|. Let P = {B;}ics
and @ = {B;}ics be subfamilies of S. The notation P C ) means that [ C J. Let
rPUQ = {Bi}iEIUJa PNQ= {Bi}iEIﬂJa and P \ Q= {Bi}ieI\J-

A subfamily @ = {B,,, ..., B;,} of the family S is called a partial cover for (A,S).
Let @« € R and 0 < a < 1. The subfamily @ is called an a-cover for (A,S) if
|B;, U...UB,;,| > (1 —a)]A|. For example, 0.01-cover means that we should cover at
least 99% of elements from A. Note that a 0-cover is an exact cover. By Cpn(ar) =
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Chin(@, A, S) we denote the minimal cardinality of a-cover for (A, S). The notation
Chin(a) will be used in cases, where A and S are known.

Let us consider a greedy algorithm with threshold oo which constructs an a-cover
for (A, S) (see Algorithm 1).

Algorithm 1: Greedy algorithm for partial cover construction
Input : Set cover problem (A, S) with S = {Bi,..., Bn}, and real number «, 0 < o < 1.
Output: a-cover for (4, 5).
Q—U;

while @ is not an a-cover for (A, S) do
select B; € S with minimal index ¢ such that B; covers the maximal number of elements from A

uncovered by subsets from Q);
Q «— QU{Bi};
end

return Q;

By Cogreedy () = Cgreedy (v, A, S) we denote the cardinality of constructed a-cover
for (A, S).
1.1.2 Known Results
First, we consider some known results for exact covers, where o« = 0.

Theorem 1.1. (Nigmatullin [44])
Careedy (0) < Crnin(0)(1 + In [A] — In Cin (0)) -
Theorem 1.2. (Johnson [16], Lovasz [24])
Creety (0) < Crnin(0)(1 + In(max | Bi[)) < Couin (0)(1 + I |A])

More exact bounds (depending only on |A|) were obtained by Slavik [57, 58].

Theorem 1.3. (Slavik [57, 58|) If |A| > 2, then Cgeedy(0) < Cupin(0)(In|A| —
Inln|A| +0.78).

Theorem 1.4. (Slavik [57, 58|) For any natural m > 2, there exists a set cover
problem (A, S) such that |A| = m and Cgreedy(0) > Crnin(0)(In |A| — Inln|A| —0.31).

There are some results on exact and approximate polynomial algorithms for cover

minimization.

Theorem 1.5. (Karp [17]) The problem of construction of 0-cover with minimal car-
dinality is N P-hard.
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Theorem 1.6. (Feige [11]) If NP & DTIM E(n°(¢1e™) then for anye, 0 < e < 1,
there is no polynomial algorithm that for a given set cover problem (A, S) constructs
a 0-cover for (A, S) which cardinality is at most (1 — €)Cinin(0) In | A].

Theorem 1.7. (Raz and Safra [53|) If P # NP, then there exists v > 0 such that
there is no polynomial algorithm that for a given set cover problem (A, S) constructs
a 0-cover for (A, S) which cardinality is at most YCpin(0) In |A].

Note that some results on the minimal exact covers for almost all set cover prob-
lems from some classes were obtained by Vercellis [66]. Kuzjurin in [22] investigated
the behavior of greedy algorithm during the construction of exact covers for almost
all problems from some classes of set cover problems such that each element from A
belongs to the same number of subsets from S.

We now consider some known results for partial covers, where o > 0.

Theorem 1.8. (Slavik [57, 58]) Let 0 < o < 1 and [(1 —«)|A|]] > 2. Then
Coreedy (@) < Cpin(@)(In[(1 — a)|A]] —Inln [(1 — a)|A]] + 0.78).

Theorem 1.9. (Slavik [57, 58]) Let 0 < « < 1. Then for any natural t > 2
there exists a set cover problem (A, S) such that [(1 — «)|A|] =t and Cgreeay () >
Chaim(@)(In [(1 — a)|A|]] =Inln [(1 — «)|A|] — 0.31).

Theorem 1.10. (Slavik [58]) Let 0 < a < 1. Then Cgeeay() < Cin(a)(1 +
In(maxp,cs |Bil)).

There are some bounds on Cgyeedy () which does not depend on |A|. Note that in
the next two theorems we consider the case, where o > 0.

Theorem 1.11. (Cheriyan and Ravi [7]) Let 0 < a < 1. Then Cgeeay(®) <
Crin(0) In(1/c) 4+ 1.

This bound was rediscovered by Moshkov in [26] and generalized in [27].

Theorem 1.12. (Moshkov [27]) Let 0 < f < a < 1. Then Cyreedy() < Cpin(ov —
B)In(1/5) + 1.

There is a result on exact polynomial algorithms for partial cover minimization.

Theorem 1.13. (Slezak [61, 63]) Let 0 < a < 1. Then the problem of construction

of a-cover with minimal cardinality is N P-hard.



1.1 Partial Covers 11
1.1.3 Polynomial Approximate Algorithms

In this subsection, using technique created by Slezak in [61, 63], we generalize the
results of Feige, Raz and Safra (Theorems 1.6 and 1.7) to the case of partial covers.

When we say about a polynomial algorithm for set cover problems (A, S), it means
that the time complexity of the considered algorithm is bounded from above by a
polynomial depending on |A| and |S].

When we say about an algorithm, that for a given set cover problem (A, S) con-
structs an a-cover which cardinality is at most f(A, S)Cuin(a, A, S), we assume that
in the case f(A,S) < 1 the considered algorithm constructs an a-cover for (A, S)
which cardinality is equal to Cpyin(c, 4, S).

We consider an arbitrary set cover problem (A,S) with S = {By,...,Bn,}. Let
a € R and 0 < a < 1. We correspond to (A, S) and « a set cover problem (A, S,).
Let n(a) = [|Ala/(1 — )] and by, ..., by@) be elements which do not belong to the
set A. Then A, = AU {bl, e bn(a)} and S, = {Bl, co s By Bty - - Bm+n(a)},
where Bm+1 = {bl}, ceey Bm+n(a) = {bn(a)}.

It is clear that there exists a polynomial algorithm which for a given set cover
problem (A, S) and number « constructs the set cover problem (A,, Sa).

Lemma 1.14. Let QQ C S be a 0-cover for (A,S) and « be a real number such that
0 <a<1. Then Q is an a-cover for (Ay, Sa)-

Proof. Tt is clear that |A,| = |A| + n(«). One can show that
Al — 1< (1—a)lAs] <A|. (1.1)

It is clear that subsets from @) cover exactly |A| elements from A,. From (1.1) we
conclude that @ is an a-cover for (A,,S5,). O

Lemma 1.15. Let Q, C S, be an a-cover for (A, Ss). Then there exists @@ C S
which is a 0-cover for (A,S) and for which |Q| < |Q.|. There exists a polynomial
algorithm which for a given QQ, constructs corresponding Q).

Proof. Let Q, = Q° U Q', where Q° C S and Q' C S, \ S. If Q° covers all elements
of the set A, then in the capacity of @ we can choose the set Q°. Let Q° cover not all
elements from A, A’ be the set of uncovered elements from A, and |A’| = m. Taking
into account that @), covers at least (1 —«)|A,| elements from A, and using (1.1) we
conclude that @, covers greater than |A| — 1 elements. Thus, @, covers at least |A|
elements. It is clear that each subset from 5,\ S covers exactly one element. Therefore,
|Q'] > m. One can show that there exists a polynomial algorithm which finds ¢t < m
subsets B;,, ..., B;, from S covering all elements from A’. Set Q = Q°U{B;,,..., B;,}.
It is clear that @ is a O-cover for (A, S), and |Q| < |Q.|. O
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Corollary 1.16. Let « € IR and 0 < a < 1. Then
Cmin(07 A7 S) - Cmin(av Aaa Sa) .

Proof. From Lemma 1.14 it follows that Cpin(o, Aa, Se) < Chin(0,A,S). From
Lemma 1.15 it follows that Cpin(0, A,S) < Cin(a, An, So). O

Lemma 1.17. Let o, b and § be real numbers such that 0 < a<1,b>0 and d > 0,
and let there exist a polynomial algorithm A that, for a given set cover problem (A, S),
constructs an a-cover which cardinality is at most bln|A|Cuin(a, A, S). Then there
exists a polynomial algorithm B that, for a given set cover problem (A, S), constructs
a 0-cover which cardinality is at most (b+ §)In|A|Cuin(0, A, S).

Proof. Let us describe the work of the algorithm B. Let § = 1 + a/(1 — «) and
a = max{1/b,bIn3/6}. If In|A| < a, then, in polynomial time, we construct all
subfamilies of S, which cardinality is at most |A|, and find among them a 0-cover
for (A,S) with minimal cardinality. It is clear that the cardinality of this 0-cover is
equal to Cin(0, A, .9).

Let In|A| > a. Then bln|A| > 1, (b+ ) In|A| > 1 and

dIn|A| >blng. (1.2)

In polynomial time, we construct the problem (A,, S,), and apply to this problem
the polynomial algorithm 4. As a result, we obtain an a-cover @, for (A,, S,) such
that |Qa| < bIn|A|Cin(a, Ag,y Sa)-

It is clear that |A,| < |A|B. By Corollary 1.16, Cpin(a, An, So) = Cmin(0, A, S).
Therefore, |Q,| < b(In |A| + In 3)Cnin(0, A, S).

From (1.2) we obtain b(In |A|+In 5) = (b+0) In |A|=dIn |A|+bIn 5 < (b+6) In |A].
Therefore, [Quo| < (b+ 9) In|A|Cpin(0, A, S). From Lemma 1.15 we conclude that, in
polynomial time, we can construct a 0-cover @ for (A,S) such that |Q] < (b +
0) In|A|Crin(0, A4, 5). O

We now generalize Theorem 1.6 to the case of partial covers.

Theorem 1.18. Let « € R and 0 < o < 1. If NP ¢ DTIME(n®°8losn))  then
for any €, 0 < e < 1, there is no polynomial algorithm that for a given set cover

problem (A, S) constructs an a-cover for (A,S) which cardinality is at most (1 —
£)Chin(cr, A,S) In |Al.

Proof. If a = 0, then the statement of the theorem coincides with Theorem 1.6.
Let a > 0. Let us assume that the considered statement does not hold: let NP ¢
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DTIME(n®(oglen)) and for some ¢, 0 < ¢ < 1, there exist a polynomial algorithm
A that, for a given set cover problem (A, S), constructs an a-cover for (A, S) which
cardinality is at most (1 — &)Chyin(a, A4, S) In|A|.

Applying Lemma 1.17 with parameters b = (1 —¢) and § = ¢/2 we conclude
that, under the assumption NP ¢ DTIME(n°(oslen))  there exists a polynomial
algorithm B that, for a given set cover problem (A, S), constructs a 0-cover for (A, S)
which cardinality is at most (1 — ¢/2)Cpnin(0, 4, .S) In |A|. The last statement contra-
dicts Theorem 1.6. O

From Theorem 1.10 it follows that Cyreedy(®) < Cpin(a)(1 + In|A|). From this
inequality and from Theorem 1.18 it follows that, under the assumption NP ¢
DTIM E(n®Uogle™) the greedy algorithm is close to the best polynomial approxi-
mate algorithms for partial cover minimization.

We now generalize Theorem 1.7 to the case of partial covers.

Theorem 1.19. Let « € R and 0 < a < 1. If P # NP, then there exists p > 0
such that there is no polynomial algorithm that for a given set cover problem (A, S)

constructs an a-cover for (A, S) which cardinality is at most oCrin(cr, A, S) In |A].

Proof. If a = 0, then the statement of the theorem coincides with Theorem 1.7. Let
a > 0. We will now show that in the capacity of o we can take the number /2, where
~ is the constant from Theorem 1.7. Let us assume the contrary: let P # NP, and a
polynomial algorithm A exist that, for a given set cover problem (A, S), constructs
an a-cover for (A, S) which cardinality is at most (7/2)Cuin(c, A, S) In|A.

Applying Lemma 1.17 with parameters b = /2 and § = /2 we conclude that,
under the assumption P # NP, there exists a polynomial algorithm B that, for a
given set cover problem (A, S), constructs a 0-cover for (A, S) which cardinality is at
most YCuin(0, A, S) In |A|. The last statement contradicts Theorem 1.7. O

1.1.4 Bounds on Cy,,(a) Based on Information About Greedy
Algorithm Work

Using information on the greedy algorithm work we can obtain bounds on Ci, ().
We consider now two simple examples. It is clear that Chin(a) < Cyreedy(@). From
Theorem 1.10 it follows that Cgeedy () < Chin(a)(1 + In|A|). Therefore, Cpin(a) >
Coreedy (@) /(1 4+ In|A|). Another lower bounds on Cyyin(a) can be obtained based on
Theorems 1.8 and 1.12.

In this subsection, we fix some information on the greedy algorithm work, and find
the best upper and lower bounds on Cy,i,(«) depending on this information.
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Information on Greedy Algorithm Work

Let us assume that (A, .S) is a set cover problem and « is a real number such that
0 < a < 1. We now apply the greedy algorithm with threshold a to the problem
(A, S). Let us assume that during the construction of a-cover the greedy algorithm
chooses consequently subsets Bj,, ..., Bj,. Set B;, = 0 and for i = 1,...,t set ¢; =
‘sz‘ \ (Bjo Uu...u Bjifl)"

Write A(a, A,S) = (41,...,06). As information on the greedy algorithm work we
will use the tuple A(a, A, S) and numbers |A| and «. Note that 6, = max{|B;| : B; €
S} and t = Cgeedy (@0, A, S). Let us denote by Psc the set of set cover problems and
Dgse ={(a,|A|, Ala, A, 9)) :a € R,0 < a < 1,(A,S) € Pse}.

Lemma 1.20. A tuple (o, n, (01,...,0;)) belongs to the set Dgc if and only if « is
a real number such that 0 < o < 1, and n,d1,...,0; are natural numbers such that
S>>0, Yo6<(l—a)nand (1—an <X, 6 <n.

Proof. Let (a,n, (01,...,0;)) € Dgc and (a,n, (61,...,0)) = (o, |A], Ala, A, S)). Tt
is clear that « is a real number, 0 < o < 1, and n, d1, . . ., §; are natural numbers. From
the definition of greedy algorithm it follows that §; > ... > ¢§;. Taking into account
that « is the threshold for the greedy algorithm we obtain 3/Z} 6; < (1 — a)n and
(1—an <Xt 6 <n.

Let (a,m, (d1,...,0;)) be a tuple for which « is a real number such that 0 < a < 1,
and n,dy, ..., d; are natural numbers such that §; > ... > §;, 121 6; < (1 — a)n and
(1—a)n < 3¢, 6; < n. We define a set cover problem (4, S) in the following way: A =
{ar, .. antand S ={aq, ... as}, - fas, 46141 - 08+ 0 {08+ o1ty - - - fant}
(for simplicity, we omit here notation By = {ay,...,as}, ...). It is not difficult to

show that A(a, A, S) = (61,...,0;). Thus, (a,n, (d1,...,0)) € Dgc. O

The Best Upper Bound on C,(a)

We define a function Usc : Dgec — IN. Let (a,n,(d1,...,0)) € Dgc. Then
L{Sc(a,n, ((51,...,5,5)) = maX{Cmin(a,A, S) : (A, S) c Psc, ‘A| = n,A(a,A, S) =
(01,...,6:)}. It is clear that

Cmin(a7 Aa S) < USC(a> |A‘a A(OK, A> S))
is the best upper bound on Cy,i,(a) depending on «, |A| and A(a, A, S).

Theorem 1.21. Let (o, n, (01,...,0;)) € Dsc. Then Usc(a,n, (61,...,0;)) =t.
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Proof. Let us consider an arbitrary set cover problem (A,S) such that |A] = n
and A, A, 9 = (01,...,9). It is clear that Cpin(, A,5) < Cgreedy (@, A, 5). Since
Coreedy (@, A, S)=t, we have U(a, n, (d1,...,0)) < .

We now consider the set cover problem (A,S): A = {ai,...,a,} and S =
Har,...;a5,}, - {as,s 160141, Q610 v6, b {6, 6041}, - -, {an}}  (we omit
here notation By = {ai,...,as},...). It is clear that |A| = n. Lemma 1.20 now
shows that A(a, A, S) = (4,...,6;). Taking into account that all subsets from S are
pairwise disjoint it is not difficult to prove that Cin(cr, A, 5) = Cgreedy (v, A, 5) = t.
Therefore, Usc (o, n, (01,...,0;)) >t. O

Thus, Ciin(, A, S) < Careedy(a, A, S) is the best upper bound on Ciin () depend-
ing on a, |A| and A(a, A, 5).
The Best Lower Bound on C, ()

We define a function Lgo : Ds¢ — IN. Let (ayn,(61,...,8)) € Dgc. Then
Lsc(a,n, (61,...,0;)) = min{Cpin(a, 4,5) : (4,5) € Psc,|A| = n, Ao, A,5) =
(01,...,0:)}. It is clear that

CVmin(O‘a A> S) 2 [’SC’(aa ‘A|7 A(O{, Aa S))

is the best lower bound on Cp,(«) depending on «, |A| and A(a, A,S). For
(@,n,01,...,0)) € Dsc and 0y = 0, set

[(1—a)n] — (0o + ...+ ) =0 t—l}
T : e :

o, G 80) = e |

Theorem 1.22. Let (a,n, (01,...,0;)) € Dsc. Then
Lsc(a,n, (61,...,0:)) = la,n, (d1,...,0)).

Proof. Let us consider an arbitrary set cover problem (A, S) such that |A] = n and
Ala, A, S) = (01,...,0:). Set p = Crin(a, A, S). Tt is clear that there exist p subsets
from S which cover a subset V' of the set A such that |V| > [(1 — a)n].

Let i € {0,...,t — 1}. After i steps of the greedy algorithm work, at least
[(1—a)n] — (6o + ...+ 9;) elements from the set V' are uncovered. Therefore, in
the family S there is a subset which can cover at least ([(1 —a)n] — (6o + ... +
9;))/p of uncovered elements. Thus, é;+; > ([(1—a)n] — (6o + ... + &;))/p and
p > ([I—a)n] — (6o + ... 4+ &))/di+1. Since p is a natural number, we have
p > [([(1=a)n] — (6o +...+9))/dis1]. Taking into account that i is an arbi-
trary number from {0, ...,¢t—1} we obtain Cy,(«, A4, S) > l(a, n, (81, ...,9;)). Thus,
Lsc(a,n, (61,...,6)) > Ua,n, (01,...,0)).
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Let us show that Lgc(a,n, (01,...,6)) < l(a,n, (01,...,0:)).

Write d = (o, n, (01,...,0;)), 7 =[(1 —a)n] and g =n — (61 + ...+ &;). Let us
consider the following set cover problem (A, S): A = {a4,...,a,} and
S ={B1,....,B;,Bis1,. .., Biyg, Birgits - - s Biygra}, where By = {ay,..., a5}, ...,
By = {as, 4. 461415 -, A5+ +6, }» Biy1 = {as,4. 4641}, -r Birg = {an}. Let D =
{a1,...,a,}. For j =1,...,d, the set By, ; includes all elements from the set D of
the kind a,_;q—j4+1, 2 = 0,1,2, ..., and only such elements.

It is clear that subsets Bii,i1,. .., Bitgra form an a-cover for (A, S). Therefore,
Chin(a, A, S) < d.

We prove by induction on j = 1,...,t that, during the step number 7, the greedy
algorithm chooses the subset B; from S. From Lemma 1.20 it follows that 6; > ... >
0y

Let us consider the first step of greedy algorithm. It is clear that the cardinality
of Bj is equal to d1, and ¢; is greater than or equal to the cardinality of each of sets
By, ..., Bitq. Let us show that 4, is greater than or equal to the cardinality of each
of sets Biygi1,- .., Biirgra- We have [r/61] < d. Therefore, r/6; < d and r/d < 6.
Let r = sd + a, where s is a nonnegative integer and a € {0,1,...,d — 1}. Then the
cardinality of each of the sets Byyqi1, ..., Biyqrq is equal to s if a = 0, and is at most
s+ 1 if a > 0. From the inequality r/d < 6; it follows that 6; > s if a = 0, and
01 > s+ 1if a > 0. So at the first step the greedy algorithm chooses the set Bj.

Let us assume that during j steps, 1 < j < t—1, the greedy algorithm chooses the
sets By,..., B;. Let us consider the step number j + 1. It is clear that B, covers
;41 uncovered elements. One can show that each set from Bjo, ..., By, covers at
most 0,41 uncovered elements. Set v = r — (6; + ...+ 0;). Let u = sd + a, where s
is a nonnegative integer and a € {0,1,...,d — 1}. One can show that each set from
Biig+1,- .., Bitgra covers at most s uncovered elements if @ = 0, and at most s + 1
uncovered elements if a > 0. It is clear that [u/d;+1] < d. Therefore, u/d;11 < d and
u/d < §;11. Hence, 6j41 > sif a =0, and §;11 > s+1if a > 0. So at the step number
J + 1 the greedy algorithm chooses the set B;,.

Since greedy algorithm chooses subsets By, ..., By, we have A(a, A, S) = (01,...,0;).
Therefore, Cyin(a) > d. As it was proved earlier, Cpin(a) < d. Hence, Cryin(a) = d
and Lsc(a,n, (01,...,0;)) < l(a,n, (61,...,8)). Therefore, Lsc(a,n, (1,...,0n)) =
l(a,m, (01,...,8)). O

S0 Cin(a, 4,8) > l(a, |A|, Ala, A, S)) is the best lower bound on Cpy(a) de-
pending on «, |A| and A(a, A4, S).



1.1 Partial Covers 17

Properties of the Best Lower Bound on C,;, ()

Let us assume that (A, .S) is a set cover problem and « is a real number such that
0<a<1. Let
lsc(O&) = lsc(a, A, S) = l(Oé, ‘A|, A(a, A, S)) .

Lemma 1.23. Let aj,a0 € R and 0 < oy < ag < 1. Then lgc(ay) > lso(az).

Proof. Let A(ay, A, S) = (01,...,0;) and A, A,S) = (01,...,0,). We have t; >
ty. Let 9o =0, j € {0,...,t2 — 1} and
[A|(1 —ag)] — (0p + ...+ 65)
0j+1

It is clear that lsc(on) > [([|A|(1 —aq)] — (0o + ... +6;))/0j11] > lsc(ag). O

= lsc(ag) .

Corollary 1.24. ls¢(0) = max{lsc(a) : 0 < a < 1}.

The value [gc(a) can be used for obtaining upper bounds on the cardinality of
partial covers constructed by the greedy algorithm.

Theorem 1.25. Let o and 3 be real numbers such that 0 < < «a < 1. Then
C'greedy(Oé) < lgc(Oé - 6) 111((1 —Qa+ 6)/6) +1.

Proof. Let A(a—3,A,S) = (01,...,6),00 =0, M = (1—a+p)|A| and | = lgc(a—p).
We have [ > 1 and

lZmaX{M_(60+"'+5i) :izO,...,t—l} :
dit1

Therefore, for i =0,...,t =1, (M — (6o + ...+ 9;))/dis1 <[ and

M—(6o+...+0)
{
Let us assume that [ = 1. Then 6; > M and Cgyeeay(®) = 1. It is clear that

lsc(a — B)In((1 —a+ 3)/B) > 0. Therefore, if [ = 1, then the statement of the
theorem holds. Let [ > 2. Let us show that for j =1,...,¢,

< S . (1.3)

M—(60+...+6j)§M(1—%)j. (1.4)

For i = 0, from (1.3) it follows that 6; > M/I. Therefore, (1.4) holds for j = 1.
Let us assume that (1.4) holds for some j, 1 < j <t — 1. Let us show that

1j+1
M—(60+...+5j+1)§M(1—7) . (1.5)
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Write Q = M — (do+ ...+ ;). For i = j, from (1.3) it follows that d,+1 > Q/l. Using
this inequality and (1.4) we obtain M — (dg+...+6;11) <Q—-Q/I<Q(1—-1/]) <
M (1 —1/1Y’*". Therefore, (1.5) holds. Thus, (1.4) holds.

Let Cgreedy () = p. It is clear that Cyreedy () < Cyreedy (v —3) = t. Therefore, p < t.
It is clear that 6, 4. ..+0, 1 < |A|(1—a). Using (1.4) we obtain M —M (1 — 1/1)"* <
61 +. .40, 1. Therefore, |A|(1—a+8)—|A|(1—a+8) (1 — 1/1)P~" < |A|(1—«). Hence,
A8 < JA[(1—a+8) (1 — 1/1"™ = |A|(1—a-+8) (I - )/ and (/( — 1)) <
(1 —a+ B)/B. If we take the natural logarithm of both sides of this inequality, we
obtain (p —1)In(1+1/(l—=1)) <In((1 — a+ F)/F). Taking into account that [ — 1
is a natural number, and using the inequality In (1 +1/r) > 1/(r + 1), which holds
for any natural r, we obtain In(1+1/(l —1)) > 1/I. Therefore, Cyreeay(®¥) = p <

In(1—a+p0)/8)+1=lscla—pF)In(1—a+p3)/6)+1. O
Corollary 1.26. Let « € R, 0 < a < 1. Then Cyreeay () < lsc(0)In (1/a) + 1.

If I5¢(0) is a small number, then we have a good upper bound on Cyreedy (). If
lsc(0) is a big number, then we have a big lower bound on Cp,(0) and on Chyin(a)
for some a.

1.1.5 Upper Bound on Clyeedy ()

In this subsection, we obtain one more upper bound on Cyeedy () Which does not
depend on |A|, and show that, in some sense, this bound is unimprovable.

Theorem 1.27. Let o and 3 be real numbers such that 0 < § < «a < 1. Then
Cireedy (@) < Coyin(@ — B)In((1 — a+ 8)/6) + 1.

Proof. By Theorem 1.25, Cyreeay(@t) < lsc(a — B)In((1 —a+ 5)/3) + 1, and by
Theorem 1.22, lgc(a — ) < Cpin(a — §). O

Let us show that obtained bound is, in some sense, unimprovable.

Lemma 1.28. Let a be a real number, 0 < o < 1, j € {0,...,|A| — 1} and j/|A| <
a < (j+1)/[A[. Then Cun(@) = Cuin(5/[A]) and Cgeeay () = Cyreeay (/] Al)-

Proof. Taking into account that j/|A| < a we conclude that Cpin(a) < Chin(j/]A4|)
and Cypesty (@) < Cireaty (/4]

Let @ ={Bi,, ..., B;,} be an arbitrary a-cover for (A, S). Let M = |B;,U...UB,,]|.
It is clear that M > |A|(1 — «). Therefore, 1 — M/|A| < a. Taking into account that
a < (j+1)/|A| we obtain |A| — M < j+ 1. Hence, |[A| — M < j and |A] —j < M.
Therefore, M > |A|(1— j/|A]), and Q is also an (j/|A|)-cover. Thus, each a-cover is
an (j/|A|)-cover. Using this fact it is not difficult to show that Cpin(a) > Cnin(j/]A])
and Cupeety (0) 2 Coraay G/ A]). O
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Theorem 1.29. There is no real 6 < 1 such that for any set cover problem (A,S)
and for any real o and 3, 0 < B < a < 1, the following inequality holds:

Creedy () < 6 (Cmin(a — B)ln (%) i 1) . (1.6)

Proof. We assume the contrary: let such 0 exist. We now consider an arbitrary «,
0 < a < 1, and an arbitrary set cover problem (A, S). Let j € {0,...,]A| — 1} and
Jj/IAl < a < (54 1)/|A]. Using (1.6) we obtain

C, J o1 5 ()1 L pn ~ g o
Y4 )< N
<|A\ y 2\A|> = 0| G (\A|> ! i o

— 5 (cmin (ﬁ) I (|A] = 7) + Coun <|37\> In2 + 1) |

Lemma 1.28 now shows Cyreedy (j/|A| + 7/(2|A|)) = Careedy (7/1A]) = Coreedy (@)
and Chin(j/]A|) = Cmin(@). Let us evaluate the number |A| — 7. We have j < o] A| <
j + 1. Therefore, |A| —j —1 < |A| —a|A|] < |A| —jand |A] — 7 = [(1 — a)|A]].
Finally, we have

Creedy () < 6 (Coain (@) In ([(1 — a)[A]]) + Coain (@) In2 + 1) (1.7)

Using Theorem 1.9 we conclude that for any natural ¢ > 2 there exists a
set cover problem (A, S;) such that [(1—a)|A:] = ¢t and Cyeeay(e, Ar, St) >
Chin(a, Ay, S)(Int — Inlnt — 0.31). Let C; = Chin(a, Ay, St). Using (1.7) we obtain
for any t > 2, Cy(Int —Inlnt —0.31) < §(CyInt 4+ CyIn2 + 1). If we divide both sides
of this inequality by C;Int, we obtain

_lnlnt_%< +<51r12+ 1)
Int Int Int CyInt "’

It is clear that C; > 1. Therefore, with growth of ¢ the left-hand side of this
inequality tends to 1, and the right-hand side of this inequality tends to ¢, which is
impossible. O

1.1.6 Covers for the Most Part of Set Cover Problems

In this subsection, covers for the most part of set cover problem are discussed from
theoretical and experimental points of view. In particular, we obtain some theoretical
and experimental confirmations of the following informal 0.5-hypothesis for covers:
for the most part of set cover problems, during each step the greedy algorithm chooses
a subset which covers at least one-half of uncovered elements.
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We assume that (A, S) is a set cover problem, the elements of A are enumerated by
numbers 1,...,n, and sets from S are enumerated by numbers 1, ..., m. It is possible
that sets from S with different numbers are equal. There is a one-to-one correspon-
dence between such set cover problems and tables with n rows and m columns filled
by numbers from {0, 1} and having no rows filled only by 0. Let A = {a1,...,a,}
and S = {By,...,B,}. Then the problem (A, S) corresponds to the table which, for
t=1,...,nand j =1,...,m, has 1 at the intersection of i-th row and j-th column
if and only if a; € B;.

A table filled by numbers from {0,1} will be called SC-table if this table has no
rows filled only by 0.

Lemma 1.30. The number of SC-tables with n rows and m columns is at least 2™" —

2mn—m+log2 n

Proof. Let i € {1,...,n}. The number of tables, in which the i-th row is filled by 0
only, is equal to 2"~ ™. Therefore, the number of tables, which are not SC-tables,

is at most n2mn—m = gmn—m+tlosn Thyg the number of SC-tables is at least 27" —
2mn—m+log2 noo0

Exact Covers for the Most Part of Set Cover Problems

First, we study exact covers for the most part of set cover problems such that m >
[log,n| + ¢ and t is large enough.

Theorem 1.31. Let us consider set cover problems (A, S) such that A = {ay,...,a,},
S = {Bi,...,Bn} and m > [logyn| + t, where t is a natural number. Let
i1, Ulogyn)+¢ e pairwise different numbers from {1,...,m}. Then the fraction of
set cover problems (A, S), for which {B;,,...,B
is at least 1 —1/(28 —1).

inogy m14e ) 15 an €zact cover for (A, 5),

Proof. Let k = [logy n]+t. The analyzed fraction is equal to the fraction of SC-tables
with n rows and m columns which have no rows with only 0 at the intersection with

columns iy, ..., 4. Such SC-tables will be called correct.
Let j € {1,...,t}. The number of tables with n rows and m columns filled by 0
and 1, in which the j-th row has only 0 at the intersection with columns iy, ..., is

equal to 2" Therefore, the number of SC-tables, which are not correct, is at most
n2mn—k — gmn=k+logan [Jging Lemma 1.30 we conclude that the fraction of correct
SC-tables is at least

2mn—k+log2 n 1 1

1- omn _ 9mn—m-+logy n =1- 9k—logon _ 9k—m >1- 2t _ 1"
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For example, if ¢t = 7, then for at least 99% of set cover problems (A, S) the subsets

iy, By
119 » Pillogy n]+t
So if m > [logyn] + t and ¢ is large enough, then for the most part of set cover

B form an exact cover for (4, S5).

problems there exist exact (and, consequently, partial) covers with small cardinality.

Partial Covers Constructed by Greedy Algorithm for the Most Part of
Set Cover Problems

We now study the behavior of greedy algorithm for the most part of set cover problems
such that m > n 4+t and ¢ is large enough.

Let us consider set cover problems (A, S) such that A = {ay,...,a,} and S =
{Bi,..., Bn}. A problem (A, S) will be called saturated if for any nonempty subset
A" of A there exists a subset B; from S which covers at least one-half of elements
from A’. For a saturated set cover problem, the greedy algorithm at each step chooses
a subset which covers at least one-half of uncovered elements. So for saturated set
cover problems the 0.5-hypothesis is true.

Let us evaluate the number of saturated set cover problems. First, we prove an

auxiliary statement.

Lemma 1.32. Let k be a natural number and o € {0,1}. Then the number of k-tuples
from {0, 1}*, in which the number of o is less than k/2, is at most 2871

Proof. Let k be even. Then the number of k-tuples from {0, 1}*, in which the number
of o is less than k/2, is equal to CP + ... + C’,f/z_l that is less than 271 Let k be
odd. Then the number of k-tuples from {0, 1}*, in which the number of ¢ is less than
k/2, is equal to C? + ... + C**) that is equal to 2¥-1. O

A table with n rows and m columns filled by numbers from {0, 1} will be called
saturated if for any k € {1,...,n}, for any k rows there exists a column which has
at least k/2 one’s at the intersection with considered rows. Otherwise, the table will
be called unsaturated.

Theorem 1.33. Let us consider set cover problems (A, S) such that A = {ay,...,a,},
S = {By,...,Bn} and m > n. Then the fraction of saturated set cover problems
(A, S) is at least 1 —1/(2™™ —1).

Proof. 1t is clear that the analyzed fraction is equal to the fraction of saturated
SC-tables.

Let us consider tables with n rows and m columns filled by numbers from {0, 1}.
Let k € {1,...,n} and iy, ..., 4 be pairwise different numbers from {1,...,n}. We
now evaluate the number of tables in which at the intersection of each column with
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TOWS i1, . .., 1 the number of one’s is less than k/2. Such tables will be called unsat-
urated in rows iy, ..., .

From Lemma 1.32 it follows that the number of k-tuples from {0, 1}*, in which
the number of one’s is less than k/2, is at most 2~1. Therefore, the number of tables,
which are unsaturated in rows 71, ..., %, is at most 2™,

There are 2" different subsets of rows. Therefore, the number of unsaturated tables
is at most 2m"*t"~ ™ TUsing Lemma 1.30 we conclude that the fraction of saturated

SC-tables is at least

2mn+n—m 1 1
1-— =1~ >1-—

gmn _ 9mn—m-+logyn 9m—n _ 9logon—n — gm—-n _ | :

O

For example, if m = n + 7, then at least 99% of set cover problems are saturated.
Let us analyze the work of greedy algorithm on an arbitrary saturated set cover
problem (A, S). For i = 1,2,..., after the step number i at most |A|/2° elements
from A are uncovered. We now evaluate the number Cyeedy (@), where 0 < o < 1. It
is clear that Cgreedy (@) < i, where i is a number such that 1/2° < «. One can show
that 1/2M1982(/91 < . Therefore, Cyreeay (@) < [logy(1/a)]. Some examples can be
found in Table 1.1.

Table 1.1. Values of [log,(1/a)] for some «

o 0.5(0.3(0.1]0.01/0.001
Percentage of covered elements|50|70[90| 99 | 99.9
[log,(1/cr)] 112|147 10

Let us evaluate the number Cgeedy(0). It is clear that all elements from A will
be covered after a step number i if |A]/2" < 1, i.e., if i > log, |A|. If log, | A] is an
integer, we can set i = log, |A| + 1. Otherwise, we can set i = [log, |A|]. Therefore,
Copeeiy (0) < logy | 4] + 1.

We now evaluate the number [g-(0). Let A(0, A, S) = (d1,...,0m). Set &g = 0.
Then l5¢(0) = max {[(|A| — (6o + ...+ 8;))/0it1] i =0,...,m — 1}. Since (A, S) is
a saturated problem, we have d;11 > (|A| — (o + ...+ 0;))/2 and 2 > (|A] — (d +

..+ 0i))/0ip1 for i = 0,...,m — 1. Therefore, lsc(0) < 2. Using Corollary 1.24 we
obtain lgc(a) < 2 for any o, 0 < v < 1.

Results of Experiments

We made some experiments with set cover problems (A, S) such that |A| € {10, 50, 100,
1000, 3000, 5000} and |S| = 10. For each value of |A|, we generated randomly 10 prob-
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lems (A, S) such that for each element a; from A and for each subset S; from S the
probability of a; to be in S} is equal to 1/2. The results of experiments are represented
in Tables 1.2 and 1.3.

In Table 1.2 the average percentage of elements covered at the i-th step of greedy
algorithm is presented, ¢ = 1,...,10. For example, 52.5 means that, on the average,
52.5% of elements remaining uncovered before i-th step are covered at i-th step.

Table 1.2. Average percentage of elements covered at i-th step of greedy algorithm

Number of step ¢

|A| 1|2 3 4 516 7 8 1 9| 10
10 |71.0|87.5({100.0
50 (62.4|67.5| 80.1 {100.0
100 [58.9(60.6| 62.9 | 67.8 |82.7(95.0/100.0
1000]52.8(52.4| 52.4 | 53.4 |54.7|57.3| 64.7 |76.2|85.0{100.0
3000(51.2|51.5| 52.5 | 52.6 [53.6|54.2| 56.9 |61.2|72.3{100.0
5000(51.1|51.3| 51.5 | 52.4 |52.5|54.3| 56.7 |63.1|82.0{100.0

In Table 1.3 for each o € {0.1,0.01,0.001,0.0} the minimal, average and maximal
cardinalities of a-covers constructed by the greedy algorithm are presented.

Table 1.3. Cardinalities of a-covers for set cover problems (A, S) with |S| = 10

o
| Al 0.1 0.01 0.001 0.0

min avg max|min avg max|min avg max|min avg max
10 2 20 212 24 3|2 24 3|2 24 3
50 2 26 3|4 40 4 |4 40 4|4 40 4
1003 30 3|5 55 7|5 55 7|5 55 7
10000 3 39 4 |6 66 7 |8 89 10| 8 89 10
30000 4 40 4|6 69 7 |8 90 109 99 10
5000{ 4 40 4 |7 70 719 90 99 99 10

The obtained results show that for the most part of the considered set cover prob-
lems (not only for the case, where |S| > |A|) during each step the greedy algorithm
chooses a subset which covers at least one-half of uncovered elements.

It must be also noted that with increase of step number the percentage of elements,
covered at this step, grows for the most part of the considered set cover problems.
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1.2 Partial Decision Rules

This section consists of seven subsections. In Sect. 1.2.1, main notions are described.
In Sect. 1.2.2, relationships between partial covers and partial decision rules are
considered. In Sect. 1.2.3, generalizations of Slavik’s results to the case of partial
decision rules are given. In Sect. 1.2.4, polynomial approximate algorithms for partial
decision rule minimization (construction of partial decision rule with minimal length)
are studied. In Sect. 1.2.5, upper and lower bounds on minimal length of partial
decision rules based on an information about greedy algorithm work are investigated.
In Sect. 1.2.6, an upper bound on the length of partial decision rule constructed
by greedy algorithm is considered. In Sect. 1.2.7, decision rules for the most part of
binary decision tables are discussed from theoretical and experimental points of view.

1.2.1 Main Notions

We assume that 7" is a decision table with n rows labeled with nonnegative integers
(decisions) and m columns labeled with attributes (names of attributes) fi,..., fun.
This table is filled by nonnegative integers (values of attributes).

Let r = (by, ..., by) be a row of T labeled with a decision d. By U(T, r) we denote
the set of rows from 7" which are different (in at least one column) from r and are
labeled with decisions different from d. We will say that an attribute f; separates a
row 1’ € U(T,r) from the row r if the rows r and 7’ have different numbers at the
intersection with column f;. The pair (T, r) will be called a decision rule problem.

Let 0 < o < 1. A decision rule

(fil:bil)/\"'/\(fit:bit)_)d (18)

is called an a-decision rule for (T,r) if attributes f;,, ..., f;, separate from r at least
(1 —a)|U(T,r)| rows from U(T,r) (such rules are also called partial decision rules).
The number ¢ is called the length of the considered decision rule. If U(T,r) = (), then
for any fi,,..., fi, € {f1,-.., fm} the rule (1.8) is an a-decision rule for (T, 7). The
rule (1.8) with empty left-hand side (when ¢ = 0) is also an a-decision rule for (7', r).

For example, 0.01-decision rule means that we should separate from r at least
99% of rows from U(T,r). Note that a 0-decision rule is an exact decision rule. By
Liin(@) = Lyin(c, T, ) we denote the minimal length of a-decision rule for (7', 7).

We now describe a greedy algorithm with threshold a which constructs an a-
decision rule for (7,7) (see Algorithm 2).

Let us denote by Lgreedy () = Lgreedy (@0, T', 1) the length of constructed a-decision
rule for (7', 7).
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Algorithm 2: Greedy algorithm for partial decision rule construction
Input : Decision table T with conditional attributes fi,..., fm, row 7 = (b1,...,bm) of T labeled
with the decision d, and real number o, 0 < o < 1.

Output: a-decision rule for (T, 7).
Q— 0
while attributes from Q separate from r less than (1 — «)|U(T,r)| rows from U(T,r) do
select f; € {f1,..., fm} with minimal index ¢ such that f; separates from r the maximal number

of rows from U(T,r) unseparated by attributes from Q;
Q— QU{fik

end

return /\friEQ(fi =b;) — d;

1.2.2 Relationships Between Partial Covers and Partial Decision Rules

Let T be a decision table with m columns labeled with attributes fi,..., fi,, © be a
row from 7', and U(T,r) be a nonempty set.

We correspond a set cover problem (A(T,r), S(T, 1)) to the considered decision rule
problem (7', r) in the following way: A(T,r) = U(T,r) and S(T,r) = {B,..., Bn.},
where By = U(T,r, f1),...,Bym =U(T,r, fn) and for i = 1,...,m the set U(T,r, f;)
coincides with the set of rows from U(T,r) separated by the attribute f; from the
row 7.

Let during the construction of an a-decision rule for (T',r) the greedy algorithm
choose consequently attributes f;,,..., fj,. Set U(T,r, f;,) = 0 and for i = 1,...,¢
set 0; = |U(T,r, f;;) \(U(T,r, f;,))U...0U(T,r, f;,_,))| Let A, T,r) = (01,...,0).
It is not difficult to prove the following statement.

Proposition 1.34. Let a be a real number such that 0 < o < 1. Then |U(T,r)| =
|A(T,r)|, A, T, 1) = Aler, A(T, 1), S(T, 1)), Linin(c, T, r) = Croin (v, A(T, 1), S(T, 7)),
and Lgyeedy (0, T, 1) = Coreedy (t, A(T, 1), S(T,1)).

Let (A,S) be a set cover problem, A = {ay,...,a,} and S = {By,...,B,}.
We correspond a decision rule problem (7'(A,S),r(A,S)) to the set cover problem
(A,S) in the following way. The table T'(A,S) contains m columns labeled with
attributes fi,..., f, and n + 1 rows filled by numbers from {0,1}. Fori =1,...,n
and 7 = 1,...,m, the number 1 stays at the intersection of i-th row and j-th column if
and only if a; € B;. The (n+1)-th row is filled by 0. The first n rows are labeled with
the decision 0. The last row is labeled with the decision 1. Let us denote by r(A, S)
the last row of table T'(A, S). For i € {1,...,n+ 1}, we denote by r; the i-th row. It
is not difficult to see that U(T'(4,S),r(A,S)) = {r1,...,m}. Let i € {1,...,n} and
j € {1,...,m}. One can show that the attribute f; separates the row r,1; =r(A4,.5)
from the row r; if and only if a; € B;. It is not difficult to prove the following
statements.
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Proposition 1.35. Let « € R, 0 < a < 1, and {i1,...,4} C {1,...,m}. Then
(fii =0)A...A(fi, =0) — 1 is an a-decision rule for (T (A, S),r(A,S)) if and only
if {Bi,...,Bi,} is an a-cover for (A,S).

Proposition 1.36. Let « € R and 0 < a < 1. Then |[U(T(A,S), r(A,S))| = |A|,
Lmin(a> T(A> 5)7 T(A> S)) = Cmin(aa A> S); Lgreedy(aa T(A, S), T(A> S)) :Ogreedy(a> A, 5)
and Ala, T(A,S),r(A,S)) = Ala, A, 9).

Proposition 1.37. There exists a polynomial algorithm which for a given set cover
problem (A, S) constructs the decision rule problem (T'(A,S),r(A,S5)).

1.2.3 Precision of Greedy Algorithm

The following three statements are simple corollaries of results of Slavik (see Theorems
1.8-1.10). Let T be a decision table with m columns labeled with attributes f1, ..., fu,
and r be a row of 7T'.

Theorem 1.38. Let 0 < a < 1 and [(1 —a)|U(T,7)|] > 2. Then Lgeey(a) <
Liin(@)(In [(1 = a)|U(T,7)|] = Inln [(1 — a)|U(T,r)|] + 0.78).

Proof. Let us denote (A,S) = (A(T,r),S(T,r)). From Proposition 1.34 it follows
that |A| = |U(T,r)|. Therefore, [(1 —a)|A|] > 2. Using Theorem 1.8 we obtain
Coreedy (@, A, S) < Crpin(a, A, S)(In[(1 — @)|A]] — Inln [(1 — «)|A|] 4+ 0.78).

Using Proposition 1.34 we conclude that Lgyeedy () = Chreedy (@, A, S) and Lyyin (o) =
Chin(a, A, S). Taking into account that |A| = |U(T,r)| we conclude that the state-
ment of the theorem holds. O

Theorem 1.39. Let 0 < a < 1. Then for any natural t > 2 there exists a
decision rule problem (T,r) such that [(1 —a)|U(T,7)|] = t and Lgeeay(c) >
Lpin(@)(In [(1 = )|U(T,7)|] —Inln [(1 — a)|U(T,r)|] — 0.31).

Proof. From Theorem 1.9 it follows that for any natural ¢ > 2 there exists a set cover
problem (4, S) such that [(1 — )[4 ]=1 and Cyreedy (¢, A4,S5) > Cpin (@, A,S)(In [ (1 — o)A/ ]—
Inln [(1 — «)|A|] —0.31).

Let us consider the decision rule problem (7, 7) = (T'(4, S),r(A,S)). From Propo-
sition 1.36 it follows that |U(T,r)| = |A|, Careedy(®, A,S) = Lgrecay(a, T, ) and
Chin(a, A, S) = Lyin(a, T, 7). Hence, the statement of the theorem holds. O

Theorem 1.40. Let 0 < o < 1 and U(T,r) # 0. Then Lgeeay() < Lyin(a)(1 +
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Proof. Let us consider the set cover problem (A, S) = (A(T,r),S(T,r)). The inequal-
Theorem 1.10.

Using Proposition 1.34 we conclude that Cyreedy (¥, A4,5)= Lgreedy (@) and Cryin (@0, A,5)=
Lin(@). Therefore, the statement of the theorem holds. O

1.2.4 Polynomial Approximate Algorithms

Theorem 1.41. Let 0 < o < 1. Then the problem of construction of a-decision rule
with minimal length is N P-hard.

Proof. From Theorem 1.13 it follows that the problem of construction of a-cover
with minimal cardinality is N P-hard. Using Propositions 1.35 and 1.37 we conclude
that there exists a polynomial-time reduction of the problem of construction of a-
cover with minimal cardinality to the problem of construction of a-decision rule with
minimal length. O

Let us generalize Theorem 1.18 to the case of partial decision rules.

Theorem 1.42. Let « € R and 0 < o < 1. If NP ¢ DTIME(n®8losn)) then
for any e, 0 < e < 1, there is no polynomial algorithm that for a given decision rule
problem (T, r) with U(T,r) # 0 constructs an a-decision rule for (T, r) which length
is at most (1 — &) Lyin(c, T, ) In |U (T, 7)].

Proof. We assume the contrary: let NP ¢ DTIME(n°(€e™) and for some e,
0 < & < 1, a polynomial algorithm A exist that for a given decision rule problem
(T,r) with U(T,r) # 0 constructs an a-decision rule for (7)) which length is at
most (1 — &) Lyin(c, T, 7) In |U(T,r)|.

Let (A,S) be an arbitrary set cover problem, A = {ai,...,a,} and S =
{By,...,By}. From Proposition 1.37 it follows that there exists a polynomial algo-
rithm which for a given set cover problem (A, S) constructs the decision rule problem
(T'(A,S),r(A,S)). Let us apply this algorithm and construct the decision rule prob-
lem (T,r) = (T'(A,S),r(A,S)). Let us apply to the decision rule problem (7', 7) the
algorithm A. As a result we obtain an a-decision rule

(fu=0)A. . A(fi,=0)—1

for (T,r) such that ¢ < (1 — &)Lyin(a,T,7)In|U(T,r)|. From Proposition 1.35
it follows that {B;,...,B;} is an a-cover for (A,S). Using Proposition 1.36 we
obtain |A| = |U(T,r)| and Lyin(a,T,7) = Cun(a, A, S). Therefore, t < (1 —
£)Chin(cr, A, S) In | Al.
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Thus, under the assumption NP ¢ DTIME(n°(ogle)) there exists a polyno-
mial algorithm that for a given set cover problem (A, S) constructs an a-cover for
(A, S) which cardinality is at most (1 —¢)Chyin(a, A, S) In|A|, but this fact contradicts
Theorem 1.18. O

From Theorem 1.40 it follows that Lgeedy(a) < Lmin(a)(1 + In|U(T,7)]).
From this inequality and from Theorem 1.42 it follows that, under the assumption
NP ¢ DTIME(n®Uosloen)) the greedy algorithm is close to the best polynomial
approximate algorithms for partial decision rule minimization.

Let us generalize Theorem 1.19 to the case of partial decision rules.

Theorem 1.43. Let a be a real number such that 0 < o < 1. If P # NP, then there
exists o > 0 such that there is no polynomial algorithm that for a given decision rule
problem (T, r) with U(T,r) # 0 constructs an a-decision rule for (T,r) which length
is at most Lyin (o, T,7) In |U(T, 7)].

Proof. We now show that in the capacity of such o we can choose ¢ from Theo-
rem 1.19. Let us assume that the considered statement does not hold: let P # NP
and a polynomial algorithm A exist that for a given decision rule problem (7',r)
with U(T,r) # (0 constructs an a-decision rule for (7,r) which length is at most
OLmin (a0, T, ) In |U(T, )|

Let (A,S) be an arbitrary set cover problem, A = {ai,...,a,} and S =
{By,...,By}. From Proposition 1.37 it follows that there exists a polynomial algo-
rithm which for a given set cover problem (A, S) constructs the decision rule problem
(T'(A,S),r(A,S)). Let us apply this algorithm and construct the decision rule prob-
lem (T,r) = (T(A,S),r(A,S)). Let us apply to the problem (7', r) the algorithm A.
As a result we obtain an a-decision rule

(f=0AN...A(f;i,=0)—1

for (T, r) such that t < oLuyin(c, T,r)In|U(T,r)|. From Proposition 1.35 it follows
that {B;,,..., B;,} is an a-cover for (A, S). Using Proposition 1.36 we obtain |A| =
|U(T,r)| and Lyin(c, T, 1) = Cruin(@, A, S). Therefore, t < oCpin(a, A, S) In|Al.

Thus, under the assumption P # N P, there exists a polynomial algorithm that for
a given set cover problem (A, S) constructs an a-cover for (A, S) which cardinality
is at most Cpin(a, A, S)In|A[, but this fact contradicts Theorem 1.19. O

1.2.5 Bounds on L,;,(a) Based on Information About Greedy Algorithm
Work

In this subsection, we fix some information on the greedy algorithm work and find
the best upper and lower bounds on Ly, (a) depending on this information.
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Information on Greedy Algorithm Work

We assume that (7,r) is a decision rule problem, where T is a decision table with
m columns labeled with attributes fi,..., fi,, U(T,r) # 0, and « is a real number
such that 0 < a < 1. Let us apply the greedy algorithm with threshold « to the
problem (7', 7). Let during the construction of a-decision rule the greedy algorithm
choose consequently attributes f,, ..., f;,. Set U(T,r, f;,) =0 and for i = 1, ..., ¢ set
6 =|UT,r, f;,) \ (U, f;)U...0PWU(T,r, f;,,))| Let Ala,T,7r) = (d1,...,0).
As information on the greedy algorithm work we will use the tuple A(a, T, r), and
numbers |U(T,r)| and «. Note that 6, = max{|U(T,r, f;)] : ¢ = 1,...,m} and
t = Lgreeay (v, T', 7).

Let us denote by Ppg the set of decision rule problems (7,7) with U(T,r) # (),
and Dpr = {(o, |[U(T,7)|, Ala, T, 7)) :« € R,0 < a < 1,(T,r) € Ppgr}.

Lemma 1.44. DDR = Dsc.

Proof. Let a be a real number, 0 < o < 1 and (T,r) € Ppgr. By Proposi-
tion 1.34, (a, |[U(T,7)|, Ala, T, 7)) = (a, |A(T, 7)|, Aev, A(T, 1), S(T,7))). Therefore,
Dpr € Dsc.

Let o be a real number, 0 < o < 1 and (A4,S) € Psc. By Proposition 1.36,
(o, |A], A, A, S)) = (o, [U(T(A,S),r(A,S))|, Ala, T(A, S),r(A,S))). Therefore,
Dsc C Dpgr. O

Note that the set Dgo was described in Lemma 1.20.

The Best Upper Bound on L, ()

We define a function Upgr : Dpr — IN. Let (a,n,(01,...,0;)) € Dpgr. Then
Upr(a,n, (01,...,0:)) = max{Lyw(c, T,r) : (T,r) € Ppg, |[U(T,r)| =n, Ala, T, 1) =
(01,...,0;)}. It is clear that

Luin(, T, 1) < Upr(a, |U(T, )], A(a, T', 1))
is the best upper bound on L, () depending on «, |U(T,r)| and A(e, T, 7).
Theorem 1.45. Let (a,n, (01,...,0;)) € Dpg. Then
Upr(a,n, (61,...,0)) =t .

Proof. Let (T,r) be an arbitrary decision rule problem such that |U(7,r)| = n and
Ala,T,r) = (61, ..., 6). Itis cleat that Lyin(o, T, 7) < Lgreedy(ax, T, ) = t. Therefore,
uDR(a> n, (517 tr 5t)) S t.
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Let us show that Upgr(a,n,(d1,...,8;)) > t. Using Lemma 1.44 we obtain
(a,n, (01,...,0y)) € Dge. From here and from Theorem 1.21 it follows that there
exists a set cover problem (A,S) such that |A| = n, A(a, A,S) = (41,...,0;) and
Chin(a, A, S) = t. Let us consider the decision rule problem (7, 7) = (T'(A, S),7(A,S5)).
From Proposition 1.36 it follows that |U(T,r)| = n, A(a,T,7) = (61,...,0:) and
Lin(a, T, r) = t. Therefore, Upgr(a,n, (01,...,0;)) >t. O

Thus, Lmin(a, T, 1) < Lgreedy (e, T, 7) is the best upper bound on Ly, (a) depend-
ing on «, |U(T,r)| and A(e, T, 7).

The Best Lower Bound on L, (o)

We define a function Lpr : Dpr — IN. Let (a,n,(01,...,6:)) € Dpgr. Then
Lpr(a,n, (d1,...,6;)) = min{ Lyin(a, T, 7) : (T,7) € Ppg, |[UT,7)| =n, Ale, T, 1) =
(01,...,0:)}. It is clear that

Lin(c, T, 1) > Lpr(a, [U(T,r)|, Ala, T, 7))

is the best lower bound on Ly, () depending on «, |U(T,r)| and A(«, T, 7).
Let (a,n, (d1,...,9:)) € Dpr. We now remind the definition of parameter [(«, n,

(51,...,(50). Set (50 = (. Then
l(a,n,(él,...,&g))zmax{w(l_&yﬂ ;(5O+"'+5i) :i:O,...,t—l}.
i+1

Theorem 1.46. Let (a,n, (01,...,0;)) € Dpg. Then

Lpr(a,n, (81,...,08)) =Ua,n, (01,...,6)) .
Proof. Let (T,r) be an arbitrary decision rule problem such that |U(T,r)| = n
and A(a,T,7) = (61,...,0:). We consider now the set cover problem (A,S) =
(A(T,r), S(T,r)). From Proposition 1.34 it follows that |A] = n and A(«, A, S) =
(01,...,6;). Using Theorem 1.22 we obtain Cy,(a, A4,S) > l(a,n, (01,...,6)). By
Proposition 1.34, Cyin(a, A, S) = Lpin(e, T, 7). Therefore, we have Ly, (o, T,7) >
l(a,n, (01,...,6)) and Lpr(a,n, (01,...,6:)) > (e, n, (01,...,0)).

Let us show that Lpr(a,n, (d1,...,d8)) < l(a,n,(d1,...,0;)). By Lemma 1.44,
(a,n, (01,...,0;)) € Dgc. From here and from Theorem 1.22 it follows that there
exists a set cover problem (A, S) such that |A| = n, A(a, A,S) = (61,...,0;) and
Chin(a, A, S) = l(a,n, (J1,...,0:)). Let us consider the decision rule problem (7, r) =
(T'(A,S),r(A,S)). From Proposition 1.36 it follows that |U(T,r)| = n, A(a,T,7) =
(01,...,0;) and Lyin (e, T, r) = (e, m, (01, ..., &)). Therefore, Lpr(a,n, (§1,...,0;)) <
l(a,m, (61,...,0:)). O

Thus, Ly (o, T, r) > (o, |U(T,7)|, A(a, T, 7)) is the best lower bound on Ly, ()
depending on «, |U(T,r)| and A(a, T, 7).




1.2 Partial Decision Rules 31

Properties of the Best Lower Bound on L, ()

We assume that (7, 7) is a decision rule problem from Ppg, and a € IR, 0 < a < 1.
Let
Ipr(a) = lpr(a, T,r) = Ua, |U(T, )|, Ala, T, 1)).

Lemma 1.47. Let aq, a5 € R and 0 < oy < g < 1. Then lpr(ay) > Ipr(az).

Proof. Let Aoy, T, 1) = (61,...,0:,) and A(ag, T,r) = (61,...,0,). It is clear that
tl Ztg Set (50:0 Letj 6{0,...,t2—1} and

[|U(T, 7)1~ az)] = (60 + .. +6))
51

It is clear that ZDR(Oél) Z ((HU(T, 7’)‘(1 - 041)—‘ - (50 + ...+ 5]'))/5]'_,_1—‘ Z lDR(OéQ).
g

= lDR(OéQ) .

Corollary 1.48. [pr(0) = max{lpr(a): 0 < a < 1}.

The value [pr(c) can be used for obtaining upper bounds on the length of partial
decision rules constructed by the greedy algorithm.

Theorem 1.49. Let o and ( be real numbers such that 0 < 8 < a < 1. Then
Lyrecay (@) < Ipr(e—3)In((1 —a+8)/5) + 1.

Proof. Let us denote (A,S) = (A(T,r),S(T,r)). From Theorem 1.25 it follows that
Coreedy (0, A, S) < lgc(a— 3, A,8)In((1 —a+ 3)/F)+ 1. Using Proposition 1.34 one
can show that Ipr(a — ) = lpr(a — B,T,r) = lsc(a — 5, A, S). From Proposition
1.34 it follows that Lgeedy() = Lgreedy(®,T,7) = Cgreedy (@, A, S). Therefore, the
statement of the theorem holds. O

Corollary 1.50. Let a € IR, 0 < o < 1. Then Lgreedy () < Ipr(0)In(1/a) + 1

If Ipr(0) is a small number, then we have a good upper bound on Lgeedy (). If
[pr(0) is a big number, then we have a big lower bound on L, (0) and on Ly, ()
for some «.

1.2.6 Upper Bound on Lgyeedy ()

We assume that (7, r) is a decision rule problem from Ppg. In this subsection, we
obtain an upper bound on Lgeedy () = Lgreedy(a, T, 7), which does not depend on
|U(T,r)|, and show that, in some sense, this bound is unimprovable.
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Theorem 1.51. Let o and (5 be real numbers such that 0 < 8 < a < 1. Then
Lyrecdy (@) < Lin(a — 5) In (1 —a + 5)/6) + 1.

Proof. By Theorem 1.49, Lgeeay(®) < lpr(ev — f)In((1 —a+ F)/5) + 1, and by
Theorem 1.46, Ipg(av — B) < Lyin(a — 5). O

Let us show that obtained bound is, in some sense, unimprovable.

Theorem 1.52. There is no real 6 < 1 such that for any decision rule problem
(T,r) € Ppr and for any real o and 3, 0 < < a < 1, the following inequality
holds: Lgreedy (@) < 0 (Lipin(a — B)In (1 —a+ 5)/3) + 1).

Proof. We assume the contrary: let such § exist. We now consider an arbitrary set
cover problem (A,S) and arbitrary real @ and [ such that 0 < § < a < 1. Set
(T,r) = (T(A,S),r(A,S)). Then

B

By Proposition 1.36, Lgpecdy (@0, T, 7) = Cogreeay (@, A, S) and Lyin(a — 8,1, 1) =
Chin(a — 3, A, S). Therefore, there exists real § < 1 such that for any set cover prob-
lem (A, S) and for any real a and (3, 0 < § < «a < 1, the inequality
Cireedy (0, A, S) < 8 (Copin(a — 8, A4, S)In((1 — a+ 5)/8) + 1) holds, which contra-
dicts Theorem 1.29. O

1—
Lgreeay (o, T, 1) <6 (Lmin(a — 3, T,r)In <ﬂ> + 1) )

1.2.7 Decision Rules for the Most Part of Binary Decision Tables

In this subsection, decision rules for the most part of binary decision tables are dis-
cussed from theoretical and experimental points of view. In particular, we obtain some
theoretical and experimental confirmations of the following informal 0.5-hypothesis
for decision rules: for the most part of decision tables for each row, under the con-
struction of partial decision rule, during each step the greedy algorithm chooses an
attribute which separates from the considered row r at least one-half of unseparated
rows that are different from r and have other decisions.

Tests and Local Tests for the Most Part of Binary Information Systems

A binary information system I is a table with n rows (corresponding to objects) and
m columns labeled with attributes fi,..., f,,. This table is filled by numbers from
{0,1} (values of attributes). For j = 1,...,n, we denote by 7; the j-th row of table
I.
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A subset {fi,,..., fi,} of attributes is a test for the information system I if these
attributes separate any two rows r; and 7, where j,l € {1,...,n} and j # [.

Adding an arbitrary decision attribute to the considered information system [ we
obtain a decision table T". For j = 1,...,n, let r; = (bl,...,b0) and d; be the decision
attached to r;. If {f;,,..., fi,} is a test for the information system I, then for any

j € {l,....n} therule (f;, = bl ) A...A(fi, = b)) — d; is a O-decision rule for

11

(T, ’f’j).
Let m > [2log,n]| + t, where ¢ is a natural number. Let iy,...,i[210g,n]+¢t b€
pairwise different numbers from {1,...,m}. We now prove that the fraction of infor-

mation systems, for which {f;,, .. }is a test, is at least 1 — 1/2F1

° fl’]’QlogQ nl+t

Theorem 1.53. Let us consider binary information systems with n rows and m
columns labeled with attributes fi,..., fm. Let m > [2logyn| + t, where t is a nat-
ural number, and iy, ..., i[f210g,n]+¢ be different numbers from {1,...,m}. Then the

fraction of information systems, for which {fi,,... } is a test, is at least

1—1/2t+1,

’ fiﬂ logg n+t

Proof. Let k = [2logyn| +1t, j,l € {1,...,n} and j # [. The number of information
systems, for which j-th and [-th rows are equal at the intersection with columns
firs- -, fin, is equal to 2™ %. The number of pairs j,/ € {1,...,n} such that j # [ is

at most n?/2. Therefore, the number of information systems, for which {f;,,..., fi. }
is not a test, is at most (n?/2)2mn—F = gmn-k+2logyn=1 < 9mn—t=1 Thyg the fraction
of information systems, for which {f;,,..., fi,} is a test, is at least
gmn _ 2mn—t—1 1
gmn =1- 9t+1
g

We now fix a set D of decision attributes. From the considered result it follows,
for example, that for 99% of binary decision tables with n rows, m > [2log, n] + 6
conditional attributes and decision attribute from D for each row there exists an
exact decision rule which length is equal to [2log, n| + 6.

It is possible to improve this bound if we consider decision rules not for all rows,
but for one fixed row only.

Let j € {1,...,n}. A subset {fi,..., fi,} of attributes will be called a j-th local
test for the information system I if these attributes separate from the row r; any row
r;, where | € {1,...,n} and | # j.

Adding an arbitrary decision attribute to the considered information system [
we obtain a decision table T'. Let r; = (b1,...,b,,) and d be the decision attached
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to rj. If {fi,,..., fi.} is a j-th local test for the information system I, then (f;, =
bi,) N ... A (fi, =b;,) — d is a 0-decision rule for (T, 7;).

Let us fix a set D of decision attributes. If we prove the existence of good j-th local
tests for the most part of binary information systems with n rows and m columns,
then it means the existence of good decision rules for j-th row for the most part of
binary decision tables with n rows, m conditional attributes and decision attributes

from D.

Theorem 1.54. Let us consider binary information systems with n rows and m
columns labeled with attributes fi,..., fm. Let m > [logyn| + t, where t is a nat-
ural number, j € {1,...,n} and iy, ..., inog,n]++ be pairwise different numbers from
{1,.... m}. Then the fraction of information systems, for which {fi, ..., firne it
is a j-th local test, is at least 1 —1/2".

Proof. Let k = [logyn| +t, 1 € {1,...,n} and [ # j. The number of information sys-
tems, for which j-th and [-th rows are equal at the intersection with columns i1, . . ., iz,
is 2m"=F_ Therefore, the number of information systems, for which {fi,,..., fi, } is
not a j-th local test, is at most n2m"—k = gmn—ktlogzn < 9mn—t Thyg the frac-
tion of information systems, for which {f,,..., fi,} is a j-th local test, is at least
(2mn — gmn—t) jgmn — 1 _ 1 /2t [

Let us fix a set D of decision attributes and a number j € {1,...,n}. From
obtained result it follows that for 99% of binary decision tables with n rows, m >
[log, n] + 7 conditional attributes and the decision attribute from D for j-th row
there exists an exact decision rule which length is equal to [log, n] + 7.

Partial Decision Rules Constructed by Greedy Algorithm for the Most
Part of Binary Decision Tables

Now we study the behavior of greedy algorithm for the most part of binary decision
tables, under some assumption on relationships between the number of rows and the
number of columns in tables.

Let I be a binary information system with n rows and m columns labeled with
attributes fi,..., f,,. For j = 1,...,n, we denote by r; the j-th row of I. The
information system [ will be called strongly saturated if, for any row r; = (b1, ..., by,)
of I, for any k € {1,...,n — 1} and for any k rows with numbers different from j,
there exists a column f; which has at least k/2 numbers —b; at the intersection with
considered k rows.

First, we evaluate the number of strongly saturated binary information systems.
After that, we study the work of greedy algorithm on a decision table obtained from
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a strongly saturated binary information system by adding a decision attribute. It is
clear that the 0.5-hypothesis for decision rules holds for every such table.

Theorem 1.55. Let us consider binary information systems with n rows and m >
n + logy,n columns labeled with attributes fi,..., fm. Then the fraction of strongly
saturated information systems is at least 1 — 1/2m—n-losantl,

Proof. Let us fix a number j € {1,...,n}, a tuple b = (by,...,b,) € {0,1}™, a
number k£ € {1,...,n — 1} and k rows with numbers different from j. We now
evaluate the number of information systems in which r; = band, fori =1,...,m,
the column f; has less than k/2 numbers —b; at the intersection with considered k
rows. Such information systems will be called (7, b)-unsaturated in the considered &k
rows.

From Lemma 1.32 it follows that the number of tuples from {0, 1}* which have
less than k/2 numbers —b;, is at most 27!, Therefore, the number of information
systems, which are (j, b)-unsaturated in the considered k rows, is at most 2m"=2™,

There are n variants for the choice of j, at most 2"~ variants for the choice of k €
{1,...,n—1} and k rows with numbers different from j, and 2 variants for the choice
of tuple b. Therefore, the number of information systems, which are not strongly
saturated, is at most n2n—12momn=2m — gmn-2mtlogynin—ltm _ gmntlogyntn—m-1
and the fraction of strongly saturated information systems is at least

gmn _ 2mn+log2 n4+n—m—1 1

omn =1- 9m—n—logyn+1 °

O

For example, if m > n+log, n+6, then at least 99% of binary information systems
are strongly saturated.

Let us consider the work of greedy algorithm on an arbitrary decision table T
obtained from a strongly saturated binary information system. Let r be an arbitrary
row of table T. For i = 1,2, ..., after the step number i at most |U(T,r)|/2" rows
from U(T, R) are unseparated from r. It is not difficult to show that Lgeedy(a) <
[logy(1/c)] for any real o, 0 < o < 1. One can prove that Lgeedy (0) < log, |U(T,r)|+
1. It is easy to check that [pr(0) < 2.

Results of Experiments

The first group of experiments is connected with the consideration of binary deci-
sion tables T' containing n € {10, 50, 100, 1000, 3000, 5000} rows, m € {10, 40, 100}
conditional attributes and one decision attribute with values from the set {1,...,c},
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¢ € {2,10,100}. For each triple of values (n,m, ¢), we generated randomly a decision
table such that each element of this table is equal to b, b € {0,1}, with probability
1/2, and each decision is equal to d, d € {1,...,c}, with probability 1/c. For this
table, we choose randomly 10 rows r. The results of experiments are represented in
Tables 1.4-1.7.

In Table 1.4 the average percentage of rows from U (T, r) separated from r at i-th
step of greedy algorithm, ¢ = 1,..., 10, is presented for the case, where m = 40 and
¢ = 10. For example, 53.10 means that, on the average, 53.10% of rows remaining
unseparated before i-th step are separated at i-th step.

Table 1.4. Average percentage of rows separated at i-th step of greedy algorithm (m = 40 and ¢ = 10)

Number Number of step

of rows n| 1 2 3 4 5 6 7 8 9 10
10 85.79|100.00

50 65.99| 74.71 {94.67|100.00

100 61.90| 67.42 |79.38|100.00

1000 54.05| 55.05 |56.54| 56.56 [64.01|76.50{100.00

3000 52.04| 52.50 |53.77| 55.52 57.06/61.51| 71.01 ({82.94|100.00
5000 51.57| 52.09 |53.10| 54.31 |56.28|59.01| 64.85 |74.46| 92.07 {100.00

In Table 1.5 for each o € {0.1,0.01,0.001,0.0} the average length of a-decision
rules constructed by the greedy algorithm is presented for decision tables with 10
conditional attributes.

Table 1.5. Average length of a-decision rules for decision tables with 10 conditional attributes

@
0.1 0.01 0.001 0.0

Number Number of different decisions ¢

of rows n| 2 {10|100| 2 {10(100| 2 |10{100{ 2 |10{100
10 1.4|2.0(2.2(1.4|2.0{2.2(1.4|2.0{2.2|1.4|2.0| 2.2
50 2.5(2.8|3.0(3.3]4.2(4.13.3|4.2{4.1(3.3|4.2|4.1
100 2.813.013.0(4.4|5.1{5.0|4.4|5.1| 5.0 |4.4|5.1|5.0
1000 3.2(13.5|3.915.8/6.1|6.2|7.8(8.4|8.7|7.8|8.4|8.7
3000 3.9(4.0|14.016.2(6.4|6.5|8.2(8.6|8.7 |8.89.3/9.5
5000 4.0(4.0|14.0]6.4/6.8|6.88.6(8.9(9.1(9.0{9.9(9.9

In Table 1.6 for each o € {0.1,0.01,0.001,0.0} the average length of a-decision
rules constructed by the greedy algorithm is presented for decision tables with 40
conditional attributes.
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Table 1.6. Average length of a-decision rules for decision tables with 40 conditional attributes

o
0.1 0.01 0.001 0.0

Number Number of different decisions ¢
of rows n| 2 |{10|100| 2 {10(100| 2 |10{100{ 2 |10{100
10 1.3|2.0(2.0(1.3|2.0{2.0(1.3|2.0{2.0|1.3|2.0| 2.0
50 2.0(2.1|12.5|2.6{3.0|3.3|2.6/3.0(3.3|2.6|3.0{3.3
100 2.112.912.9(3.3(4.2(4.0|3.3|4.2{ 4.0 (3.3|4.2(4.0
1000 3.0(3.0|3.115.0(5.8|5.86.1{7.0{7.0|6.1|7.0{ 7.0
3000 3.1{4.0|13.916.06.0|6.0|7.4|8.0{7.9|7.7|8.5|8.7
5000 3.9(4.0|14.016.0(6.2|6.1|8.0(8.1|8.7|8.5|9.1{9.3

In Table 1.7 for each o € {0.1,0.01,0.001,0.0} the average length of a-decision
rules constructed by the greedy algorithm is presented for decision tables with 100
conditional attributes.

Table 1.7. Average length of a-decision rules for decision tables with 100 conditional attributes

o
0.1 0.01 0.001 0.0

Number Number of different decisions ¢
of rows n| 2 |{10|100| 2 {10(100| 2 |10{100{ 2 |10{100
10 1.12.0{2.0(1.1]|2.3{2.0|1.1|2.3{2.0|1.1{2.3]| 2.0
50 2.0(2.0|2.1|2.5(3.0|3.0|2.5]3.0{3.0|2.5|3.0{ 3.0
100 2.0(2.5|2.913.0{3.9/4.0|3.0{3.9(4.0(3.0|3.9(4.0
1000 3.0(3.0|3.0(5.0{5.1|5.3|6.0{6.4|6.8 |6.06.4|6.8
3000 3.0(3.5|3.716.0(6.0|6.0|7.0{7.8|7.8|7.1|8.2| 7.9
5000 3.4(4.014.016.0(6.0|6.0|7.6/8.0{8.0(8.0|8.9(8.7

The obtained results show that for the most part of the considered decision rule
problems (not only for the case, where m > n + log, n) during each step the greedy
algorithm chooses an attribute which separates at least one-half of unseparated rows.

It must be also noted that with increase of step number the percentage of rows,
separated at this step, grows for the most part of the considered decision rule prob-
lems.

The second group of experiments is connected with the comparison of quality of
greedy algorithm (Algorithm 2) and the following its modification: for a given decision
table T, row r of T', and real «, 0 < o < 1, we construct an a-decision rule for 7" and
r using the greedy algorithm, and after that, by removing from this a-decision rule
some conditions, we obtain an irreducible a-decision rule for T'. Irreducible means

that the considered rule is an a-decision rule for 7" and r, but if we remove from the
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left-hand side of this rule an arbitrary condition, then we obtain a rule which is not
an a-decision rule for 7" and r.

We generate randomly 10000 binary decision tables with binary decision attributes
containing 40 rows and 10 conditional attributes. For each o € {0.00,0.02,0.04, ...,0.30},
we find the number of tables for which the greedy algorithm for the first row con-
structs an a-decision rule with minimal length. This number is contained in the
column of Table 1.8 labeled with “Opt”.

We find the number of tables T" for which the modification of greedy algorithm
constructs for the first row an irreducible a-decision rule which length is less than
the length of a-decision rule constructed by the greedy algorithm. This number is
contained in the column of Table 1.8 labeled with “Impr”.

Also we find the number of tables T for which for the first row the modification of
greedy algorithm constructs an irreducible a-decision rule with minimal length which
is less than the length of a-decision rule constructed by the greedy algorithm. This
number is contained in the column of Table 1.8 labeled with “Opt+".

Table 1.8. Comparison of the greedy algorithm and its modification

a|  Opt| Impr| Opt+
0.00| 8456 387 373
0.02| 8456 387 373
0.04| 8530 353 342
0.06| 9017| 201 200
0.08| 9089 187 186
0.10f 9164| 181 181
0.12| 9323| 156 156
0.14| 9500 111 111
0.16| 9731 68 68
0.18| 9849 45 45
0.20[ 9954 10 10

0.22( 9973 5 5
0.24| 9994 0 0
0.26] 9998 0 0
0.28| 9998 0 0
0.30{ 10000 0 0

For small values of «, the improvement connected with the use of the modification
of greedy algorithm is noticeable. We use this modification in Chap. 4 under the
construction of classifiers based on partial decision rules.
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1.3 Conclusions

The chapter is devoted (mainly) to the theoretical and experimental analysis of greedy
algorithms for construction of partial covers and decision rules.

The obtained results show that, under some natural assumptions on the class
NP, these algorithms are close to the best polynomial approximate algorithms for
the minimization of partial covers and rules. Based on an information received during
greedy algorithm work it is possible to obtain lower and upper bounds on the minimal
complexity of partial covers and rules. Experimental and some theoretical results show
that, for the most part of randomly generated set cover problems and binary decision
tables, greedy algorithms construct simple partial covers and rules with relatively
high accuracy. In particular, these results confirm the 0.5-hypothesis for covers and

decision rules.
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Partial Covers and Decision Rules with Weights

In this chapter, we study the case, where each subset, used for covering, has its own
weight, and we should minimize the total weight of subsets in partial cover. The same
situation is with decision rules: each conditional attribute has its own weight, and
we should minimize the total weight of attributes in decision rule. If weight of each
attribute characterizes time complexity of attribute value computation, then we try
to minimize total time complexity of computation of attributes from partial decision
rule. If weight characterizes a risk of attribute value computation (as in medical or
technical diagnosis), then we try to minimize total risk, etc.

In rough set theory various problems can be represented as set cover problems
with weights:

e problem of construction of a reduct [55] or partial reduct with minimal total weight
of attributes for an information system;

e problem of construction of a decision reduct [55] or partial decision reduct with
minimal total weight of attributes for a decision table;

e problem of construction of a decision rule or partial decision rule with minimal
total weight of attributes for a row of a decision table (note that this problem is
closely connected with the problem of construction of a local reduct [55] or partial
local reduct with minimal total weight of attributes);

e problem of construction of a subsystem of a given system of decision rules which
“covers" the same set of rows and has minimal total weight of rules (in the capacity
of a rule weight we can consider its length).

So the study of covers and partial covers with weights is of some interest for rough
set theory and related theories such as test theory and LAD. In this chapter, we list
some known results on the set cover problem with weight which can be useful in
applications, and obtain certain new results.
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From results obtained in [61, 63| it follows that the problem of construction of par-
tial cover with minimal weight is NV P-hard. Therefore, we should consider polynomial
approximate algorithms for minimization of weight of partial covers.

In [58] a greedy algorithm with weights for partial cover construction was investi-
gated. This algorithm is a generalization of well known greedy algorithm with weights
for exact cover construction [8].

Using results from Chap. 1 (based on results from [11, 53] and technique created
in [61, 63]) on precision of polynomial approximate algorithms for construction of
partial cover with minimal cardinality and results from [58] on precision of greedy
algorithm with weights we show that, under some natural assumptions on the class
NP, the greedy algorithm with weights is close to the best polynomial approximate
algorithms for construction of partial cover with minimal weight. However, we can
try to improve results of the work of greedy algorithm with weights for some part of
set cover problems with weight.

We generalize greedy algorithm with weights [58], and consider greedy algorithm
with two thresholds. The first threshold gives the exactness of constructed partial
cover, and the second one is an interior parameter of the considered algorithm. We
prove that for the most part of set cover problems there exists a weight function and
values of thresholds such that the weight of partial cover constructed by the greedy
algorithm with two thresholds is less than the weight of partial cover constructed by
usual greedy algorithm with weights.

We describe two polynomial algorithms which always construct partial covers that
are not worse than the one constructed by usual greedy algorithm with weights, and
for the most part of set cover problems there exists a weight function and a value of
the first threshold such that the weight of partial covers constructed by the considered
two algorithms is less than the weight of partial cover constructed by usual greedy
algorithm with weights.

Information on greedy algorithm work can be used for obtaining lower bounds on
minimal cardinality of partial covers (see Chap. 1). We fix some kind of information
about greedy algorithm work and find unimprovable lower bound on minimal weight
of partial cover depending on this information. Obtained results show that this bound
is not trivial and can be useful for investigation of set cover problems.

There exist bounds on precision of greedy algorithm without weights for partial
cover construction which do not depend on the cardinality of covered set |7, 26, 27, 31].
We obtain similar bound for the case of weight.

The most part of results obtained for partial covers is generalized to the case
of partial decision rules for decision tables which, in general case, are inconsistent
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(a decision table is inconsistent if it has equal rows with different decisions). In
particular, we show that:

e Under some natural assumptions on the class N P, greedy algorithms with weights
are close to the best polynomial approximate algorithms for minimization of total
weight of attributes in partial decision rules.

e Based on an information receiving during greedy algorithm work it is possible to
obtain nontrivial lower bounds on minimal total weight of attributes in partial
decision rules.

e There exist polynomial time modifications of greedy algorithms which for a part
of decision tables give better results than usual greedy algorithms.

This chapter is, in some sense, an extension of Chap. 1 to the case of weights
which are not equal to 1. However, problems considered in this chapter (and proofs of
results) are more complicated than the ones considered in Chap. 1. Bounds obtained
in this chapter are sometimes weaker than the corresponding bounds from Chap. 1.
We should note also that even if all weights are equal to 1, then results of the work
of greedy algorithms considered in this chapter can be different from the results of
the work of greedy algorithms considered in Chap. 1. For example, for the case of
decision rules the number of chosen attributes is the same, but the last attributes
can differ.

This chapter is based on papers [32, 33, 34, 35|.

The chapter consists of three sections. In Sect. 2.1, partial covers are studied. In
Sect. 2.2, partial decision rules are considered. Section 2.3 contains short conclusions.

2.1 Partial Covers with Weights

This section consists of eight subsections. In Sect. 2.1.1, main notions are considered.
In Sect. 2.1.2, some known results are listed. In Sect. 2.1.3, polynomial approximate
algorithms for minimization of partial cover weight are studied. In Sect. 2.1.4, a
comparison of usual greedy algorithm and greedy algorithm with two thresholds is
given. Two modifications of greedy algorithm are considered in Sect. 2.1.5. Section
2.1.6 is devoted to the consideration of a lower bound on the minimal weight of
partial cover depending on some information about the work of greedy algorithm
with two thresholds. In Sect. 2.1.7, two bounds on precision of greedy algorithm with
two thresholds are considered that do not depend on the cardinality of covered set.
In Sect. 2.1.8, some experimental results are discussed.
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2.1.1 Main Notions

We repeat here some definitions from Chap. 1 and consider generalizations of other
definitions to the case of arbitrary natural weights.

Let A = {ay,...,a,} be a nonempty finite set. Elements of A are enumerated
by numbers 1,...,n (in fact, we fix a linear order on A). Let S = {B;}icq1,..m} =
{Bi,..., By} be a family of subsets of A such that By U...U B,, = A. We will
assume that S can contain equal subsets of A. The pair (A, S) will be called a set
cover problem. Let w be a weight function which corresponds to each B; € S a natural
number w(B;). The triple (A, S, w) will be called a set cover problem with weights.
Note that, in fact, the weight function w is given on the set of indexes {1,...,m}.
But, for simplicity, we are writing w(B;) instead of w(z).

Let I be a subset of {1,...,m}. The family P = {B;};c; will be called a subfamily
of S. The number |P| = |I| will be called the cardinality of P. Let P = {B;};e; and
Q) = {B,}ics be subfamilies of S. The notation P C @) will mean that I C J. Let us
denote PUQ = {Bi}iEIUJ> PNQ= {Bi}iEIﬂJ> and P \ Q= {Bi}iGI\J-

A subfamily @Q = {B;,,...,B;,} of the family S will be called a partial cover for
(A, 5). Let a be a real number such that 0 < o < 1. The subfamily @ will be called an
a-cover for (A, S)if |B;,U...UB;,| > (1—a)|A|. For example, 0.01-cover means that
we should cover at least 99% of elements from A. Note that a 0-cover is usual (exact)
cover. The number w(Q) = >}_, w(B;,) will be called the weight of the partial cover
Q. Let us denote by Cpin(a) = Chin(a, A, S, w) the minimal weight of a-cover for
(A, S).

Let a and v be real numbers such that 0 < v < a < 1. A greedy algorithm with
two thresholds o and ~y is presented on the next page (see Algorithm 3).

Let us denote by C7oeqy (@) = Cfreeay (@, A, S, w) the weight of a-cover constructed
by the considered algorithm for the set cover problem with weights (A, S, w).

Note that the greedy algorithm with two thresholds o and v = « (greedy algorithm
with equal thresholds) coincides with the greedy algorithm with weights considered
in [58].

2.1.2 Some Known Results

In this subsection, we assume that the weight function has values from the set of
positive real numbers. For natural m, we denote H(m) =1+ ...+ 1/m. It is known
that

Inm < H(m)<lnm+1.

Let us consider some results for the case of exact covers, where a = 0. In this case
~v = 0. The first results belong to Chvatal.
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Algorithm 3: Greedy algorithm with two thresholds o and ~ for partial cover

construction
Input : Set cover problem with weights (A, S, w), where S = {Bu,..., Bn}, and real numbers «
and 7 such that 0 <y < a < 1.
Output: a-cover for (4, 5).
Q— 0
D «— 0
M — [JAI(1 - a)];
N — [lAl(1 =)
while |D| < M do
select B; € S with minimal index i such that B; \ D # () and the value

w(BZ)
min{|B; \ D|, N — |D|}

is minimal;
Q — QU{Bi};
D «—— DU By;

end

return Q;

Theorem 2.1. (Chvatal [8]) For any set cover problem with weights (A, S,w), the
inequality C2 .4.(0) < Ciuin(0)H (| A]) holds.

greedy

Theorem 2.2. (Chvatal [8]) For any set cover problem with weights (A, S,w), the

inequality CO  4.(0) < Cruin(0)H (maxp,cs | B;|) holds.

greedy

Chvatal proved in [8] that the bounds from Theorems 2.1 and 2.2 are almost
unimprovable.

We now consider some results for the case, where a > 0 and v = «. The first

(67

reedy () Was obtained by Kearns.

upper bound on

Theorem 2.3. (Kearns [18|) For any set cover problem with weights (A, S,w) and
any o, 0 < a < 1, the inequality Cgreoqy () < Croin () (2H (|A]) + 3) holds.

This bound was improved by Slavik.

Theorem 2.4. (Slavik [58]) For any set cover problem with weights (A, S, w) and any
a, 0 < a < 1, the inequality CS ooqy (@) < Crin(@)H ([(1 — «)|A]]) holds.

greedy

Theorem 2.5. (Slavik [58])) For any set cover problem with weights (A, S, w) and

any o, 0 < o < 1, the inequality Cgo.q, () < Crin() H (maxp,es | Bi|) holds.

Slavik proved in [58| that the bounds from Theorems 2.4 and 2.5 are unimprovable.
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2.1.3 Polynomial Approximate Algorithms

In this subsection, we consider three theorems which follow immediately from Theo-
rems 1.13, 1.18 and 1.19.

Let 0 < a < 1. We consider the following problem: for a given set cover problem
with weights (A, S, w) it is required to find an a-cover for (A, S) with minimal weight.

Theorem 2.6. Let 0 < « < 1. Then the problem of construction of a-cover with
mainimal weight is N P-hard.

From this theorem it follows that we should consider polynomial approximate

algorithms for minimization of a-cover weight.

Theorem 2.7. Let « € R and 0 < o < 1. If NP € DTIME(nCUosloen))  then
for any €, 0 < e < 1, there is no polynomial algorithm that for a given set cover

problem with weights (A, S,w) constructs an a-cover for (A,S) which weight is at
most (1 — €)Crin(a, A, S, w) In|A|.

Theorem 2.8. Let a be a real number such that 0 < o < 1. If P # NP, then there
exists 6 > 0 such that there is no polynomial algorithm that for a given set cover

problem with weights (A, S,w) constructs an a-cover for (A,S) which weight is at
most 6Cin(ar, A, S, w) In|A|.

From Theorem 2.4 it follows that Cg .4 (@) < Cuin(a)(1 4 In|A]). From this
inequality and from Theorem 2.7 it follows that, under the assumption NP ¢
DTIME(nC(oglen))  the greedy algorithm with two thresholds o and v = « (in
fact, the greedy algorithm with weights from [58]) is close to the best polynomial ap-
proximate algorithms for minimization of partial cover weight. From the considered
inequality and from Theorem 2.8 it follows that, under the assumption P # NP, the
greedy algorithm with two thresholds a and v = « is not far from the best polynomial
approximate algorithms for minimization of partial cover weight.

However, we can try to improve the results of the work of greedy algorithm with

two thresholds o and v = « for some part of set cover problems with weights.

2.1.4 Comparison of Usual Greedy Algorithm and Greedy Algorithm
with Two Thresholds

The following example shows that if for greedy algorithm with two thresholds a and
~v we will use v such that v < a, we can obtain sometimes better results than in the
case ¥ = «.
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Ezxample 2.9. Let us consider a set cover problem (A, S, w) such that A = {1,2,3,4,
5,6}, S = {By, By}, By = {1}, By = {2,3,4,5,6}, w(B;) = 1 and w(B,) = 4. Set
a = 0.5. It means that we should cover at least M = [(1 — «)|A|] = 3 elements from
A. If v = a = 0.5, then the result of the work of greedy algorithm with thresholds
a and 7 is the 0.5-cover {B1, By} which weight is equal to 5. If v = 0 < «, then the
result of the work of greedy algorithm with thresholds o and « is the 0.5-cover { By}
which weight is equal to 4.

In this subsection, we show that, under some assumptions on |A| and |S|, for the
most part of set cover problems (A,S) there exists a weight function w and real
numbers o,y such that 0 < v < o < 1 and G}, g, (a, 4,5, w) < Cgreeqy (v, A, S, w).
First, we consider criterion of existence of such w, o and ~y (see Theorem 2.10). The
first part of the proof of this criterion is based on a construction similar to considered
in Example 2.9.

Let A be a finite nonempty set and S = {Bjy, ..., B,,} be a family of subsets of A.
We will say that the family S is 1-uniform if there exists a natural number k& such
that |B;| = k or |B;| = k + 1 for any nonempty subset B; from S. We will say that
S is strongly 1-uniform if S is 1-uniform and for any subsets By, ..., B;, from S the

family {B; \ U, ..., B, \ U} is l-uniform, where U = B;, U ... U By,.

Theorem 2.10. Let (A, S) be a set cover problem. Then the following two statements

are equivalent:

1. The family S is not strongly 1-uniform.
2. There exists a weight function w and real numbers o and v such that 0 < v <
a<1land C) 4 (a, A S w) < a, A, S w).

greedy (
greedy greedy

Proof. Let S = {By,..., By}, and the family S be not strongly 1-uniform. Let us
choose minimal number of subsets By, ..., B;, from the family S (it is possible that
t = 0) such that the family {By \ U,...,B,, \ U} is not l-uniform, where U =
B, U...UBy, (ift =0, then U = ). Since {B;\U, ..., By, \U} is not 1-uniform, there
exist two subsets B; and B; from S such that |B;\U| > 0 and |B;\U| > |B; \U| +2.
Let us choose real a and v such that M = [|A|(1 —«)] = |U| + |B; \ U] + 1 and
N =T[|A|(1—=~)] =|U|+|B;\U| + 2. It is clear that 0 < v < a < 1. Let us define
a weight function w as follows: w(B,) = ... = w(B,,) = 1, w(B;) = |A| x 2|B; \ U|,
w(Bj) = |A|(2|B; \ U| + 3) and w(B,) = |A|(3|B; \ U| + 6) for any B, from S such
that r & {i,4,01,...,1:}.

We now consider the work of greedy algorithm with two thresholds o and v = a.
One can show that during the first ¢ steps the greedy algorithm will choose subsets
By, ..., B;, (may be in an another order). It is clear that |U| < M. Therefore, the
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greedy algorithm should make the step number ¢ + 1. During this step the greedy
algorithm will choose a subset By from S with minimal number & for which B \U # 0
and the value

min{|B, \ U|,M — |U|}  min{|B, \ U|,|B; \U| + 1}

is minimal.

It is clear that p(i) = 2|A|, p(j) = (2+ 1/(|B; \ U] + 1))|A| and p(k) > 3|A|
for any subset By from S such that B, \ U # 0 and k ¢ {i,j,11,...,1l;}. Therefore,
during the step number ¢ + 1 the greedy algorithm will choose the subset B;. Since
|U|+|B;\U| = M —1, the greedy algorithm will make the step number ¢ +2 and will

choose a subset from S which is different from By, ..., B, B;. As a result we obtain
greedy (0 A, S, w) > 8+ [A] x 2| B \ U| + [A](2|B; \ U + 3).

We now consider the work of greedy algorithm with two thresholds « and ~.
One can show that during the first ¢ steps the greedy algorithm will choose subsets
By, ..., B, (may be in an another order). It is clear that |U| < M. Therefore, the
greedy algorithm should make the step number ¢ + 1. During this step the greedy
algorithm will choose a subset By from S with minimal number & for which B \U # 0
and the value
g(k) = — w(By) _ w(By)
min{|B, \ U|, N — |U|}  min{|B, \ U|,|B; \U| + 2}

is minimal.

It is clear that q(i) = 2|Al, ¢(5) = (2 — 1/(|B; \ U] + 2))|A| and q(k) > 3|A|
for any subset By from S such that B, \ U # 0 and k ¢ {i,j,11,...,1l;}. Therefore,
during the step number ¢ + 1 the greedy algorithm will choose the subset B;. Since
|U| + |B; \ U| > M, the a-cover constructed by greedy algorithm will be equal to
{By,,...,By,,B;}. As a result we obtain CJ. 4. (o, A, S,w) =t + |A|(2|B; \ U| + 3).

greedy
Since Cheeqy (v, A, S, w) >t + |A] x 2|B; \ U] + |A|(2|B; \ U] + 3) and |B; \ U| > 0,
we conclude that Cg.q (@, A, S, w) > O eqy(a, A, S, w).

Let the family S be strongly 1-uniform. We consider arbitrary weight function
w for S and real numbers o and ~ such that 0 < v < a < 1. Let us show that

Coreedy (@, A, S,w) > Cgrog (@, A, S;w). Let us denote M = [|A|(1 —a)] and N =
[JA[(1 =~)]. If M = N, then Cj, .q, (v, A, S, w) = Cgrooqy (@, A, S,w). Let N > M.

We now apply the greedy algorithm with thresholds o and v = « to the set cover
problem with weights (A, S, w). Let during the construction of a-cover this algorithm
choose sequentially subsets B, ..., By,. Let us apply now the greedy algorithm with
thresholds « and « to the set cover problem with weights (A, S, w). If during the
construction of a-cover this algorithm chooses sequentially subsets By, ..., B,, then
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C'greedy(OQ A’ S? ’UJ) -

r < t—1, such that during the first  steps the considered algorithm chooses subsets

reedy (@, A, S, w). Let there exist a nonnegative integer r, 0 <
By, ..., B, but at the step number 7 4 1 the algorithm chooses a subset Bj such
that & # g,41. Let us denote B,y = 0, D = B, U...UB, and J = {i : i €
{1,...,m}, B;\ D # 0}. It is clear that g, 1,k € J. For any i € J, we denote
L . —
min{[B,\ D], M — [DJ} min{|B,\ D, N — [DJ}

Since k # g,+1, we conclude that there exists i € J such that p(i) # ¢(7). Therefore,
|B;\D| > M —|D]|. Since S is strongly 1-uniform family, we have |B;\D| > M —|D| for
any j € J. From here it follows, in particular, that r+1 =t¢, and {By,,..., By, ,, Bi}
is an a-cover for (A4, S).

It is clear that p(g:) < p(k). Since |B,\ D| > M —|D| and |B,, \ D| > M —|D|, we
have p(k) = w(By)/(M—|D|), p(g:) = w(By,)/(M—|D]). Therefore, w(B,,) < w(By).
(a, A, S,w) = w(Bg,)+. .. +w(By,_,) +w(By) and

Taking into account that C']

greedy
Coroedy (@, A, S,w) = w(By,) + ... +w(By,_,) +w(By,) we obtain CJ, 4, (v, A, S,w) >
greedy(a A S ’UJ) U

Let us show that, under some assumptions on |A| and |S]|, the most part of set
cover problems (A, .S) is not 1-uniform and, therefore, is not strongly 1-uniform.

There is a one-to-one correspondence between set cover problems and tables filled
by numbers from {0, 1} and having no rows filled by 0 only. Let A = {ay,...,a,} and
S = {By,...,B,}. Then the problem (A,S) corresponds to the table with n rows
and m columns which for z = 1,...,n and 7 = 1,...,m has 1 at the intersection
of 4-th row and j-th column if and only if @; € B;. Remind that a table filled by
numbers from {0, 1} is called SC-table if this table has no rows filled by 0 only.

Lemma 2.11. Let n € N, n > 4 and k € {0,...,n}. Then Ck < Cl*/2l < 2n/ /n.

Proof. Tt is well known (see, for example, [75], p. 178) that C¥ < CL"/2. Let n be
even and n > 4. It is known (see [12], p. 278) that

2”
o< — o2
JEZ41 o Vn

2
Let n be odd and n > 5. Using well known equality Cl"/2 = ol 4 ol

and the fact, that CL" V2 > €k for any k € {0,...,n — 1}, we obtain CL"/2 <

201D Thys,

on

2n
W IR N SR

Therefore, for any n > 4 the inequality CL"/2 < 2"/,/n holds. O

cl/2l <
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Theorem 2.12. Let us consider set cover problems (A, S) such that A = {aq,...,
a,} and S = {By,...,Bn}. Let n > 4 and m > logyan + 1. Then the fraction of set
cover problems which are not 1-uniform is at least

9m/2+1

1- nm/2-1 "

Proof. The considered fraction is at least (¢ — p)/q, where ¢ is the number of SC-
tables with n rows and m columns, and p is the number of tables with n rows and m
columns filled by 0 and 1 for each of which there exists & € {1,...,n — 1} such that
the number of units in each column belongs to the set {0, k, k + 1}.
From Lemma 1.30 it follows that ¢ > 2m" — 2mn—mtlogan Tt ig clear that p <
O + OFL 1 1)™. From Lemma 2.11 it follows that Cl"/2 > C* for any k €
{1,...,n}. Therefore, p < (n — 1) (30,&"/2J)m. Using Lemma 2.11 we conclude that

3Cn/29m /. /n/9 for any n > 4. Therefore,

7(71_1”)5:” andu:1—2—9>1— o (n = 1)2™ .
(%) q q (%) (an — 9mn—m-+log, n)

Taking into account that m > log, n + 1 we obtain

¢—p 2(n —1) g/t

/
©[3
—

O

So if n is large enough and m > log, n+1, then the most part of set cover problems
(A, S) with |A| = n and |S| = m is not 1-uniform.

For example, the fraction of set cover problems (A, S) with |A| = 81 and |S| = 20,
which are not 1-uniform, is at least 1 — 1/97 = 1 — 1/4782969.

2.1.5 Two Modifications of Greedy Algorithm

Results obtained in the previous subsection show that the greedy algorithm with two
thresholds is of some interest. In this subsection, we consider two polynomial mod-
ifications of greedy algorithm which allow us to use advantages of greedy algorithm
with two thresholds.

Let (A, S,w) be a set cover problem with weights and « be a real number such
that 0 < a < 1.

1. Of course, it is impossible to consider effectively all v such that 0 < v < «. Instead
of this, we can consider all natural N such that M < N < |A|, where M =
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[NA|(1 — )] (see Algorithm 3). For each N € {M,...,|A|}, we apply Algorithm
3 with parameters M and N to the set cover problem with weights (A, S, w) and
after that choose an a-cover with minimal weight among constructed a-covers.

2. There exists also an another way to construct an a-cover which is not worse than
the one obtained under consideration of all N such that M < N < |A|. Let us
apply greedy algorithm with thresholds « and v = « (see Algorithm 3) to the
set cover problem with weights (A, S,w). Let the algorithm choose sequentially
subsets By,, ..., B,,. Foreach i € {0,...,t—1}, we find (if it is possible) a subset
By, from S with minimal weight w(B;,) such that |By, U...U By, UB;,| > M, and
form an a-cover {B,,,..., By, B} (if ¢ = 0, then it will be the family {Bj}).
After that, among constructed a-covers {By,,..., By}, ..., {By,, ..., By, Bi.}, -
we choose an a-cover with minimal weight. From Proposition 2.13 it follows that
the constructed a-cover is not worse than the one constructed under consideration
of all 7, 0 <~ < a, or (which is the same) all N, M < N < |A].

Proposition 2.13. Let (A, S,w) be a set cover problem with weights and o, 7y be real
numbers such that 0 < v < a < 1. Let the greedy algorithm with two thresholds o
and o, which is applied to (A, S,w), choose sequentially subsets By,, ..., B,,. Let the
greedy algorithm with two thresholds o and vy, which is applied to (A, S,w), choose
sequentially subsets By, ..., By,. Then either k =t and (Li,...,ly) = (¢1,...,9:) or

E<t, (lh,....le—1) = (91, -, gr—1) and ly, # gx.

Proof. Let S ={By,...,Bny}. Let usdenote M = [|A|(1 — a)] and N = [|A|(1 —7)].

Let (l1,...,lk) # (g1,-..,9t). Since {B,,, ..., By, |} is not an a-cover for (4, 5), it
is impossible that & < ¢ and (l,...,l) = (g1, ..., 9x). Since {By,,..., By} is an a-
cover for (A, S), it is impossible that £ > t and (I1,...,l;) = (g1, ..., 9:). Therefore,
there exists ¢ € {0,...,t — 1} such that during the first ¢ steps algorithm with
thresholds o and « and algorithm with thresholds a and + choose the same subsets
from S, but during the step number ¢ + 1 the algorithm with thresholds « and ~
chooses a subset B;, ., such that ;11 # git1.

Let us denote B,y = (), D = By U...UBy, and J = {j: j € {1,...,m}, B;\D # 0}.
It is clear that g;11,l;i41 € J. For any j € J, let

w(B;)

L w(B;)
PU) = Sin{[B,\ D] M~ D]}

min{|B; \ D|, N — |D|} -

and q(j) =

Since N > M, we have p(j) > ¢(j) for any j € J. We now consider two cases.
Let Giv1 < lz‘+1. In this case we have p(gl-l-l) < p(lz—i-l) and Q(gz—i-l) > q(lz+1) USiIlg

inequality p(gi11) > q(gir1) we obtain p(gi11) > q(liv1) and p(liy1) > q(liy1). From
the last inequality it follows that |B;,,, \ D| > M — |D|.
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Let gi11 > l;+1. In this case we have p(g;11) < p(lit1) and ¢(gi41) > q(lix1). Using
inequality p(gi+1) > q(gi+1) we obtain p(gi+1) > q(li41) and p(l;41) > q(l;41). From
the last inequality it follows that |B;,,, \ D| > M — |D|.

So in any case we have |By,,, \ D| > M — |D|. From this inequality it follows that
after the step number ¢ + 1 the algorithm with thresholds o and ~ should finish the
work. Thus, k =i+ 1, k <t, (l1,...,lk—1) = (91, -, gk—1) and Iy # gx. O

2.1.6 Lower Bound on C,;, ()

In this subsection, we fix some information about the work of greedy algorithm with
two thresholds and find the best lower bound on the value Cy,i,(«) depending on this
information.

Let (A, S,w) be a set cover problem with weights and «,~ be real numbers such
that 0 < v < a < 1. Let us apply the greedy algorithm with thresholds oo and v to
the set cover problem with weights (A, S, w). Let during the construction of a-cover
the greedy algorithm choose sequentially subsets By, ..., B,,.

Let us denote By, = () and §y = 0. For ¢ = 1,...,¢, we denote 0; = |By, \ (By, U
...UBy, )| and w; = w(By,).

As information on the greedy algorithm work we will use numbers My =
Mc(a, v, A, S,w) = [|A|(1 —«)] and No = Ne(a, v, A, S,w) = [|A|(1—7)], and
tuples Ac = Ac(a, v, A, S,w) = (01,...,0), We = We(a,v, A, S,w) = (wy, ..., wy).

Fori=0,...,t— 1, we denote

min{d; 11, Ne — (do+ ...+ )}

0 =
Let us define parameter oc(a,v) = oc(a, 7y, A, S, w) as follows:

oc(a,y) =max{g;:i=0,...,t —1}.

We will prove that gc(a,7) is the best lower bound on Cpy,(a) depending on
M¢, Ne, Ac and We. This lower bound is based on a generalization of the following
simple reasoning: if we should cover M elements, and the maximal cardinality of a
subset from S is 0, then we should use at least [M/d] subsets.

Theorem 2.14. For any set cover problem with weights (A, S, w) and any real num-
bers a,v, 0 < v < a < 1, the inequality Cyin(a, A, S, w) > oc(a, 7y, A, S,w) holds,

and there ezists a set cover problem with weights (A’ S",w") such that

Mc(Oé,’y,A,, Slaw,) - MC(OQ’%AJ S7w> )
NC(a>’Y>A,> S/aw/) = Nc(O{,’}/,A, S,UJ) )
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Ac(a,v, A", S w') = Ac(a, v, A, S, w)
Wela, v, A, S, w') = Wela, v, A, S, w) |

oc(a, v, A', S w') = oc(a,v, A, S, w)
Cin(a, A, S w') = oo (a, v, A, S, w') .

Proof. Let (A, S,w) be a set cover problem with weights, S = {By, ..., B}, and a, 7
be real numbers such that 0 < v < a < 1. Let us denote M = Mg (a, 7, A, S,w) =
[JA|(1 - )] and N = Ng(a,v,A,S,w) = [|A|(1—7)]. Let {By,,..., B} be an
optimal a-cover for (A, S, w), i.e., w(By)+...+w(By,) = Cuin(a, A, S, w) = Ciyin()
and |B, U...UB, | > M.

We now apply the greedy algorithm with thresholds o and « to (A, S, w). Let
during the construction of a-cover the greedy algorithm choose sequentially subsets
B,,....,B,. Set B,, = 0.

Leti € {0,...,t—1}. Let us denote D = By, U...UB,,. It is clear that after i steps
of greedy algorithm work in the set B;, U...U By, at least |B;, U...U By, | — | By, U

..UBy,| > M —|D| > 0 elements remained uncovered. After i-th step, p1 = | B, \ D|

elements remained uncovered in the set By, ..., and p, = |B;, \ D| elements remained
uncovered in the set B;,. We know that p; + ...+ p, > M — |D| > 0. Let, for
simplicity, p; > 0,...,p, > 0,p,01 = ... = pr = 0. For j = 1,...,r, we denote

¢; = min{p;, N — |D|}. It is clear that N — |D| > M — |D|. Therefore, g1 +...+ ¢, >
M — |D|. Let us consider numbers w(By,)/qi, ..., w(By.)/q,. Let us show that at
least one of these numbers is at most 5 = (w(By,)+...+w(By,.))/ (g1 + ...+ ¢). We
assume the contrary. Then w(By,)+...+w(B,.) = w(By)q /¢ + - .. +w(By,)g- /¢ >
(r+...+¢)8=w(By)+...+w(B,), which is impossible.

We know that ¢1 + ... +¢ > M — |D| and w(B;,) + ... + w(B;,) < Cuin(@).
Therefore, 3 < Chin(a) /(M —|D|), and there exists j € {1, ..., k} such that B;,\ D #
0 and w(By,)/ min{|B;, \ D|, N — |D|} < /3. Hence,

w(BQH-l) <g< Cmm(a)
win{[ By, \ DL N 1D} =" = A - D]

and Cmin(a) > w(Bgi+1>(M - |D|>/min{‘Bgi+1 \ D‘v N — ‘D‘}

Taking into account that Ci,(«) is a natural number we obtain  Chn(a) >
|w(By,,,)(M — |D|)/min{|B,,,, \ D|, N — |D|}| = o Since the last inequality holds
forany i € {0,...,t—1} and oo (a,y) = 0c(, v, A, S,w) = max{g; : i =0,...,t — 1},
we conclude that Ciin(a) > oc(a, 7).

Let us show that this bound is unimprovable depending on Mg, No, Ac and
We. Let us consider a set cover problem with weights (A’ S’ w’), where A’ = A,

' = {By,...,Bp Bu1}, |Bmsi| = M, By, U...UB,_, C Buy C B, U
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... UBy, w'(B) = w(Bi),...,w(By) = w(By) and W' (Bni1) = oc(a,7). It is
clear that Mo (a,vy, A, S, w') = Mc(a, 7y, A, S,w) = M and Ne(a,v, A, S w'") =
Neo(a,v, A, S,w) = N. We show  Ag(a,y, A, S w') = Ac(a,v, A, S,w) and
Wela,v, A" S w') = We(a, vy, A, S, w).

Let us show by induction on ¢ € {1,...,t} that for the set cover problem with
weights (A’, 8", w’) at the step number i the greedy algorithm with two thresholds «
and vy will choose the subset B,,. Let us consider the first step. Set D = (). It is clear
that w'(By,41)/ min{|Bp1 \ D|, N —|D|} = oc(a, ) /(M —|D|). From the definition
of oc(a, ) it follows that

w,(Bgl) _ w(Bm) < oc(a, )
win{[By, \ DI, N — DI} ~ min{|B,, \ D}, N —[D]} =~ M — D]

Using this fact and the inequality g; < m + 1 it is not difficult to prove that at the
first step the greedy algorithm will choose the subset B,,.

Let ¢ € {1,...,t — 1}. Let us assume that the greedy algorithm made i steps for
(A', S, w') and chose subsets By, , ..., B,,. Let us show that at the step ¢+1 the subset
By, will be chosen. Let us denote D = B, U...UB,,. Since By, U...UB,, C By,
and |Bp, 41| = M, we have |B,,41 \ D| = M — | D|. Therefore, w'(By,4+1)/ min{|By,41 \
D|,N —|D|} = oc(a,7)/(M — | D|). From the definition of the parameter oc(c, ) it
follows that

w/(BgiJrl) w(Bgi+1) < QC(O‘77)

min{|By,,, \ DI, N —[D|} ~ min{|By,,, \ D|,N = |D[} = M — D[

i1 git1
Using this fact and the inequality g;+1 < m + 1 it is not difficult to prove that at the
step number ¢ + 1 the greedy algorithm will choose the subset B, .

Thus, Acla, v, A, S, w)=Acla, v, A, S,w) and Wela, v, A, S, w)=We(a,v,A,Sw).
Hence, oc(a, v, A", S, w'") = oc(a,v, A, S;,w) = oc(a, 7). From been proven it fol-
lows that Chyin(a, A, S, w') > oc(a,y, A, S w'). It is clear that {B,,41} is an a-
cover for (A’,S’) and the weight of {B,,11} is equal to oc(a,vy, A, S",w’). Hence,

Cmin(a>A,7 S,7w,) = QC(OK,%A/,S,,UJ/)- a

Let us consider a property of the parameter oc(c,y) which is important for prac-
tical use of the bound from Theorem 2.14.

Proposition 2.15. Let (A, S, w) be a set cover problem with weights and o, 7y be real
numbers such that 0 < v < o < 1. Then oc(a, a, A, S,w) > oc(a, vy, A, S,w).

Proof. Let S = {By,...,Bn}, M = [|A|(1 —a)], N = [|A|(1 —v)], and oc(a, ) =
Qc(a,OK,A, 57 w)a QC(OK,’Y) = QC(OK,’Y,A, 57 w)
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Let us apply the greedy algorithm with thresholds o and « to (A, S, w). Let during
the construction of a-cover this algorithm choose sequentially subsets By,, ..., B,,.
Let us denote By, = 0. For j =0,...,¢t — 1, we denote D; = By, U...U B, and

w(Bg,,,)(M — |Dj])
min{|B,, ., \ D;|,M — |Dj|}|

oc(a, o, j) =
gj+1
Then oc(a, a) = max{oc(a,a,j):j=0,...,t —1}.

We now apply the greedy algorithm with thresholds « and 7 to (A, S,w). Let
during the construction of a-cover this algorithm choose sequentially subsets By, ...,
B,,. From Proposition 2.13 it follows that either k = ¢ and (ly,...,lx) = (g1, -, )
or k<t (l1,..., k1) = (g91,.--,9k-1) and Iy # gx. Let us consider these two cases
separately. Let k =t and (I1,...,lx) = (¢1,...,9:). For j =0,...,t — 1, we denote

oc(a,v,j) = { BT w '
» b min{|B,, ., \ D;|, N — |D;l}

Then oc(a,v) = max{oc(®,v,j) : j = 0,...,t — 1}. Since N > M, we have
oc(a,7,7) < oc(a,a,j) for j =0,...,t — 1. Hence, oc(a, ) < oc(a,a). Let k < t,
(i, 1) = (915 - -+, gk—1) and I, # g. Let us denote

w(By, ) (M — |Dys|) w
min{|By, \ Dy_1|, N — |Dy_1|}

oc(o, v,k —1) = {

and, for j =0,...,k— 2,

(Oé ) _ w(ng+1>(M_ ‘DJD
AN min{[ By, \ DN — D[} | -

Then oc(,v) = max{oc(a,7,j) : j = 0,...,k — 1}. Since N > M, we have
oc(a,v,7) < ocla,a,j) for j =0,...,k—2. It is clear that

w(Blk) < w(BQk)
min{| By, \ Dy-1|, N — [Dy-1[} — min{[By, \ D], N — [ D1}
w(DBy,)

< .
= min{|By, \ Dy-1|, M — | Dy}

Thus7 QC(avry’k - 1) < QC(O[,Oé,k - 1)7 QC(OQ/Y) < Qc(Oé,Oé). U

2.1.7 Upper Bounds on Cg, .4, ()

In this subsection, we study some properties of parameter gc(«, ) and obtain two

upper bounds on the value C] __, («) which do not depend directly on cardinality of

greedy
the set A and cardinalities of subsets B; from S.
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Theorem 2.16. Let (A, S,w) be a set cover problem with weights and «,~ be real
numbers such that 0 < v < a < 1. Then

1—
Ogreedy(a7Aa S,UJ) < QC('}/,'}/,A, S,’LU) <1n <a—_?;> + 1) .

Proof. Let S ={By,...,By}. Let usdenote M = [|A|(1 — a)] and N = [|A|(1 —7)].
We now apply the greedy algorithm with thresholds v and 7 to (A,S,w). Let
during the construction of y-cover the greedy algorithm choose sequentially subsets
By, ..., By, Let us denote By, =0, for i =0,...,t — 1 denote D; = By, U...U By,
and denote o = 0¢(7,7, A, S,w). Immediately from the definition of the parameter p
it follows that for ¢ =0,...,t — 1,
w(By,,,) < 0
min{lBgiH \Dil, N —|Dil} = N —[Di|
Note that min{|By,,, \ Di|, N — |D;|} = |By,., \ D;| for i = 0,...,t — 2, since
{Bygg; ..., By, } is not a y-cover for (A, S). Therefore, for i = 0,...,t — 2 we have
w(BgiH)/IB%+1 \ Di| < o/(N = |Ds]) and (N — [Di])/e < [Bg,,, \ Dil/w(By,,)-
Thus, for ¢ = 1,...,t — 1, during the step number i the greedy algorithm covers at

(2.1)

least (N — |D;_1])/0 elements on each unit of weight. From (2.1) it follows that for
i=0,... t—1,

omin{|By,,, \Dz'|,N— |1 Ds[}

Let us assume that ¢ = 1. Using (2.2) we obtain w(B,,) = 1. From this equality
and (2.1) it follows that |By,| > N. Therefore, {B,,} is an a-cover for (4, S), and
Corecdy (@) = 1. Tt is clear that In ((1 —)/(e —)) +1 > 1. Therefore, the statement
of the theorem holds if o = 1.

We assume now that o > 2. Let |By,| > M. Then {By, } is an a-cover for (A4, S5).
Using (2.2) we obtain Cj..q, (@) < . Since In ((1 —v)/(a — 7)) +1 > 1, we conclude
that the statement of the theorem holds if |By, | > M. Let |B,,| < M. Then there
exists ¢ € {1,...,¢t — 1} such that |[B,, U...UB, | < M and |[By, U...UB,_, | > M.

Taking into account that for ¢ = 1,...,q during the step number 7 the greedy
algorithm covers at least (N — |D;_1])/0 elements on each unit of weight we obtain
N —|B, U...UB, | <N (1 1/ )@ Ba)t-twBaa) et us denote k = w(By,) + ... +
w(By,). Then N — N (1 — 1/0)* < |B,, U... U By, | < M — 1. Therefore, |A|(1—7) —
A[(1=) (1 = 1/0)* < [A[(1—a), 1=7—1+a < (1-7) (e — 1)/0)", (o/ (0 — 1))
(1=7)/(a=7), (1+1/(e—1))" < (1 =7)/(a =), and k/o < In ((1 =7)/(a = 7)).
To obtain the last inequality we use known inequality In (14 1/r) > 1/(r+ 1) which
holds for any natural r. It is clear that CJ .4 () = k + w(B,41). Using (2.2) we
conclude that w(By41) < o. Therefore, CJ 4, (o) < oIn ((1 =7)/(a—7)) + 0. O
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Corollary 2.17. Let € be a real number, and 0 < € < 1. Then for any o such that
e < a <1 the following inequalities hold:

greedy

Qc(Oé,Oé) < Cmin(a> <C¢E (Oé) < Qc(Oz — &, — 5) (]né + 1) .

For example, if ¢ = 0.01 and 0.01 < a < 1, then go(a,a) < Cum(a) <
Co00(q) < 56lgc(a — 0.01,a — 0.01), and if ¢ = 0.1 and 0.1 < a < 1, then

greedy

oc(a,a) < Chin(a) < Cg‘rgfd;(oz) < 3.3loc(a— 0.1, — 0.1).

The obtained results show that the lower bound Ciyin (@) > oc (v, @) is nontrivial.

Theorem 2.18. Let (A, S,w) be a set cover problem with weights and «,~ be real
numbers such that 0 < v < a < 1. Then

1—7
Corecdy (@, A, S, w) < Ciin(7, 4, 5, w) <ln (a - 7) + 1) .

Proof. Using Theorem 2.16 we obtain  Cj .y (a, 4, S,w) < oc(v,7, 4, S,w) x
(In((1 —~)/(a—7)) + 1). The inequality oc(7y,7, A, S, w) < Crin(7, A, S, w) follows

from Theorem 2.14. O

Corollary 2.19. C%3 . (0.5)<2.26Ci,(0.3), C%L ;. 0.2< 3.20C i, 0.1), C%:% ©0.01)<

greedy greedy greedy

5.71Cmin (0.001), CO_, (0.001) < 7.91Cpin(0).

greedy

Corollary 2.20. Let 0 < o < 1. Then Cg,ooq, () < Cinin(0) (In(1/cr) + 1).

reedy

Corollary 2.21. Let € be a real number, and 0 < € < 1. Then for any « such that
e < a <1 the inequalities Cpin(a) < Coli () < Crin(a —€) (In(1/e) + 1) hold.

greedy

2.1.8 Results of Experiments for a-Covers

All experiments can be divided into three groups.

The First Group of Experiments

The first group of experiments is connected with study of quality of greedy algorithm
with equal thresholds (where v = a or, which is the same, N = M), and comparison
of quality of greedy algorithm with equal thresholds and the first modification of
greedy algorithm (where for each N € {M, ..., |A|} we apply greedy algorithm with
parameters M and N to set cover problem with weights, and after that choose an
a-cover with minimal weight among constructed a-covers).

We generate randomly 1000 set cover problems with weights (A, S, w) such that
|A| =40, |S| =10 and 1 < w(B;) < 1000 for each B; € S.
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For each a € {0.0,0.1,...,0.9}, we find the number of problems (A, S, w) for
which greedy algorithm with equal thresholds constructs an a-cover with minimal
weight (optimal a-cover), i.e., Cg gy (@, 4,5, w) = Cin(a; A, S, w). This number is
contained in the row of Table 2.1 labeled with “Opt”.

We find the number of problems (A, S, w) for which the first modification of greedy
algorithm constructs an a-cover which weight is less than the weight of a-cover con-
structed by greedy algorithm with equal thresholds, i.e., there exists v such that
0 <7y <aand Cp g, A, 5, w) < Cgecqy(a, A, S;w). This number is contained in
the row of Table 2.1 labeled with “Impr”.

Also we find the number of problems (A, S, w) for which the first modification of
greedy algorithm constructs an optimal a-cover which weight is less than the weight
of a-cover constructed by greedy algorithm with equal thresholds, i.e., there exists
such that 0 < v < a and CJ .4y (a, 4,9, w) = Cpin(a, A, S, w) oreedy (0, A, S, W),

This number is contained in the row of Table 2.1 labeled with “Opt+".

Table 2.1. Results of the first group of experiments with a-covers

a (0.0/0.1{0.2/0.3{0.4|0.5{0.6|0.7{ 0.8 | 0.9
Opt [330/623]674|858|814|711]939|995|1000{1000
Impr| 0 |53|42|37 1329|132 | O 0
Opt+| 0 [20(27(32] 9 |28|12| 0| O 0

The obtained results show that the percentage of problems for which greedy al-
gorithm with equal thresholds finds an optimal a-cover grows almost monotonically
(with local minimum near to 0.4-0.5) from 33% up to 100%. The percentage of prob-
lems for which the first modification of greedy algorithm can improve the result of the
work of greedy algorithm with equal thresholds is less than 6%. However, sometimes
(for example, if & = 0.3 or a = 0.6) the considered improvement is noticeable.

The Second Group of Experiments

The second group of experiments is connected with comparison of quality of greedy
algorithm with equal thresholds and the first modification of greedy algorithm.

We make 25 experiments (row “Nr” in Table 2.2 contains the number of experi-
ment). Each experiment includes the work with three randomly generated families of
set cover problems with weights (A, .S, w) (1000 problems in each family) such that
|A| = n, |S| = m and w has values from the set {1,...,v}.

If the column “n” contains one number, for example “40”, it means that |A| = 40.
If this row contains two numbers, for example “30-120”, it means that for each of
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1000 problems we choose the number n randomly from the set {30,...,120}. The
same situation is for the column “m”.

If the column “a” contains one number, for example “0.1”, it means that a = 0.1.
If this column contains two numbers, for example “0.2-0.4”, it means that we choose
randomly the value of « such that 0.2 < a < 0.4.

For each of the considered set cover problems with weights (A, S, w) and number «,
we apply greedy algorithm with equal thresholds and the first modification of greedy
algorithm. Column “#:”, i = 1,2, 3, contains the number of problems (A, S, w) from
the family number 7 for each of which the weight of a-cover, constructed by the first
modification of greedy algorithm, is less than the weight of a-cover constructed by
greedy algorithm with equal thresholds. In other words, in column “#:” we have the
number of problems (A, S, w) from the family number i such that there exists v for

Table 2.2. Results of the second group of experiments with a-covers

|Nr|n |m |1) |a |#1|#2|#3|avg |
1 |1-100 |1-100 |{1-10 |0-1 11 (4 |20

2 |1-100 |{1-100 |1-100 |0-1 10 |13 (14 [12.33
3 |1-100 |1-100 |1-1000{0-1 15 (8 (22 |15.0
4 |1-100 |1-100 |1-1000|0-0.2 |27 |23 |39 |29.66
5 |1-100 |{1-100 |1-1000{0.2-0.4(31 |27 (19 |25.66
6 |1-100 |{1-100 |1-1000|0.4-0.6(16 |14 (22 [17.33
7 |1-100 |{1-100 |1-1000|0.6-0.8{4 |7 (6 |5.66
8 |1-100 |{1-100 |1-1000{0.8-1 |0 |1 [0 ]0.33
9 |100 1-30 |1-1000{0-0.2 |32 |26 |39 |32.33
10100  |30-60 |1-1000{0-0.2 |40 (36 |33 |36.33
11100  |60-90 |1-1000({0-0.2 |43 |43 |53 |46.33
12100  [90-120|1-1000|0-0.2 |43 |45 |33 |40.33
13{1-30 |30 1-1000{0-0.2 |21 |14 |14 |16.33
1430-60 |30 1-1000{0-0.2 |47 |43 |40 |43.33
15(60-90 |30 1-1000{0-0.2 |40 (40 |52 |44.0
16 {90-120|30 1-1000|0-0.2 |32 |47 |33 |37.33
17140 10 1-1000(0.1 60 |57 |59 |58.66
18 40 10 1-1000(0.2 43 138 |37 {39.33
1940 10 1-1000{0.3 29 |31 |35 |31.66
20 |40 10 1-1000{0.4 4 |13 |13 |10.0
21 |40 10 1-1000|0.5 17129 |21 |22.33
22 |40 10 1-1000{0.6 10 |15 (13 [12.66
23140 10 1-1000(0.7 3 |1 |1 |1.66
24140 10 1-1000{0.8 0 |0 |0 |0.0
25140 10 1-1000{0.9 0 |0 |0 |0.0
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which 0 < v < a and G} (0, 4,5, w) <

contains the number (#1 + #2 + #3)/3.
In experiments 1-3 we consider the case, where the parameter v increases. In

reedy (@, A, S;w). The column “avg”

experiments 4-8 the parameter « increases. In experiments 9-12 the parameter m
increases. In experiments 13-16 the parameter n increases. In experiments 17-25
the parameter « increases. The results of experiments show that the value of #i
can change from 0 to 60. It means that the percentage of problems, for which the
first modification of greedy algorithm is better than the greedy algorithm with equal
thresholds, can change from 0% to 6%.

The Third Group of Experiments

The third group of experiments is connected with investigation of quality of lower
bound Chin(a) > oc (v, ).

We choose natural n, m, v and real o, 0 < v < 1. For each chosen tuple (n, m, v, a),
we generate randomly 30 set cover problems with weight (A, S, w) such that |A| = n,

= m and w has values from the set {1,...,v}. ter that, we find values o

S dwh lues f h Af h find val f

ereedy (@, A, S, w) and oo(a, a, A, S, w) for each of generated 30 problems. Note that
oc(a,a, A, S,w) < Crin(a, A, S, w) < Cgeeqy (@, A, S w)

Finally, we find mean values of C¢ .. (a, A, S, w) and gc(a, o, A, S, w) for generated

greedy
30 problems.

Results of experiments can be found in Figs. 2.1 and 2.2. In these figures mean
values of pc(a, ar, A, S,w) are called “average lower bound” and mean values of

reedy (@, A, S, w) are called “average upper bound”.

In Fig. 2.1 (top) one can see the case, where n € {1000, 2000, . .., 5000}, m = 30,
v = 1000 and o = 0.01.

In Fig. 2.1 (bottom) one can see the case, where n = 1000, m € {10, 20, ...,100},
v = 1000 and o = 0.01.

In Fig. 2.2 (top) one can see the case, where n= 1000, m =30, v € {100, 200, . . . ,1000}
and a = 0.01.

In Fig. 2.2 (bottom) one can see the case, where n = 1000, m = 30, v = 1000 and
a € {0.0,0.1,...,0.9}.

Results of experiments show that the considered lower bound is nontrivial and can
be useful in investigations.
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2.2 Partial Decision Rules with Weights

This section consists of seven subsections. In Sect. 2.2.1, main notions are considered.
In Sect. 2.2.2, some relationships between partial covers and partial decision rules are
discussed. In Sect. 2.2.3, two bounds on precision of greedy algorithm with thresholds
a and 7 = « are considered. In Sect. 2.2.4, polynomial approximate algorithms for
partial decision rule weight minimization are studied. Two modifications of greedy
algorithm are considered in Sect. 2.2.5. Section 2.2.6 is devoted to consideration
of some bounds on minimal weight of partial decision rules and weight of decision
rules constructed by greedy algorithm with thresholds a and . In Sect. 2.2.7, some

experimental results are discussed.

2.2.1 Main Notions

We repeat here some definitions from Chap. 1 and consider generalizations of other
definitions to the case of arbitrary natural weights.

Let T be a table with n rows labeled with nonnegative integers (decisions) and m
columns labeled with attributes (names of attributes) fi, ..., f,,. This table is filled
by nonnegative integers (values of attributes). The table T is called a decision table.
Let w be a weight function for T which corresponds to each attribute f; a natural
number w(f;). Let r = (by,...,by) be a row of T' labeled with a decision d.

Let us denote by U(T,r) the set of rows from 7" which are different from r and
are labeled with decisions different from d. We will say that an attribute f; separates
rows r and 1’ € U(T,r) if rows r and 7’ have different numbers at the intersection
with the column f;. For i = 1,...,m, we denote by U(T,r, f;) the set of rows from
U(T,r) which attribute f; separates from the row r.

Let o be a real number such that 0 < o < 1. A decision rule

(fiy =bi) A A (fi, = i) — d (2.3)

is called an a-decision rule for T" and r if attributes f;,,..., f;, separate from r at
least (1—a)|U(T,r)| rows from U(T,r). The number >>i_, w(f;,) is called the weight
of the considered decision rule.

If U(T,r) = 0, then for any fi,,...,fi, € {f1,..., fm} the rule (2.3) is an a-
decision rule for 7" and r. Also, the rule (2.3) with empty left-hand side (where ¢ = 0)
is an a-decision rule for 7" and r. The weight of this rule is equal to 0.

For example, 0.01-decision rule means that we should separate from r at least
99% of rows from U(T,r). Note that O-rule is usual (exact) rule. Let us denote by
Liin(@) = Lyin(, T, 7, w) the minimal weight of a-decision rule for 7" and r.
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Let a,~ be real numbers such that 0 < v < a < 1. We now describe a greedy
algorithm with thresholds o and ~ which constructs an a-decision rule for given 7', r
and weight function w (see Algorithm 4).

Algorithm 4: Greedy algorithm with two thresholds e and v for partial decision

rule construction
Input : Decision table T with conditional attributes fi,..., fm, row 7 = (b1,...,bm) of T labeled

with the decision d, weight function w : {f1,..., fm} — IN, and real numbers « and v such
that 0 <y < a< 1.

Output: a-decision rule for (7', r).

Q— 0

D — 0

M — [U(T,7)I(1 - a)];

N — [U(T,n)I(1 = );

while |D| < M do

select f; € {f1,..., fm} with minimal index ¢ such that U(T,r, f;) \ D # 0 and the value

w(fi)
min{|U(T,r, ;)\ D|, N — |[D[}

is minimal;
Q — QU{fik
D«— DU U(T7r7f’b)7

end
return /\fieQ(fi =b;) — d;

Let us denote by L! ., (a) = LI

arcedy areedy (@, T, 7, w) the weight of a-decision rule

constructed by the considered algorithm for given table T', row r and weight function
w.

2.2.2 Relationships Between Partial Covers and Partial Decision Rules

Let (A, S,w) be a set cover problem with weights and «,~ be real numbers such
that 0 < v < a < 1. We now apply the greedy algorithm with thresholds o and
v to (A, S,w). Let during the construction of a-cover the greedy algorithm choose
sequentially subsets Bj,, ..., Bj, from the family S. We denote Oc(a, v, A, S, w) =
(Jrs -0 Jt)

Let T be a decision table with m columns labeled with attributes fi,..., f,., r be
a row from 7', and w be a weight function for T'. Let U(T,r) be a nonempty set.

We correspond a set cover problem with weights (A(7, ), S(T', ), u,) to the con-
sidered decision table T', row r and weight function w in the following way: A(T,r) =
U(T,r), S(T,r)={B:(T,r),...,Bn(T,r)}, where By(T,r)=U(T,r, f1),...,Bn(T,r)=
U(T,r, fm), and
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U (B1(T, 1)) = w(f1), ..., u(Bun(T,7)) = w(fm) -

Let a,y be real numbers such that 0 < v < a < 1. We now apply the greedy algo-
rithm with thresholds o and 7 to decision table T', row r and weight function w. Let
during the construction of a-decision rule the greedy algorithm choose sequentially
attributes fj,, ..., fj,. We denote O (c,v, T, 7, w) = (j1, .-, Jt)-

Set U(T,r, f;,) = 0. For i = 1,...,t, we denote w; = w(f;,) and

61' = |U(Ta Ty fh) \ (U(T7 r, fjo) u...u U(T7 r, sz‘—l))‘ :

Set Mp(a,~,T,r,w) = [|[UT,r)|(1 — «a)], Np(a,v,T,r,w) = [|[UT,r)|(1 —7)],
Ap(a, v, Tyryw) = (81, ...,0,) and Wi (e, v, T,r,w) = (wq, ..., w).
It is not difficult to prove the following statement.

Proposition 2.22. Let T be a decision table with m columns labeled with attributes
fiseoos fm, 7 be a row of T, U(T,r) # 0, w be a weight function for T, and o, be
real numbers such that 0 < v < a < 1. Then

‘U(T7 T)‘ = ‘A(T’ 7ﬂ)| )

\U(T,r, fi)| = |B:(T,r)|, i=1,...,m,
Op(a,, T,r,w) = Oc(a,v, A(T,r), S(T,r), ty) ,
My (a,y,T,r,w) = Mc(a, v, A(T,r), S(T,7), uy) ,
Np(a,v,T,r,w) = Ne(a, v, A(T,r), S(T, 1), uy) ,
Ap(a, v, T,ryw) = Ac(a,y, A(T,r), S(T, r), uy,) ,
Wir(a,v,T,ryw) = We(a,y, AT, ), S(T,r), uy) ,

Lin(, T, ryw) = Cryin (v, A(T,7), S(T', 1), Uy
Lyreeay (o, T,y w) = Croeay (0, A(T, 1), S(T,7), 1) -

Let (A,S,w) be a set cover problem with weights, where A = {a,...,a,} and
S ={By,...,By}. We correspond a decision table T'(A, S), row (A, S) of T(A,S)
and a weight function v,, for T'(A, S) to the set cover problem with weights (A, S, w)
in the following way. The table T'(A4,S) contains m columns labeled with attributes
fi,--+, fm and n + 1 rows filled by numbers from {0,1}. For i = 1,...,n and j =
1,...,m, at the intersection of ¢-th row and j-th column the number 1 stays if and
only if a; € B;. The row number n+1 is filled by 0. The first n rows are labeled with
the decision 0. The last row is labeled with the decision 1. We denote by r(A, S) the
last row of T'(A, S). Let v, (f1) = w(B1), ..., v(fim) = w(Bn).

For i = {1,...,n+ 1}, we denote by r; the i-th row. It is not difficult to see that
U(T(A,S),r(AS) ={r,...,m}. Let i € {1,...,n} and j € {1,...,m}. One can
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show that the attribute f; separates the row 7,41 = (A4, S) from the row r; if and
only if a; € B;.
It is not difficult to prove the following statement.

Proposition 2.23. Let (A, S,w) be a set cover problem with weights and o, 7y be real
numbers such that 0 < v < «a < 1. Then

[U(T(A,5),r(A,8)) = |A],
Op(a,7v,T(A,S),r(A,S),vy) = Ocla, 7, A, S,w) ,
Mp(a,v,T(A,S),r(A,S),vy) = Mc(a, 7, A, S,w) ,
Np(a,v,T(A,S),r(A,S),v,) = Ne(a,v, A, S,w) ,
Ap(a,v,T(A,S),r(A,S),v,) = Ac(a, v, A, S, w)
Wi(a,v, T(A,S),r(A,S),v,) = We(a,v, A, S,w) ,

Linin(a, T(A,S), (A, S),vy) = Crin(cv, A, S, w) |
Lgreedy(oz, T(A,S),r(A,S),v,) = C’greedy(oz, A, S w) .

2.2.3 Precision of Greedy Algorithm with Equal Thresholds

The following two statements are simple corollaries of results of Slavik (see Theorems
2.4 and 2.5) and Proposition 2.22.

Theorem 2.24. Let T be a decision table, r be a row of T, U(T,r) # 0, w be a weight
function for T, and o be a real number such that 0 < a < 1. Then Lg 4, () <
Lunin(@) H ([(1 = )|U(T, 7)[1)-

Theorem 2.25. Let T be a decision table with m columns labeled with attributes
fiseo s fm, 7 be a row of T, U(T,r) # 0, w be a weight function for T, a € R,
0<a <l Then Ly () < Lun(0) H (maxieqs, oy [U(T, 7, £)]) -

greedy \**/ — Hmin\{*t/LtL |\ 2 AMeql,..,

2.2.4 Polynomial Approximate Algorithms

In this subsection, we consider three theorems which follow immediately from Theo-
rems 1.41-1.43.

Let 0 < a < 1. We now consider the following problem: for a given decision table
T, row r of T and weight function w for T it is required to find an a-decision rule
for T" and r with minimal weight.

Theorem 2.26. Let 0 < o < 1. Then the problem of construction of a-decision rule
with minimal weight is N P-hard.
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So we should consider polynomial approximate algorithms for minimization of

a-decision rule weight.

Theorem 2.27. Let a € R and 0 < a < 1. If NP ¢ DTIM E(n°{°¢1e™) then for
any €, 0 < e < 1, there is no polynomial algorithm that for a given decision table T,
row r of T with U(T,r) # 0 and weight function w for T constructs an a-decision
rule for T and r which weight is at most (1 — &) Ly (o, T, r,w) In |U(T, r)].

Theorem 2.28. Let a be a real number such that 0 < o < 1. If P # NP, then there
exists & > 0 such that there is no polynomial algorithm that for a given decision table

T, rowr of T with U(T,r) # 0 and weight function w for T constructs an a-decision
rule for T and r which weight is at most 6 Ly (o, T, r,w) In|U(T, r)|.

From Theorem 2.24 it follows that Lg .4, (o) < Liin()(1+In|U(T,r)]). From
this inequality and from Theorem 2.27 it follows that, under the assumption NP ¢
DTIME(nC(oglen)) the greedy algorithm with two thresholds o and v = « is close
to the best polynomial approximate algorithms for minimization of partial decision
rule weight. From the considered inequality and from Theorem 2.28 it follows that,
under the assumption P # NP, the greedy algorithm with two thresholds a and
~v = « is not far from the best polynomial approximate algorithms for minimization
of partial decision rule weight.

However, we can try to improve the results of the work of greedy algorithm with

two thresholds a and v = « for some part of decision tables.

2.2.5 Two Modifications of Greedy Algorithm

First, we consider binary diagnostic decision tables and prove that, under some as-
sumptions on the number of attributes and rows, for the most part of tables for each
row there exists a weight function w and numbers «,~ such that the weight of a-
decision rule constructed by the greedy algorithm with thresholds o and ~y is less than
the weight of a-decision rule constructed by the greedy algorithm with thresholds «
and a.

Binary means that the table is filled by numbers from the set {0, 1} (all attributes
have values from {0,1}). Diagnostic means that rows of the table are labeled with
pairwise different numbers (decisions). Let T' be a binary diagnostic decision table
with m columns labeled with attributes fi,..., f,, and with n rows. We will assume
that rows of 7" with numbers 1, ..., n are labeled with decisions 1, ..., n respectively.
Therefore, the number of considered tables is equal to 2™". A decision table will be
called simple if it has no equal rows.
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Theorem 2.29. Let us consider binary diagnostic decision tables with m columns
labeled with attributes fi,..., fm and n > 5 rows labeled with decisions 1,...,n.
The fraction of decision tables T', for each of which for each row r of T there exists a
weight function w and numbers a, v such that 0 < v < a < 1 and Lgreedy(a, T, rw) <

eedy (@, T, m,w), is at least
n3™ n?

-
(n _ 1)m/2—1 om

Proof. Let T be a decision table and r be a row of T with number s € {1,...,n}.

We will say that a decision table T" is 1-uniform relatively r if there exists natural
p such that, for any attribute f; of T, if |U(T,r, f;)| > 0, then |U(T,r, f;)| € {p,p+1}.
Using reasoning similar to the proof of Theorem 2.10 one can show that if T is not
1-uniform relatively r, then there exists a weight function w and numbers «,~ such
that 0 <y < a <1land L) g (a0, T,7,w) < Lgeeqy (o, T, 7, w).

We evaluate the number of decision tables which are not 1-uniform relatively each
row. Let (61,...,d,) € {0,1}™. First, we evaluate the number of simple decision
tables for which r = (d1, ..., d,,) and which are 1-uniform relatively r. Let us consider
such a decision table T'. It is clear that there exists p € {1,...,n — 2} such that for
t=1,...,m the column f; contains exactly 0 or p, or p + 1 numbers —¢,;. Therefore,
the number of considered decision tables is at most Y./~ (C'z_l +CP+ 1)m. Using

Lemma 2.11 we conclude that this number is at most

_ [(n—1)/2]\™ Lo (3x 20\ 2mmman
(n—2) (3¢, )" < (n 1)(\/m = T

There are 2™ variants for the choice of the tuple (dy,...,d,,) and n variants for the

choice of the number s of row r. Therefore, the number of simple decision tables,
which are 1-uniform relatively at least one row, is at most

2m = .
n (n— 1)m/2=1 ~ (n — 1)m/2-1

The number of tables, which are not simple, is at most n?2™*~". Hence, the number
of tables, which are not 1-uniform for each row, is at least

gmngm
omn _ n - n22mn—m ]

(n— 1)ym/2-1
Thus, the fraction, considered in the statement of the theorem, is at least

n3m n?

-
(77, _ 1)m/2—1 om
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So if m > 6 and n, 2™/n? are large enough, then for the most part of binary
diagnostic decision tables for each row there exists a weight function w and numbers
«, vy such that the weight of a-decision rule constructed by the greedy algorithm with
thresholds o and ~y is less than the weight of a-decision rule constructed by the greedy
algorithm with thresholds o and «.

The obtained results show that the greedy algorithm with two thresholds v and ~
is of some interest. Now we consider two polynomial modifications of greedy algorithm
which allow us to use advantages of the greedy algorithm with two thresholds « and
.

Let T be a decision table with m columns labeled with attributes fi,..., fmn,
r = (b1,...,by) be a row of T labeled with decision d, U(T,r) # 0, w be a weight
function for 7" and « be a real number such that 0 < a < 1.

1. It is impossible to consider effectively all v such that 0 < v < «a. Instead of
this, we can consider all natural N such that M < N < |U(T,r)|, where M =
NU(T,r)|(1 — )] (see Algorithm 4). For each N € {M,...,|U(T,r)|}, we apply
Algorithm 4 with parameters M and N to T, r and w, and after that choose an
a-decision rule with minimal weight among constructed a-decision rules.

2. There exists also an another way to construct an a-decision rule which is not worse
than the one obtained under consideration of all N such that M < N < |U(T,r)|.
We now apply Algorithm 4 with thresholds o and v = « to T', » and w. Let the
algorithm choose sequentially attributes f;,,..., f;,. For each i € {0,...,t — 1},
we find (if it is possible) an attribute f;, of 7" with minimal weight w(f;,) such
that the rule (f;, = b;,)) A ... A(f;, = bj,) AN (fi, = b,) — d is an a-decision
rule for 7" and r (if ¢ = 0, then it will be the rule (f;, = b,) — d). After
that, among constructed a-decision rules (f;, = b;) A... A (f;, =0b;,) — d, ...,
(fin =bj) A A(fj = b)) AN(fi, =bi,) — d, ... we choose an a-decision rule with
minimal weight. From Proposition 2.30 it follows that the constructed a-decision

rule is not worse than the one constructed under consideration of all v, 0 <~ < a,
or (which is the same) all N, M < N < |U(T,r)].

Using Propositions 2.13 and 2.22 one can prove the following statement.

Proposition 2.30. Let T be a decision table, r be a row of T, U(T,r) # 0, w be a
weight function for T and o,~ be real numbers such that 0 < v < a < 1. Let the
greedy algorithm with two thresholds o and o, which is applied to T, r and w, choose
sequentially attributes fq,, ..., fq4,. Let the greedy algorithm with two thresholds o and
7, which is applied to T', v and w, choose sequentially attributes f,,..., fi,. Then
either k =t and (ly,...,lx) = (g1,--.,9:) or k <t, (I1,...,lk-1) = (91, .., 9x_1) and
lk # gk
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2.2.6 Bounds on Luy,(a) and L], .q, ()

First, we fix some information about the work of greedy algorithm with two thresholds
and find the best lower bound on the value Ly, («) depending on this information.

Let T be a decision table, r be a row of T such that U(T,r) # (), w be a weight
function for T, and «,y be real numbers such that 0 < v < a < 1. We now apply
the greedy algorithm with thresholds « and ~ to the decision table T', row r and the
weight function w. Let during the construction of a-decision rule the greedy algorithm
choose sequentially attributes fg,,..., fg,.

Let us denote U(T,r, f,) = 0 and & = 0. For i = 1,...,¢, we denote &; =
\U(T,r, fo) \(U(T,r, fo) U...0U(T,r, fs_,))| and w; = w(f,,). As information on
the greedy algorithm work we will use numbers

My = Mp(a,~,T,r,w) = [U(T,r)|(1-a)] ,
NL - NL(O‘777T7 T7w> = HU(T7 T>|(1 - 7”

and tuples
Ap = Ap(a,y, T, ryw) = (01,...,0;)
Wy, =Wr(a,v, T,r,w) = (wq,...,w) .
Fori=0,...,t— 1, we denote

w1 (Mg, — (6o + - .. +6))
min{d;11, Np, — (0o + ...+ 6;)}

0 =
Let us define parameter o (o, ) = or(a, vy, T, r,w) as follows:

or(a,y) =max{g; :i=0,...,t —1} .

We will show that o (c, ) is the best lower bound on L, («) depending on M,
Ny, A and Wy,. Next statement follows from Theorem 2.14 and Propositions 2.22
and 2.23.

Theorem 2.31. For any decision table T, any row r of T with U(T,r) # 0, any
weight function w for T, and any real numbers a,v, 0 < v < «a < 1, the inequality
Linin(, T, ryw) > or(a, 7y, T, r,w) holds, and there exists a decision table T', a row r’
of T" and a weight function w' for T' such that

ML(aa Y, T/> ’f’,, w/) = ML(a> e Ta r, w)a NL(a> e T,a T/, w/) = NL(a> e Ta r, w)a
AL(a7 e T,a rla w/) = AL(a7 e Ta r, w)a WL(a7 e T,a T/, w/) = WL(a7 e Ta r, w)a
QL(av e T,7 T/7 w/> = QL(au e T7 T, w)7 Lmin(au Tlu Tla ’UJ,> - QL(av s T,7 T/7 w/>‘
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Let us consider a property of the parameter o () which is important for prac-
tical use of the bound from Theorem 2.31. Next statement follows from Propositions
2.15 and 2.22.

Proposition 2.32. Let T be a decision table, r be a row of T with U(T,r) # 0, w
be a weight function for T', and o,y be real numbers such that 0 < v < a < 1. Then
QL(a? «Q, Ta r w) > QL(aa Y5 T7 T, ’lU)

We now study some properties of parameter oy, (v, y) and obtain two upper bounds
on the value L} 4, («) which do not depend directly on cardinality of the set U(T,7)
and cardinalities of subsets U (T, f;).

Next statement follows from Theorem 2.16 and Proposition 2.22.

Theorem 2.33. Let T' be a decision table, r be a row of T with U(T,r) # 0, w be
a weight function for T, a,y € R and 0 < v < a < 1. Then L} 4. (a, T,r,w) <
(7,7, Tyryw) (In (1 =7)/(a = 7)) +1).

Corollary 2.34. Let ¢ € R and 0 < ¢ < 1. Then for any o, ¢ < a < 1, the

inequalities or(a, @) < Liin(a) < Lgosqy (@) < op(@ —e,a —¢) (In(1/¢) + 1) hold.

For example, In(1/0.01) +1 < 5.61 and In(1/0.1) + 1 < 3.31. The obtained results
show that the lower bound Ly, (a) > o («, @) is nontrivial.
Next statement follows from Theorem 2.18 and Proposition 2.22.

Theorem 2.35. Let T' be a decision table, r be a row of T with U(T,r) # 0, w be
a weight function for T, a,y € R and 0 < v < a < 1. Then L} g, (a, T, 7, w) <
Lin (v, Ty ryw) (In (1 =) /(e — 7)) + 1).

Corollary 2.36. L%3_, (0.5)<2.26Lynin(0.3), L% . (0.2)<3.20 Ly (0.1), L0001 (0.01)<

greedy greedy greedy

5.71 Linin (0.001), L0 (0.001) < 7.91 Lynin(0).

greedy

Corollary 2.37. Let 0 < a < 1. Then L%, 4. () < Lyin(0) (In(1/a) + 1).

greedy

Corollary 2.38. Let € be a real number, and 0 < € < 1. Then for any o such that

e < a <1 the inequalities Lyin(a) < Lgecqy (@) < Liin(a — €) (In(1/€) + 1) hold.

2.2.7 Results of Experiments for a-Decision Rules

In this subsection, we will consider only binary decision tables 7" with binary decision
attributes.
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The First Group of Experiments

The first group of experiments is connected with study of quality of greedy algorithm
with equal thresholds (where v = a or, which is the same, N = M), and comparison
of quality of greedy algorithm with equal thresholds and the first modification of
greedy algorithm (where for each N € {M,... |U(T,r)|} we apply greedy algorithm
with parameters M and N to decision table, row and weight function and after that
choose an a-decision rule with minimal weight among constructed a-decision rules).

We generate randomly 1000 decision tables T, rows r and weight functions w such
that T' contains 40 rows and 10 conditional attributes f, ..., fio, r is the first row of
T, and 1 < w(f;) <1000 for i =1, ..., 10.

For each a € {0.1,...,0.9}, we find the number of triples (7', r, w) for which greedy
algorithm with equal thresholds constructs an a-decision rule with minimal weight
(an optimal a-decision rule), i.e., L .y (a, T,7,w) = Lyin(c, T, 7, w). This number
is contained in the row of Table 2.3 labeled with “Opt”.

We find the number of triples (7,7, w) for which the first modification of greedy
algorithm constructs an a-decision rule which weight is less than the weight of a-
decision rule constructed by greedy algorithm with equal thresholds, i.e., there exists
7y such that 0 < v < a and L) g (o, T, r,w) < Lgoq, (o, T, 7,w). This number is
contained in the row of Table 2.3 labeled with “Impr”.

Also we find the number of triples (7', r,w) for which the first modification of
greedy algorithm constructs an optimal a-decision rule which weight is less than
the weight of a-decision rule constructed by greedy algorithm with equal thresholds,
i.e., there exists v such that 0 < v < o and L} oq, (@, T,7,w) = Liin(c, T, 7, w) <
Lg ceay (@, T, 7,w). This number is contained in the row of Table 2.3 labeled with
“Opt+".

Table 2.3. Results of the first group of experiments with a-decision rules

o (0.0/0.1{0.2|0.3{0.4|0.5/0.6/0.7{0.8| 0.9
Opt [434/559(672(800|751|733|866|966|998|1000
Impr| 0 [31]5136|22|27(30|17| 1| O
Opt+| 0 |16 35|28 |17(26(|25|13| 1| O

The obtained results show that the percentage of triples (T, r, w), for which the
greedy algorithm with equal thresholds finds an optimal a-decision rule, grows almost
monotonically (with local minimum near to 0.4-0.5) from 43.4% up to 100%. The
percentage of problems, for which the first modification of greedy algorithm can
improve the result of the work of greedy algorithm with equal thresholds, is less than
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6%. However, sometimes (for example, if &« = 0.3, @« = 0.6 or a« = 0.7) the considered

improvement is noticeable.

The Second Group of Experiments

The second group of experiments is connected with comparison of quality of greedy
algorithm with equal thresholds and the first modification of greedy algorithm.

We make 25 experiments (row “Nr” in Table 2.4 contains the number of experi-
ment). Fach experiment includes the work with three randomly generated families
of triples (T, r,w) (1000 triples in each family) such that 7' contains n rows and m
conditional attributes, r is the first row of 7', and w has values from the set {1, ..., v}.

Table 2.4. Results of the second group of experiments with a-decision rules

|Nr|n |m |v |a |#1|#2|#3|avg |
1 |1-100 |1-100 |1-10 |O-1 4 12 |4 |3.33
2 |1-100 |1-100 |{1-100 [0-1 7 (14 |13 |11.33
3 |1-100 |{1-100 |1-1000|0-1 19 |13 |15 |15.67
4 |1-100 |1-100 |1-1000{0-0.2 |20 |39 |22 (27.00
5 (1-100 |1-100 |1-1000|0.2-0.4|28 |29 |28 |28.33
6 (1-100 |1-100 |1-1000|0.4-0.6|22 |23 |34 |26.33
7 |1-100 |1-100 |1-1000({0.6-0.8|7 (6 |4 |5.67
8 (1-100 |1-100 |{1-1000(0.8-1 |0 (1 |0 |0.33
9 (100 1-30 |1-1000{0-0.2 |35 |38 |28 |33.67
10{100 30-60 |1-1000{0-0.2 |47 |43 |31 |40.33
11100 60-90 |1-1000{0-0.2 |45 |51 |36 |44.00
12100 90-120{1-1000{0-0.2 |37 |40 |55 |44.00
13{1-30 (30 1-1000{0-0.2 |11 |8 (9 |9.33
14|30-60 (30 1-1000{0-0.2 |20 |22 |35 |25.67
15(60-90 (30 1-1000{0-0.2 |30 |33 |34 |32.33
1690-120(30 1-1000|0-0.2 |40 |48 |38 |42.00
17140 10 1-1000{0.1 31 (39 |34 |34.67
18140 10 1-1000{0.2 37 |39 |47 |41.00
19140 10 1-1000{0.3 35 (30 |37 |34.00
20 |40 10 1-1000|0.4 27 (20 |27 |24.67
21 |40 10 1-1000|0.5 32 (32 |36 |33.33
22 |40 10 1-1000|0.6 28 |26 |24 |26.00
23140 10 1-1000|0.7 10 |12 |10 |10.67
24140 10 1-1000{0.8 0 |2 |0 |0.67
25140 10 1-1000{0.9 0 (0 [0 |0.0

If the column “n” contains one number, for example “40”, it means that n = 40.
If this row contains two numbers, for example “30-120”, it means that for each of
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1000 triples we choose the number n randomly from the set {30, ...,120}. The same
situation is for the column “m”.

If the column “a” contains one number, for example “0.1”, it means that a = 0.1.
If this column contains two numbers, for example “0.2-0.4”, it means that we choose
randomly the value of « such that 0.2 < o < 0.4.

For each of the considered triples (7,7, w) and number «, we apply greedy algo-
rithm with equal thresholds and the first modification of greedy algorithm. Column
“#17 i =1,2,3, contains the number of triples (7', 7, w) from the family number 7 for
each of which the weight of a-decision rule, constructed by the first modification of
greedy algorithm, is less than the weight of a-decision rule constructed by the greedy
algorithm with equal thresholds. In other words, in column “#i” we have the num-
ber of triples (7,7, w) from the family number i such that there exists v for which
0<~vy<aand L] q,(c,T,r,w) < Lg gy (a, T, 7,w). The column “avg” contains the
number (#1 + #2 4+ #3)/3.

In experiments 1-3 we consider the case, where the parameter v increases. In
experiments 4-8 the parameter « increases. In experiments 9-12 the parameter m
increases. In experiments 13-16 the parameter n increases. In experiments 17-25
the parameter « increases. The results of experiments show that the value of #i
can change from 0 to 55. It means that the percentage of triples, for which the
first modification of greedy algorithm is better than the greedy algorithm with equal

thresholds, can change from 0% to 5.5%.

The Third Group of Experiments

The third group of experiments is connected with investigation of quality of lower
bound Ly (@) > or (o, ).

We choose natural n, m, v and real o, 0 < o < 1. For each chosen tuple (n, m, v, ),
we generate randomly 30 triples (7, r,w) such that 7" contains n rows and m condi-
tional attributes, r is the first row of T, and w has values from the set {1, ...,v}. After
that, we find values of LS 4. (o, T, 7, w) and or(«, o, T, r, w) for each of generated 30

greedy

triples. Note that o (o, o, T, 7,w) < Lypin(a, T, 7, w) < Lgyeeqy (, T, 7, w). Finally, for

«a
greedy

generated 30 triples we find mean values of L (o, T)r,w) and o (o, o, T, 7, w).
Results of experiments can be found in Figs. 2.3 and 2.4. In these figures mean
values of op(a,a,T,r,w) are called “average lower bound” and mean values of
oreedy (@, T, w) are called “average upper bound”.
In Fig. 2.3 (top) one can see the case, where n € {1000, 2000, ..., 5000}, m = 30,

v = 1000 and o = 0.01.
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In Fig. 2.3 (bottom) one can see the case, where n = 1000, m € {10, 20, ...,100},

v = 1000 and o = 0.01.

In Fig. 2.4 (top) one can see the case, where n= 1000, m =30, v €{100, 200, . ..,1000}

and o = 0.01.

In Fig. 2.4 (bottom) one can see the case, where n = 1000, m = 30, v = 1000 and

a € {0.0,0.1,...,0.9}.
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Results of experiments show that the considered lower bound is nontrivial and can

be useful in investigations.



2.3 Conclusions 76

2.3 Conclusions

The chapter is devoted (mainly) to theoretical and experimental analysis of greedy
algorithms with weights for partial cover and decision rule construction.

Theoretical and experimental results show that the lower bounds on minimal
weight of partial covers and decision rules, based on an information about greedy
algorithm work, are nontrivial and can be used in practice.

Based on greedy algorithm with two thresholds we create new polynomial approx-
imate algorithms for minimization of weights of partial covers and decision rules.
Results of massive experiments with randomly generated set cover problems and
binary decision tables show that these new algorithms can be useful in applications.



3

Construction of All Irreducible Partial Decision
Rules

In this chapter, we study problem of construction of all irreducible partial decision
rules. Efficient solution of this problem would allow (i) to find the best partial rules;
(ii) to evaluate the importance of attributes; (iii) to create ensembles of classifiers;
(iv) to evaluate changes after adding new objects into a decision table.

We consider binary decision tables with m conditional attributes, in which the
number of rows is equal to |m®], where « is a positive real number, and partial
decision rules that can leave unseparated from a given row at most 5 [(log2 m)ﬂ
different rows with different decisions, where 3 is a real number such that 7 > 1.

We show that for almost all such tables for any row with minor decision (minor
decision is a decision which is attached to at most one-half of rows of decision table)
the length of each irreducible partial decision rule is not far from «log, m and the
number of irreducible partial decision rules is not far from m®°&™,

Based on these results, we prove that there is no algorithm which for almost all
decision tables for each row with minor decision constructs the set of irreducible par-
tial decision rules and has for these tables polynomial time complexity depending on
the length of input. However, there exists an algorithm which for almost all decision
tables for each row with minor decision constructs the set of irreducible partial de-
cision rules and has for these tables polynomial time complexity depending on the
length of input and the length of output.

This chapter is based on paper [37].

The chapter contains two sections. Section 3.1 contains description of the set
TABp(m,n) of decision tables which is used in Sect. 3.2. In Sect. 3.2, results for
irreducible t-decision rules are discussed. Section 3.3 contains short conclusions.



3.2 Irreducible t-Decision Rules 78

3.1 Set TABp(m,n) of Decision Tables

A binary information system is a table with n rows (objects) and m columns labeled
with attributes (names of attributes) fi, ..., f;,. This table is filled by numbers from
the set {0, 1} (values of attributes). The number of binary information systems with
n rows and m columns is equal to 2™".

If for = 1,...,n we attach to i-th row of a binary information system a nat-
ural number d; (a decision), we obtain a binary decision table. In this decision ta-
ble attributes fi,..., f, are called conditional attributes. The tuple (di,...,d,) is
called a decision attribute. A decision attribute (dy,...,d,) is called degenerate if
diy =...=d,. Let D be a finite set of non-degenerate decision attributes. Then the
cardinality of the set TABp(m,n) of binary decision tables with n rows, m columns
and decision attributes from D is equal to |D|2™".

Let us consider two examples of sets D of non-degenerate decision attributes:
the set {1,2}™\ {(1,...,1),(2,...,2)} of binary decision attributes, and the set of
decision attributes {1,...,n}"\{(1,...,1),...,(n,...,n)} which allow us to simulate
an arbitrary non-degenerate decision attribute for a decision table with n rows. Later
we will assume that a finite set D = D(n) of non-degenerate decision attributes is
fixed for any n.

Let P be a property of decision tables and let Pp(m, n) be the number of decision
tables from T'ABp(m,n) for which P holds. The number Pp(m,n)/(|D|2™") is called
the fraction of decision tables from T'ABp(m,n) for which the property P holds.

Let o be a positive real number. We consider also decision tables from the set
TABp(m,|m®|). We say that the property P holds for almost all decision tables
from TABp(m, |m®]) if the fraction Pp(m, |m®]) / (]D|2m™*}) of decision tables
from TABp(m,|m®]), for which the property P holds, tends to 1 as m tends to
infinity.

3.2 Irreducible t-Decision Rules

This section comnsists of four subsections. In Sect. 3.2.1, bounds on the length of
irreducible t-decision rules are obtained. In Sect. 3.2.2, bounds on the number of irre-
ducible t-decision rules are considered. In Sect. 3.2.3, algorithms for construction of
all irreducible ¢-decision rules are studied. In Sect. 3.2.4, results of some experiments
with irreducible ¢-decision rules are discussed.

Let T be a decision table from T'ABp(m,n) with n rows, m conditional attributes
fi,--., fm and decision attribute (dy,...,d,). Let » = (by,...,b,,) be the row of T



3.2 Irreducible t-Decision Rules 79

with the number ¢. This row is labeled with the decision d;. We will say that d; is a
minor decision, and r is a row with minor decision if

. . n

We denote by U(T,r) the set of rows from 7" which are different from r and are
labeled with decisions different from d;. We will say that an attribute f; separates
rows r and " € U(T,r) if rows r and 7’ have different numbers at the intersection
with the column f;.

Let t be a natural number. A decision rule

(fjlzbj)/\'--/\(fjp:bj)idi

is called a t-decision rule for T and r if attributes f;,..., f; separate from r at
least |U(T,r)| — t rows from the set U(T, ). In this case we will say that attributes
fis-- -5 fj, generate a t-decision rule for T" and r. Later we will consider only rules
(fir = b)) AN...A(fj, =b;,) = d; for which j; < ... < j,. The number p is called the
length of the rule.

If we remove some conditions f;, = b;,, s € {1,...,p}, from the considered rule
we obtain its subrule. A subrule of some rule is called proper if it is not equal to the
initial rule. A t¢-decision rule for 7" and r is called irreducible if each proper subrule
of this rule is not a t-decision rule for T" and 7.

3.2.1 Length of Irreducible t-Decision Rules

In this subsection, we consider lower and upper bounds on the length of irreducible
t-decision rules for decision tables from T'ABp(m,n) and rows with minor decisions,
where t =5 [(logz m)ﬁ] and 3 is a real number such that 5 > 1. Under some assump-
tions on m and n, we evaluate the fraction of decision tables for which the considered
bounds hold for any irreducible ¢-decision rule for any row with minor decision.

Theorem 3.1. Let m,n be natural numbers, t = 5 [(log2 m)ﬂ, where (3 1s a real
number such that 3 > 1, and k = 2 [logyn|. Then the fraction of decision tables from

TABp(m,n), for which for any row any k attributes generate a t-decision rule, is at
least 1 — 1/2Mog2mIMloga ]

Proof. Let us consider a decision table T obtained from a binary information sys-
tem by adding a decision attribute from D. Let ig € {1,...,n}, and let conditional
attributes f,,..., fi. do not form a ¢-decision rule for 7" and the row with number
ip. Then there exist pairwise different numbers ji, ..., 511 € {1,...,n} \ {io} such
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that rows with numbers ji,...,j;11 coincide with the row with number iy at the
intersection with columns f;,,..., fi..

We now fix a number iy € {1,...,n}, t + 1 pairwise different numbers ji, ...,
Jir1 € {1,...,n}\{io} and k conditional attributes f;,,..., f;.. The number of binary
information systems such that rows with numbers ji, ..., j;+1 coincide with the row
with number 4o at the intersection with columns f; ,..., f;. is at most 2m"—#(+1),

There are at most m” variants for the choice of x columns. There are at most n!*?
variants for the choice of numbers ig, j1, ..., J¢+1. Therefore, the number of decision
tables T', in each of which there exists a row r and x conditional attributes that do not
generate a t-decision rule for 7' and r, is at most |D|2mntrlosam+(t+2)logyn—r(i+1) <

| D| 2mn—Tlogz2milog2n]  Then the fraction of decision tables, for which for any row any

k conditional attributes generate a t-decision rule, is at least

|D‘ omn _ |D‘ 2mn—[log2 m] [logy n] 1

D[ 2mn = 1 = Sy miiog ] -

O

Theorem 3.2. Let m,n € IN, m > 2log, n+c, wherec € N, ¢ >2,t =5 [(logz m)ﬂ,
where € R, B> 1, [n/2] > t,

0= {logQ qg-‘ - t) — 3 —log, [(108;2 m)ﬂ — log, [log, ”WJ

and o0 > 0. Then the fraction of decision tables from T ABp(m,n), for which for each
row with minor decision any o condition attributes do not generate a t-decision rule,
is at least 1 — 1/2min(e logznlflogym])—1

Proof. A binary information system will be called strongly separable if for any ¢, j €
{1,...,n} such that i # j rows with numbers i and j are different. The number
of binary information systems, for which rows with numbers ¢ and j are equal, is
equal to 2™~ There are at most n? variants for the choice of i and j. Therefore,
the number of binary information systems, which are not strongly separable, is at
most n22mn—m = gmnt2logan—m_ Thyg the number of strongly separable information
systems is at least 2mn — gmn+2logan—m

Let d = (dy,...,d,) € D, T be a decision table obtained from a strongly separable

information system I by adding the decision attribute d, iy € {1,...,n} and d;, be

a minor decision. Then there are p = [n/2] pairwise different numbers ly,...,[, €
{1,...,n} such that d;, # d;, for s = 1,...,p. Let f;,..., fi, generate a t-decision
rule for 7" and row with the number ¢y. Then among rows with numbers [y, ...,1, at

least p — t rows are different from the row with number iy at the intersection with
columns f;,,..., fi,.
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We now fix ¢ numbers [j,,...,l; from {li,...,l,}. Let us evaluate the number
of information systems I such that for any s € {ly,....0[,} \ {{;,,...,;,} rows with
numbers i and [, are different at the intersection with columns f;,,..., f;,. It is not

difficult to see that the number of such information systems is equal to

— —t — 1\ 2°(—t)/2¢
2mn—g(p—t)(2g . 1)p—t — ogmn (29 1)p _ gmn (29 1) p '
20 2e

Using well known inequality ((u —1)/u)" < 1/e, which holds for any natural w,
we obtain

N 20028
gmn <2Q 1) b < 2mn—(p—t)/29 )
20

There are at most m? variants for the choice of p attributes. There are at most
n' variants for the choice of ¢ numbers l;,, ..., 1;,. Therefore, the number of strongly
separable information systems I, for which adding the decision attribute d can lead
to obtaining a decision table that have a t-decision rule with o attributes for the
row with the number iy, is at most ment2mn—(@—1)/2¢ — gmntelogym+tlogyn—(p—1)/2¢
There are at most n variants for the choice of the number iyg. Thus, the number of
information systems I, for which adding the decision attribute d can lead to obtaining
a decision table that have a t-decision rule with p attributes for some row with minor
decision, is at most 2mntelogs m~+(t+1) logy n—(p—t)/22 +2mn+210g2 n—m_ where 2mn+2log; n—m
is an upper bound on the number of information systems which are not strongly
separable.

It is clear that and plog, m+(t+1)log,n < 7 [log, n] [(logg m)ﬁ] and (p—t)/2¢ >
(p — t)8 [log, 1] [(logg m)ﬂ /(p—1t) =8[logyn] [(logg m)ﬂ. We now obtain
gmn-telogy m-+(i-+1) logy n—(p—1)/2 < gmn—[logy ][ (logym)*| < gmn—Tlogy n1Mlogzm] ~Gince 1m, >
2logy, n + ¢, we have gmn+t2logyn—m < gmn—c Fyrom here it follows that
gmn-telogy m(t-+1) logy n—(p—1)/2° | gmn+2logyn—m < gmn—min(c[logy n][logy m])+1,

Thus, the fraction of decision tables, for which any o conditional attributes do not
generate a t-decision rule for any row with minor decision, is at least

|D|2mn _ |D‘2mn—min(c,ﬂog2 n|[logy m])+1 1

|D|2mn =1- 9min(c,[logy n][logy m])—1

O

Corollary 3.3. Let m,n € IN, m > 2log,n + ¢, where ¢ € IN, ¢ > 2, t =
5 [(log2 m)ﬂ, where B € R and > 1, [n/2] > t, Kk =2 [logyn],

0= {logQ qg-‘ - t) — 3 —log, Rlng m)ﬂ — log, [log, MJ
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and o > 0. Then the fraction of decision tables from TABp(m,n), for which for
each row with minor decision any Kk conditional attributes generate a t-decision

rule, and any o condition attributes do mot generate a t-decision rule, is at least
1-1 /Qﬂogg m][logan] _ /Qmin(a [logy n][logy m])—1

Corollary 3.4. Let m,n € IN, m > 2logyn + ¢, where ¢ € IN, ¢ > 2, t =
5 [(log2 m)ﬂ, where B € R and > 1, [n/2] >t, Kk =2 [logyn|,

0= Png ([gw - t) — 3 —log, [(10g2 m)ﬂ — log, [log, MJ

and o0 > 0. Then the fraction of decision tables from T ABp(m,n), for which for each
row with minor decision the length of any irreducible t-decision rule is at most k and
at least o+ 1, is at least 1 — 1/2Mog2mIMNlogan] _ 1 jomin(e,[logy niflogy m[)—1

3.2.2 Number of Irreducible t-Decision Rules

Let T be a decision table and r be a row of T" with minor decision. We denote by
R(T,r,t) the number of irreducible ¢-decision rules for 7" and r. In this subsection, we
consider decision tables from the set TABp(m, |[m®|), where o € IR and o > 0. We
study irreducible ¢-decision rules, where t = 5 [(log2 m)? 1 and (3 is a real number such
that 5 > 1. We present lower and upper bounds on the value R(T,r,t) for almost all
decision tables T' € TABp(m, |m®]) and for each row r of 7" with minor decision.

Theorem 3.5. Let m € IN, « € R, « > 0, t = 5 [(logQ m)ﬂ, where [ is a real
number such that 3 > 1, and k = 2 [log, [m®||. Then for almost all decision tables T
from TABp(m, |m®|) for any row r with minor decision any k conditional attributes

generate a t-decision rule, and m@/M10s2m < R(T r t) < m3alos2m,

Proof. Let n = |[m®|. We now prove that for large enough m the fraction of decision
tables T' from T'ABp(m, |[m®|), for which for any row r with minor decision any
# conditional attributes generate a t-decision rule, and m(®/M0e2m < R(T,r t) <
m3e1o82m s at least 1 — 1/2Mog2mIflogznl=2

Let o = {log2 ([n/2] —t) — 3 —log, [(log2 m)ﬂ — log, [log, n” From Corollary
3.3 it follows that for large enough m the fraction of decision tables, for which for
any row with minor decision any x conditional attributes generate a t-decision rule,

and any g conditional attributes do not generate a t-decision rule, is at least

1 1 1 1

1= 9flogy m|[logyn] — 9flogy nl[logym]—1 = 2[logy m][logyn]—2

Let us consider an arbitrary decision table 7" and an arbitrary row r of T with
minor decision for which any x conditional attributes generate a t-decision rule, and
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any o conditional attributes do not generate a t-decision rule. We now show that
mle/loem < R(T r t) < m3*1°82™ for large enough m.

It is clear that each t-decision rule has an irreducible t-decision rule as a subrule.
Let @ be an irreducible t-decision rule. We now evaluate the number of ¢-decision
rules of the length £ which have () as a subrule. Let the length of @) is equal to p. One
can show that 9+ 1 < p < k. There are C, ", ways to obtain a t-decision rule of the
length k from @ by adding conditional attributes from {fi,..., fin}. It it clear that
Cpt, < CroP If K < m/2, then ClP < CF-2. Thus, for large enough m the number
of t-decision rules of the length x, which have () as a subrule, is at most C:=¢.

The number of ¢-decision rules of the length & is equal to CF,. Hence,

Cr,  (m—rk+1)...(m—rK+ o) S <m—/i>9

> —
R(T,r.t) 2 e (k—o0+4+1)...k

K
For large enough m,
m—+k m—2[log, [m"]]
ko 2[logy [me]]
Therefore, R(T,r,t) > m??. It is clear that for large enough m the inequality o >
(1/2)alog, m holds. Thus, for large enough m, R(T,r,t) > m(*/4lem,
It is clear that the length of each irreducible t¢-decision rule is at most k.

1/2

>m

Therefore, R(T,r,t) < m”. One can show that for large enough m the inequality
m" < m3@le2m holds. Thus, R(T,r,t) < m3*°%2™ for large enough m. It is clear that
1 — 1/2Mes2miMlog2lm®]1=2 tends to 1 as m tends to infinity. Therefore, the statement
of the theorem holds. O

3.2.3 Algorithms for Construction of All Irreducible t-Decision Rules

We study irreducible ¢-decision rules for decision tables from T'ABp(m, |[m®]), where
« is a positive real number, t = 5 [(log2 m)ﬂ, [ is a real number, and § > 1. For
a given decision table T" and row r of T with minor decision, it is required to find
all irreducible t-decision rules for 7" and r. For large enough m, the length of input
for this problem is at least m |m®] and at most m [m®| + (|m®] + 1) [log, |[m®|] <
m'T® + m?* < m20+2) The length of output for this problem is at least R(Tr,t)
and at most mR (T, r,t).

Let k = 2 [log, [m®]]. From Theorem 3.5 it follows that for almost all decision
tables T' from T ABp(m, |[m®|) for any row r with minor decision any ~ conditional
attributes generate a t-decision rule and m(@/Y1082m < R(T,r t) < m3*logam

Thus, there is no algorithm which for almost all decision tables from T'ABp(m, [m®*])
for each row with minor decision constructs the set of irreducible t-decision rules and
has for these tables polynomial time complexity depending on the length of input.
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Let us consider an algorithm which finds all nonempty subsets of the set {f1, ..., fn}
with at most x attributes, and for each such subset recognizes if attributes from this
subset generate an irreducible ¢-decision rule or not. It is clear that this recognition
problem can be solved (for one subset) in polynomial time depending on the length
of input.

From Theorem 3.5 it follows that for almost all decision tables from T"ABp (m, [m®))
for any row with minor decision this algorithm finds all irreducible ¢-decision rules.

The considered algorithm works with at most m” subsets of { fi, ..., fi,}. One can
show that m® < m3@!°2™ for large enough m. Using Theorem 3.5 we conclude that
for almost all decision tables T' from T ABp(m, [m®]) for any row r of T" with minor
decision m* < R(T,r, t)"2.

Thus, there exists an algorithm which for almost all decision tables from T'"ABp(m,
|m®|) constructs for any row with minor decision the set of irreducible ¢-decision rules
and has for these tables polynomial time complexity depending on the length of input
and the length of output.

3.2.4 Results of Experiments

We generate randomly 1000 binary decision tables T" with 40 rows, 10 conditional
attributes and binary decision attribute. As row r we choose the first row of T'. For
each table T, we find the minimal length of irreducible 5-decision rule for 7" and
r, the maximal length of irreducible 5-decision rule for 7" and r and the number of
irreducible 5-decision rules for 7" and r. Results of experiments are represented in
Figs. 3.1-3.3.

These results illustrate the situation, where irreducible ¢-decision rules have rela-
tively small length, and the number of irreducible t-decision rules is relatively small.
The consideration of another values of ¢ can lead to different results.

In Fig. 3.1 for each ¢ € {1,2} one can see the number of tables for which the
minimal length of irreducible 5-decision rule is equal to i. For each i € {0,3,4,...,10},
the considered number is equal to 0.

In Fig. 3.2 for each i € {1,2,3,4} one can see the number of tables for
which the maximal length of irreducible 5-decision rule is equal to i. For each
i €{0,5,6,...,10}, the considered number is equal to 0.

One can show that the number of irreducible 5-decision rules for the considered
tables and rows is at most 252. In Fig. 3.3 for each i € {0,1,...,90} one can see the
number of tables for which the number of irreducible 5-decision rules is equal to 1.
For each i € {91,92,...,252}, the considered number is equal to 0.
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3.3 Conclusions

In the chapter, we show that, under some assumptions, there is no algorithm which for
almost all decision tables for each row with minor decision constructs all irreducible
t-decision rules and has for these tables polynomial time complexity depending on
the length of input, but there exists an algorithm which for almost all decision tables
for each row with minor decision constructs all irreducible t-decision rules and has
for these tables polynomial time complexity depending on the total length of input
and output.

The obtained results is a step towards the design of algorithms for construction of
the set of all irreducible partial decision rules.



4

Experiments with Real-Life Decision Tables

This chapter is devoted to consideration of results of experiments with decision tables
from UCI Repository of Machine Learning Databases [41]. The aim of the first group
of experiments is to verify 0.5-hypothesis for real-life decision tables. We made ex-
periments with 23 decision tables. Results of 20 experiments confirm 0.5-hypothesis
for decision rules: under the construction of partial decision rule, during each step
the greedy algorithm chooses an attribute which separates from r at least one-half of
unseparated rows that are different from r and have other decisions.

The aim of the second group of experiments is the comparison of accuracy of
classifiers based on exact and partial decision rules. The considered approach to
construction of classifiers is the following: for a given decision table and each row
we construct a (partial) decision rule using greedy algorithm. By removing some
attributes from this (partial) decision rule we obtain an irreducible (partial) decision
rule. The obtained system of rules jointly with simple procedure of voting can be
considered as a classifier.

We made experiments with 21 decision tables using test-and-train method. In
11 cases, we found partial decision rules for which the accuracy of the constructed
classifiers is better than the accuracy of classifiers based on exact decision rules.
We made also experiments with 17 decision tables using cross-validation method. In
9 cases, we found partial decision rules for which the accuracy of the constructed
classifiers is better than the accuracy of classifiers based on exact decision rules.

The results of experiments obtained for classifiers based on partial decision rules
are comparable with the results of experiments for some classifiers from RSES [54].

This chapter is based on papers [81, 82.

The chapter consists of three sections. In Sect. 4.1, 0.5-hypothesis is considered for
decision rules. In Sect. 4.2, classifiers are considered based on partial decision rules.
Section 4.3 contains short conclusions.
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4.1 0.5-Hypothesis for Decision Rules

Results of experiments with randomly generated decision tables and some theoretical
results (see Chap. 1) confirm the following 0.5-hypothesis for decision rules: for the
most part of decision tables for each row r, under the construction of partial decision
rule, during each step the greedy algorithm chooses an attribute which separates
from r at least one-half of unseparated rows that are different from r and have other
decisions. It is not difficult to show that in such cases Lgeedy () < [logy(1/cr)] for
a > 0, and Ipr(a) < 2 for any «a. In particular, Lgeedy(0.1) < 4, Lgreeay(0.01) < 7,
and Lgeedy (0.001) < 10. So using greedy algorithm it is possible to construct short
partial decision rules with relatively high accuracy.

To verify this hypothesis for real-life decision tables we made additional ex-
periments with the following 23 decision tables from [41]|: “balance-scale", “bal-
loons (adult+stretch)", “car", “flags", “hayes-roth.test", “krkopt", “kr-vs-kp", “monks-
1.test", “monks-1.train", “monks-2.test", “monks-2.train", “monks-3.test", “monks-

n o«

3.train", “lenses", “letter-recognition", “lymphography", “poker-hand-training.true",

“nursery", “soybean-small", “spect all", “shuttle-landing-control", “tic-tac-toe", and

We apply to each of the considered tables and to each row of these tables the
greedy algorithm with o« = 0. The main result of these experiments is the following:
with the exception of the tables “kr-vs-kp", “spect all" and “nursery" for each row r,
under the construction of partial decision rule, during each step the greedy algorithm
chooses an attribute which separates from r at least one-half of unseparated rows that
are different from r and have other decisions. It means that not only for randomly
generated, but also for real-life decision tables it is possible to construct short partial
decision rules with relatively high accuracy using greedy algorithm.

Table 4.1 presents the average percentage of rows from U (T, 7), unseparated from
the row r during the first ¢+ — 1 steps, which are separated from the row r at i-th
step of the greedy algorithm, ¢ = 1,...,11, under partial decision rule construction
with parameter o = 0. The column “Decision table” contains the name of decision
table, the column “n” contains the number of rows in the table, and the column “m”
contains the number of conditional attributes.

From the results presented in Table 4.1 it follows that the average percentage
of rows separated at i-th step of greedy algorithm during partial decision rule con-
struction is at least 50%. However, for “nursery", “spect all" and “kr-vs-kp" we can
find rows for which during some steps the greedy algorithm chooses attributes that

separate less than 50% of unseparated rows.
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Table 4.1. Average percentage of rows separated at i-th step of the greedy algorithm during partial decision

rule construction

Number of step @

Decision table n m| 1 2131415 6 | 7|89 |10]11
soybean-small 47 35( 100

balloons 20 4 186.7(100

monks-3.test 432 |6 |90.6| 100

shuttle-landing |15 6 [99.5/100

hayes-roth.test |28 4 188.2(97.5|100

monks-1.test 432 |6 |83.3|77.8| 100

balance-scale 625 |4 [89.5|91.5(96.1| 100

flags 194  [26]96.7|97.9/95.9| 100

lenses 24 4 |84.5(61.5(91.7( 100

lymphography |148 [18]91.7|95.5(98.4| 100

monks-1.train 124 |6 |84.6|81.6{94.9| 100

monks-3.train 122 |6 |89.0(95.6/93.7| 100

Z00 101 [16]96.7|95.6/90.7| 100

poker-hand 25010{10(92.6(93.9/95.8(99.8| 100

tic-tac-toe 958 |9 [79.1]79.1|87.7|94.1| 100

car 1728 |6 |90.6|81.6{80.2(85.0|85.7| 100

krkopt 28056(6 [89.8|88.7|88.6/89.7(92.2| 100
letter-recognition|20000{16{97.3|96.5{97.8(99.2|99.6| 100

monks-2.test 432 |6 |75.2|70.2{75.1|77.1|67.4| 100

monks-2.train 169 |6 |76.0|/76.8/86.0{87.1{92.6| 100

nursery 12960|8 |89.1|84.0{88.2|88.5{93.0({89.6/91.6| 100

spect _all 267 |22(86.9(81.0|75.8|68.6(53.1|52.1{50.0{51.8|88.0| 100
kr-vs-kp 3196 |36(91.0/86.0|89.1|91.8(87.0|85.7|86.7|83.7(76.7(75.0{100

Table 4.2 presents minimum, average and maximum length of a-decision rules
constructed by the greedy algorithm for o € {0.0,0.001,0.01,0.1}.

Table 4.2 gives us some information about maximum, minimum and average length

of partial decision rules constructed by the greedy algorithm. For example, for the

table “kr-vs-kp", which contains 36 conditional attributes, the maximum length of

exact decision rule is equal to 11. Results presented in Table 4.2 show that the

greedy algorithm constructs relatively short partial decision rules with relatively high

accuracy.
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Table 4.2. Minimum, average and maximum length of partial decision rules constructed by the greedy

algorithm

@
Decision table 0.0 0.001 0.01 0.1
min|avg|max|min|avg|max|min|avg/max|min|avg|max
balance-scale 3.0(3.2/4.0(3.0(3.2(4.0(2.0]|2.3|3.0|1.0|1.5]|2.0
balloons(adult+stretch) {1.0{1.4|2.01.0{1.4|2.0|1.0{1.4| 2.0 |1.0|1.4| 2.0
car 1.0(2.5(6.0|1.0|24|6.0|1.0|{2.0{4.0|1.0|1.4|2.0
flags 1.0{2.0/4.0(1.0(/2.0/4.0|1.0|1.7;3.0|1.0|1.1| 2.0
hayes-roth.test 1.0{2.0/3.0(1.0(/2.0/3.0|1.0|2.0/3.0|1.0|1.7| 2.0
krkopt 3.0(5.2{6.0|2.0(3.8/4.0(2.0({2.7|3.0({1.0|1.6|2.0
kr-vs-kp 1.0(3.0({11.0/1.0|2.8|10.0|1.0|2.3| 6.0 | 1.0 |1.5| 3.0
lenses 1.0(2.1{4.0|1.0|2.1|14.0|1.0|{2.1{4.0|1.0|1.9| 3.0
letter-recognition 1.0/3.0/6.0({1.0|2.3]4.0|1.0(1.7]3.0({1.0|1.0] 2.0
lymphography 1.0{2.1/4.0(1.0({2.1{4.0|1.0|2.1{4.0|1.0|1.5]| 2.0
monks-1.test 1.0{2.313.0(1.0(2.3/3.0|1.0|2.3]3.0|1.0[1.8]| 2.0
monks-1.train 1.0{2.3/4.0(1.0(2.3/3.0|1.0|2.3]4.0|1.0[1.8]| 3.0
monks-2.test 3.0(4.9]/6.0(3.0(49(6.0(3.0|4.1|5.0|2.0]|2.0|2.0
monks-2.train 3.0(3.716.0(3.0(3.7/6.03.0|3.4|6.0]|2.0/|2.0| 3.0
monks-3.test 1.0(1.8{2.0]1.0|1.8|12.0|1.0|1.8{2.0|1.0|1.5|2.0
monks-3.train 2.0(2.3{4.0]2.0(2.3]4.0(2.0({2.3|4.0({1.0|1.5|2.0
nursery 1.0{3.3/8.0(1.0(2.9(6.0|1.0|24|4.0|1.0|1.7| 2.0
poker-hand-training-true| 3.0 {3.9| 5.0 [ 3.0|3.0| 3.0 | 2.0 |2.0| 2.0 | 1.0 |1.0| 1.0
shuttle-landing-control |1.0|1.1/2.0{1.0|1.1{2.0|1.0({1.1{2.0({1.0|1.0| 1.0
soybean-small 1.0(1.0{1.0(1.0|1.0/1.0|1.0|1.0{1.0|1.0|1.0| 1.0
spect_all 1.0(3.2(10.0|1.0|3.2|10.0|{1.0|2.9|10.0{ 1.0 |1.6| 7.0
tic-tac-toe 3.0/3.8{5.0(3.0[(3.8/5.0(3.0[{3.1]14.0{2.0|2.0{3.0
200 1.0{1.5/4.0(1.0(|1.5{4.0|1.0|1.5]4.0|1.0|1.1| 2.0
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Fig. 4.1. Lower and upper bounds on minimal length of a-decision rules for “kr-vs-kp" and “lenses"

Figure 4.1 presents lower (Ipg(«), Theorem 1.46) and upper (Lgreedy (), Theorem
1.45) bounds on minimal length of a-decision rules for decision tables “kr-vs-kp" and
“lenses". In the case of “kr-vs-kp", we consider maximum values of lower and upper
bounds among all rows. In the case of “lenses", we consider average values of lower

and upper bounds for all rows.
4.2 Classifiers Based on Partial Decision Rules

In this section, we compare accuracies of classifiers based on exact and partial decision
rules, and some classifiers from RSES [54].



4.2 Classifiers Based on Partial Decision Rules 92

We consider the following problem of classification (prediction): for a given decision
table T" and a new object v given by values of conditional attributes from 7' for v it
is required to generate a decision corresponding to v.

We now describe classifiers based on partial decision rules.

For every row r of the decision table T" and given o, 0 < a < 1, we construct an
a-decision rule for T and r by Algorithm 2. After that, by removing some conditions
from this a-decision rule we obtain an irreducible a-decision rule for 7" and r. From
the constructed set of irreducible a-decision rules we remove repeating rules. We
denote the obtained set by Rul(T, «). For each rule from Rul(T, «), we compute the
support of this rule which is the number of rows from 7" such that (i) the left-hand
side of the rule is true for the considered row; (ii) the decision attached to the row is
equal to the decision from the right-hand side of the rule.

The set Rul(T,«) can be considered as a classifier which for a given new object
v creates a decision for this object using only values of conditional attributes for v.
For each possible decision d, we compute the sum My(v) of supports of rules from
Rul(T, «v) such that (i) the left-hand side of the considered rule is true for v, and (ii)
the right-hand side of the rule is equal to d. If My(v) > 0 for at least one decision
d, then we choose a decision d for which M;(v) has maximal value. Otherwise, we
choose some fixed decision dj.

To evaluate the accuracy of classifiers, we can use either train-and-test method
or k-fold-cross-validation method. In the first case, we split the initial decision table
into training and testing tables, construct a classifier using training table, and apply
this classifier to rows from the testing table as to new objects. The accuracy of
classification is the number of rows (objects) from the testing table, which are properly
classified, divided by the number of rows in the testing table. In the second case, we
split the initial decision table into k tables, and k times apply train-and-test method
using each of k£ tables as the testing table. As a result, we obtain k accuracies of
classification. The mean of these accuracies is considered as the “final” accuracy of
classification.

We study decision tables from [41]. We remove from the table “flags" attributes
“area", “population" and “name of the country", and consider “landmass" as the
decision attribute. From the table “zoo" we remove the attribute “animal name".

We make experiments with 21 decision tables using train-and-test method. We
randomly split decision tables in proportion 70% for training table and 30% for
testing table. For “hayes-roth", “monks1", “monks2", “monks3" and “spect", we use
existing training and testing tables.
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For each table (with the exception of “kr-vs-kp" and “letter-recognition") we
choose minimal a € {0.000,0.001,0.002,...,0.300} for which the accuracy of con-
structed classifier is maximal. This value of « is denoted by aqp. For “kr-vs-kp"
and “letter-recognition", we choose minimal a € {0.00,0.01, 0.02,...,0.50} for
which the accuracy of constructed classifier is maximal. This value of a is denoted
by aept. The results of experiments can be found in Table 4.3 (“balloons (a+s)”
means “balloons (adult+stretch)”, and “balloons (y-s+a-s)” means “balloons (yellow-
small+adult-stretch)”). The use of partial decision rules (a-decision rules with a > 0)
leads to improvement of accuracy of classification for 11 decision tables.

Table 4.3. Accuracy of classifiers based on partial decision rules (train-and-test)

Decision table Accuracy for|Accuracy for| aopt
a=0 Q= Qopt
balance 0.658 0.866 0.133
balloons (a+s) 1.000 1.000 0.000
balloons (y-s+a-s) 0.600 0.800 0.286
car 0.890 0.909 0.005
flags 0.627 0.678 0.019
hayes-roth 0.893 0.893 0.000
krkopt 0.386 0.433 0.001
kr-vs-kp 0.734 0.956 0.01
lenses 0.500 0.500 0.000
letter-recognition 0.221 0.221 0.00
lymphography 0.733 0.822 0.217
monks1 0.949 0.949 0.000
monks2 0.762 0.762 0.000
monks3 0.931 0.963 0.050
nursery 0.974 0.974 0.000
shuttle-landing 0.600 0.800 0.200
soybean-small 1.000 1.000 0.000
spect 0.818 0.840 0.075
spect_all 0.877 0.889 0.025
tic-tac-toe 0.931 0.931 0.000
Z00 0.968 0.968 0.000

We make also experiments with 17 decision tables using 10-fold-cross-validation
method. For each table we choose minimal o € {0.000,0.001,0.002, ...,0.300} for
which the accuracy of constructed classifier is maximal. This value of a is denoted
by opt. Results of experiments can be found in Table 4.4. The use of partial decision
rules (a-decision rules with o > 0) leads to improvement of accuracy of classification
for 9 decision tables.
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Table 4.4. Accuracy of classifiers based on partial decision rules (cross-validation)

Decision table Accuracy for|Accuracy for| aopt
a=0 Q= Qopt
balance 0.723 0.891 0.150
balloons (a+s) 1.000 1.000 0.000
balloons (y-s+a-s) 0.750 0.750 0.000
car 0.873 0.905 0.004
flags 0.608 0.613 0.007
hayes-roth 0.790 0.797 0.014
lenses 0.583 0.617 0.278
lymphography 0.778 0.805 0.040
monks1 1.000 1.000 0.000
monks2 0.565 0.671 0.290
monks3 1.000 1.000 0.000
shuttle-landing 0.450 0.450 0.000
soybean-small 0.980 0.980 0.000
spect 0.915 0.920 0.134
spect_all 0.851 0.862 0.029
tic-tac-toe 0.959 0.959 0.000
Z00 0.951 0.951 0.000

We compare accuracies of classifiers based on partial decision rules (really, a modifi-
cation of these classifiers) and accuracies of some classifiers constructed by algorithms
from RSES.

We make experiments with 21 tables from [41], presented in Table 4.3, using train-
and-test method. Let T" be one of these tables. As it was described earlier, we split
this table into two subtables: training table Ti,.;, and testing table Ti.. For the table
Tirain, We construct seven sets of decision rules: Rul(0) = Rul(Tirain, 0), Rul(cwopt) =
Rul(Tirain, Copt ), Where agpy is taken from Table 4.3, Lem2(1), Lem?2(0.9), constructed
by the “lem2 algorithm” from RSES for Ti,.;, with “cover parameter” equals to 1
and 0.9 respectively, Cov(1), Cov(0.9), constructed by the “covering algorithm” from
RSES for Tiam with “cover parameter” equals to 1 and 0.9 respectively, and Gen,
constructed by the “genetic algorithm” from RSES for T,.;, with “number of reducts”
equals to 10 and “normal speed”.

The system RSES works with these sets of rules as with classifiers using “standard
voting” which assigns to each rule the weight that is equal to the support of this rule:
the number of rows from T, such that (i) the left-hand side of the rule is true for
the considered row; (ii) the decision attached to the row is equal to the decision from
the right-hand side of the rule. RSES applies these classifiers to rows of the table T
as to new objects.
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Table 4.5. Comparison of accuracy of classifiers

Decision table |Rul(0)|Rul(copt)|Lem2(1)|Lem2(0.9)|Cov(1)|Cov(0.9)| Gen
balance 0.626 |0.856 0.428 0.369 0.000 (0.428 0.749
balloons (a+s) 1.000 |1.000 0.833  |0.833 0.500 {0.500 1.000
balloons (y-s+a-s)|1.000 |1.000 0.400  {0.400 0.400 |0.400 0.800
car 0.892 |0.911 0.839  [0.728 0.538 ]0.538 0.911
flags 0.475 ]0.526 0.305 0.305 0.102 |0.102 0.627
hayes-roth 0.822 |0.822 0.500 0.321 0.036 |0.036 0.786
krkopt 0.379 |0.404 0.128 0.121 0.000 |0.314 0.444
kr-vs-kp 0.988 |0.988 0.881 0.781 0.209 |0.209 0.964
lenses 0.625 ]0.625 0.375  ]0.375 0.375 |0.375 1.000
letter-recognition |0.702 |0.719 0.589 0.571 0.035 |0.317
lymphography  [0.800 [0.889  |0.512  |0.489 0111 |0.111  |0.867
monks1 0.949 10.949 0.743 0.632 0.250 ]0.250 0.866
monks2 0.715 |0.715 0.620  [0.563 0.000 |0.291 0.736
monks3 0.921 |0.954 0.694  [0.660 0.000 |0.768 0.944
nursery 0.961 |0.961 0.908  [0.836 0.344 |0.344
shuttle-landing 0.400 |0.400 0.600 0.600 0.400 (0.400 0.600
soybean-small 1.000 |1.000 1.000 1.000 1.000 |1.000 1.000
spect 0.743 |0.781 0.252 0.235 0.246 |0.246 0.759
spect _all 0.716 |0.741 0.370  [0.296 0.210 |0.210 0.765
tic-tac-toe 0.885 |0.885 0.917  |0.806 0.000 |0.264  |0.962
Z00 0.968 |0.968 0.935  ]0.935 0.613 ]0.613 1.000

Accuracies of the considered seven classifiers are represented in Table 4.5. The re-
sults obtained for classifiers based on partial rules (columns “ Rul(0)” and “ Rul(opt)”)
are comparable with the results obtained for classifiers from RSES (columns “ Lem2(1)”,
“Lem?2(0.9)”, “Cov(1)”, “Cov(0.9)”, and “Gen”).

4.3 Conclusions

In the chapter, the greedy algorithm for construction of partial decision rules is
considered. Results of experiments show that for real-life decision tables the use
of this algorithm allows us to obtain short partial decision rules with relatively high
accuracy. These results confirm 0.5-hypothesis for decision rules.

Results of experiments with real-life decision tables show that classifiers based on
partial decision rules are often better than the classifier based on exact decision rules.
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Universal Attribute Reduction Problem

The attribute reduction problem (it is required to find a reduct with minimal or close
to minimal cardinality) is one of the main problems of rough set theory [45, 47, 48,
49, 56, 70] and related theories such as test theory |6, 10, 65, 73, 76, 77| and LAD
[1, 9]. There are different variants of the notion of reduct: reducts for information
systems [45], usual decision and local reducts for decision tables |45, 55|, decision
and local reducts which are based on the generalized decision [55], etc. Interesting
discussion of various kinds of reducts can be found in [47].

In this chapter, we consider an “universal” definition of reduct which covers at
least part of possible variants. We use an approach considered in test theory [73].
Let T be a decision table and P be a subset of pairs of different (discernible) rows
(objects) of T'. Then a reduct for T relative to P is a minimal (relative to inclusion)
subset of conditional attributes which separate all pairs from P. All mentioned above
kinds of reducts can be represented in such a form. We consider here not only exact,
but also partial (approximate) reducts.

We begin our consideration from a data table which columns are labeled with
discrete and continuous variables, and rows are tuples of values of variables on some
objects. It is possible that this data table contains missing values [13, 21|. We consider
the following classification problem: for a discrete variable we must find its value
using values of all other variables. We do not use variables directly, but create some
attributes with relatively small number of values based on the considered variables.
As a result, we obtain a decision table with missing values in the general case. We
define the universal attribute reduction problem for this table and consider a number
of examples of known attribute reduction problems which can be represented as the
universal one.

Based on results from Chap. 1, we obtain bounds on precision of greedy algorithm
for partial test (super-reduct) construction. This algorithm is a simple generalization
of greedy algorithm for set cover problem [16, 24, 44, 57, 58]. We prove that, under
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some natural assumptions on the class NP, the greedy algorithm is close to the
best (from the point of view of precision) polynomial approximate algorithms for
minimization of cardinality of partial tests. We show that based on an information
received during greedy algorithm work it is possible to obtain a nontrivial lower
bound on minimal cardinality of partial reduct. We obtain also a bound on precision
of greedy algorithm which does not depend on the cardinality of the set P.

This chapter is based on papers [36, 39].

The chapter consists of four sections. In Sect. 5.1, a transformation of a data table
into a decision table is considered. In Sect. 5.2, the notion of the universal attribute
reduction problem is discussed. In Sect. 5.3, greedy algorithm for construction of
partial tests (partial super-reducts) is studied. Section 5.4 contains short conclusions.

5.1 From Data Table to Decision Table

A data table D is a table with k columns labeled with variables zy,...,z; and N
rows which are interpreted as tuples of values of variables xq,...,x; on N objects
Uy, ..., uy. It is possible that D contains missing values which are denoted by “—".

As usual, we assume that each of variables x; is either discrete (with values from
some finite unordered set V' (z;)) or continuous (with values from a set V(z;) C IR).
We will assume that “ —" does not belong to V' (x;).

Let us choose a variable z, € {z1,...,z;} and consider the problem of prediction
of the value of z, on a given object using only values of variables from the set
X ={x,...,2x} \ {z.} on the considered object. If x, is a discrete variable, then
the problem of prediction is called the classification problem. If x, is a continuous
variable, then the considered problem is called the problem of regression. We consider
only the classification problem. So x,. is a discrete variable.

We consider only two kinds of missing values: (i) missing value of x; as an ad-
ditional value of variable x; which does not belong to V(z;), and (ii) missing value
as an undefined value. In the last case, based on the value of x; it is impossible to
discern an object u; from another object w; if the value x;(u;) is missing (undefined).

We now transform the data table D into a data table D*. For each variable z; €
{z1,..., 2}, according to the nature of x; we choose either the first or the second
way for the work with missing values. In the first case, we add to V' (z;) a new value

13

which is not equal to “—", and write this new value instead of each missing value of
x;. In the second case, we leave all missing values of x; untouched.

To solve the considered classification problem, we do not use variables from X
directly. Instead of this, we use attributes constructed on the basis of these variables.

Let us consider some examples.
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Let z; € X be a discrete variable. Let us divide the set V(z;) into relatively small
number of nonempty disjoint subsets Vi,...,V;. Then the value of the considered
attribute on an object w is equal to the value j € {1,..., s} for which z;(u) € V;. The
value of this attribute on u is missing if and only if the value of x; on u is missing.

Let 2; € X be a continuous variable and ¢ € IR. Then the value of the considered
attribute on an object w is equal to 0 if z;(u) < ¢, and is equal to 1 otherwise. The
value of this attribute on u is missing if and only if the value of x; on u is missing.

Let x;,,...,7;, € X be continuous variables and f be a function from IR’ to
IR. Then the value of the considered attribute on an object u is equal to 0 if
flziy (uw),...,x;(u)) < 0, and is equal to 1 otherwise. The value of this attribute
on u is missing if and only if the value of at least one variable from {z;,,...,z;} on
u 1S missing.

We now assume that the attributes fi,..., f,, are chosen. Let, for simplicity,
uy,...,u, be all objects from {us,...,uy} such that the value of the variable z,
on the considered object is definite (is not missing).

We now describe a decision table T'. This table contains m columns labeled with
attributes f1,..., fm, and n rows corresponding to objects uq,...,u, respectively.
For j = 1,...,n, the j-th row is labeled with the value x,(u;) which will be con-
sidered later as the value of the decision attribute d. For any ¢ € {1,...,m} and
j € {1,...,n}, the value f;(u;) is at the intersection of the j-th row and the i-th

2

column. If the value f;(u;) is missing, then the symbol “ —" is at the intersection of

the j-th row and the ¢-th column.

5.2 Problem of Attribute Reduction

In this section, we define the problem of attribute reduction, consider some examples
and discuss the notions of reduct and decision rule studied in this thesis.

5.2.1 Definition of Problem

Let T be a decision table with m columns labeled with attributes fi,..., f,, and n
rows which are identified with objects uq, . .., u,. It is possible that T" contains missing
values denoted by “ — 7. Each row is labeled with a decision which is interpreted as
the value of the decision attribute d. Let A = {fi,..., fm} and U = {uy, ..., u,}.
We now define the indiscernibility relation IND(T) C U xU. Let u;,u; € U. Then
(uy,ug) € IND(T) if and only if f;(u) = fi(us) for any f; € A such that the values
fi(w;) and f;(u;) are definite (are not missing). Since 7' can contain missing values,
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the relation IND(T) is not an equivalence relation in the general case, but it is a
tolerance relation.

By DIS(T) we denote the set of unordered pairs of objects u; and u; from U
such that (u;,u;) ¢ IND(T). Let (uj,us) € DIS(T) and f; € A. We will say that
the attribute f; separates the pair (u;,u;) if the values f;(u;) and f;(u;) are definite
and f;(u;) # fi(u;). For any f; € A, we denote by DIS(T, f;) the set of pairs from
DIS(T) which the attribute f; separates.

Let P be a subset of DIS(T'). Let @ be a subset of A and « be a real number such
that 0 < a < 1. We will say that @ is an a-test for T relative to P (an («, P)-test
for T) if attributes from @ separate at least (1 — «)|P| pairs from P. An (o, P)-test
for T is called an a-reduct for T relative to P (an («, P)-reduct for T') if each proper
subset of this (a, P)-test is not an («, P)-test for T. If P = (), then any subset @ of
A s an (o, P)-test for T', but only the empty set of attributes is an («, P)-reduct for
T. Note that each (a, P)-test contains an («, P)-reduct as a subset. The parameter
a can be interpreted as an inaccuracy. If o = 0, then we obtain the notion of exact
test for T' relative to P and the notion of exact reduct for 7" relative to P.

The problem of attribute reduction is the following: for a given decision table
T, subset P of the set DIS(T) and real o, 0 < a < 1, it is required to find an
(a, P)-reduct for T (an («, P)-test for T') with minimal cardinality. Let us denote
by Rumin(@) = Rumin(a, P, T) the minimal cardinality of an (a, P)-reduct for 7. Of
course, it is possible to use another measures of reduct quality.

The considered problem can be easily reformulated as a set cover problem:
we should cover the set P using minimal number of subsets from the family
{PNDIST, f1),...,PNDIS(T, fmn)}. Therefore, we can use results, obtained for
the set cover problem, for analysis of the attribute reduction problem.

5.2.2 Examples

We now consider examples of sets P corresponding to different kinds of reducts. It was
impossible for us to find definitions of some kinds of reducts which are applicable to
decision tables with missing values. In such cases we have extended existing definitions
(if it was possible) trying to preserve their spirit.

For an arbitrary u; € U, let [w]r = {us : wy € U, (w,u) € IND(T)} and Or(w) =
{d(u¢) : us € [w]r}. The set Or(w;) is called the generalized decision for w;. The
positive region POS(T') for T is the set of objects u; € U such that |0r(u;)| = 1. The
set BN(T) = U\ POS(T) is called the boundary region for T.
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1. Reducts for the information system, obtained from T by removing the decision
attribute d. The set P is equal to DIS(T) (we should preserve the indiscernibility
relation).

2. Usual decision reducts for T. The set P is equal to the set of all pairs (u;,u;) €
DI1S(T) such that d(u;) # d(u;) and at least one object from the pair belongs to
POS(T) (we should preserve the positive region).

3. Decision reducts for T based on the generalized decision. Let us assume T is
without missing values. The set P is equal to the set of all pairs (u;,us) € DIS(T)
such that Op(u;) # Or(u:).

4. Mazimally discerning decision reducts for T. The set P is equal to the set of all
pairs (u;, u;) € DIS(T) such that d(u;) # d(uy).

5. Usual local reducts for T and object u; € POS(T). The set P is equal to the set
of all pairs (u;,u;) € DIS(T) such that d(u;) # d(uy).

6. Local reducts for T and object u; € U based on the generalized decision. Let us
assume T is without missing values. The set P is equal to the set of all pairs
(ug,ug) € DIS(T) such that Op(u;) # Or(uy).

7. Maximally discerning local reducts for T and object u; € U. The set P is equal
to the set of all pairs (u;, u;) € DIS(T) such that d(w;) # d(us).

5.2.3 Maximally Discerning Local Reducts

The notion of decision rule considered in this thesis is closest to the notion of maxi-
mally discerning local reduct. The consideration of maximally discerning local reducts
for objects from the boundary region can lead to construction of a decision rule system
which is applicable to wider class of new objects. We now consider an example.

fi f2 s Ss
0[0]1 S 2 =01
f1:O/\f2:O—>{1,2}
T-[ofo]2 [a=1-2 o f1=0—2
=1—
0112 |[fi=1—1 271 1 fo=1—2
1]0]1 h=1—4l) fi=1—1

Fig. 5.1. Illustrations to Example 5.1

FExample 5.1. Let us consider the decision table T" and three systems of decision rules
S1, Sy and S3 obtained on the basis of usual local reducts, local reducts based on
the generalized decision, and maximally discerning local reducts (see Fig. 5.1). Let us
consider two new objects (0,2) and (2,0). Systems S; and Sz have no rules which are
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realizable on the new objects. However, the system S3 has rules which are realizable
on these new objects and, moreover, correspond to these objects different decisions.

5.3 Greedy Algorithm

We now describe the greedy algorithm which for a given «, 0 < v < 1, decision table
T and set of pairs P C DIS(T), P # 0, constructs an (a, P)-test for T

Algorithm 5: Greedy algorithm for partial test construction
Input : Decision table T' with conditional attributes f1,..., fm, set of pairs P C DIS(T), P # 0,
and real number a, 0 < o < 1.
Output: (a, P)-test for T.

Q—0;

while Q is not an (a, P)-test for T do
select f; € {f1,..., fm} with minimal index 7 such that f; separates the maximal number of
pairs from P unseparated by attributes from Q;
Q«— QU{fik

end

return Q;

By Rgreedy(®) = Rgreedy(a, P,T) we denote the cardinality of the constructed
(a, P)-test for T

5.3.1 Precision of Greedy Algorithm
Using Theorems 1.8-1.10 one can prove the following three theorems.

Theorem 5.2. Let 0 < a < 1 and [(1 — a)|P|] > 2. Then Rgreedy () < Rumin(cr) X
(In[(1 —=a)|P|] —Inln[(1 — «a)|P|] + 0.78).

Theorem 5.3. Let 0 < o < 1. Then for any natural t > 2 there exists a decision
table T and a subset P of the set DIS(T) such that [(1 — «)|P|] =t and Rgreeay (@) >
Ruin(@)(In [(1 — )|P|] —Inln [(1 — «)|P|] — 0.31).

Theorem 5.4. Let 0 < o < 1. Then

Ryrecdy (@) < Rpin(a) <1 +1n ( max |[PNDIS(T, f])|>> )

je{1,....m}
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5.3.2 Polynomial Approximate Algorithms
From results obtained in [43, 63| the next theorem follows.

Theorem 5.5. Let 0 < o < 1. Then the problem of construction, for given T and
P C DIS(T), an (a, P)-reduct for T with minimal cardinality is N P-hard.

From statements obtained in [38, 40| (based on results from [11, 53, 61, 63]) the

next two theorems follow.

Theorem 5.6. Let « € R and 0 < o < 1. If NP € DTIM E(n®Uog1e™) then for
any €, 0 < e < 1, there is no polynomial algorithm that, for a given decision table T
with DIS(T) # 0 and nonempty subset P C DIS(T), constructs an (o, P)-test for
T which cardinality is at most (1 — &) Ryin(c, P, T) In |P)].

From Theorem 5.4 it follows that Rgreedy() < Rpmin(@)(1 + In|P]). From this
inequality and from Theorem 5.6 it follows that, under the assumption NP ¢
DTIME(nCUoglen) the greedy algorithm is close to the best polynomial approxi-
mate algorithms for partial test cardinality minimization.

Theorem 5.7. Let a be a real number such that 0 < o < 1. If P # NP, then there
exists o > 0 such that there is no polynomial algorithm that, for a given decision table
T with DIS(T) # O and nonempty subset P C DIS(T), constructs an («, P)-test for
T which cardinality is at most oRuyin(c, P, T) In |P|.

From Theorems 5.4 and 5.7 it follows that, under the assumption P # NP, the
greedy algorithm is not far from the best polynomial approximate algorithms for

partial test cardinality minimization.

5.3.3 Lower Bound on R,(«)

In this subsection, we fix some information about the greedy algorithm work and find
a lower bound on R, («) depending on this information.

Let us apply the greedy algorithm to a, 7" and P. Let during the construction
of (o, P)-test for T' the greedy algorithm choose consequently attributes fj,, ..., fj,.
Let us denote by d; the number of pairs from P separated by the attribute f;,.
For ¢+ = 2,...,t, we denote by J; the number of pairs from P which are not
separated by attributes f; ,..., f;,,, but are separated by the attribute f;,. Let
A(a,P,T) = (d1,...,0). As information on the greedy algorithm work we will use
the tuple A(«, P,T) and numbers |P| and «.

We now define the parameter () = (o, |P|, A(a, P, T)). Let o = 0. Then
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(o) = e { [ HEZ P =0t 000y o}

61’—}-1

Using Theorems 1.22 and 1.25 one can prove the following two theorems.

Theorem 5.8. Let T' be a decision table, P C DIS(T), P # 0, and « be a real
number such that 0 < o < 1. Then Ryin(a, P,T) > (o, |P|, A, P, T))).

The value l(«) = l(a, |P|, A(a, P, T)) can be used for the obtaining of upper
bounds on cardinality of partial tests constructed by the greedy algorithm.

Theorem 5.9. Let o and 3 be real numbers such that 0 < 3 < a < 1. Then

1—
Rgreedy (@) < l(a — () In (%) +1.

From Theorem 5.9 it follows that the lower bound Ryyi,(«) > () is nontrivial. In
Chap. 1, it is shown that for decision rules (maximally discerning local reducts) the
bound Rpn(a) > () is the best lower bound on Ry,i,(a) depending on A(a, P, T),
|P| and « (see Theorem 1.46).

5.3.4 Upper Bound on Rgcedy ()

In this subsection, we obtain an upper bound on Rgeedy () = Rgreedy(c, P, T) which
does not depend on |P|. The next statement follows immediately from Theorems 5.8
and 5.9.

Theorem 5.10. Let o and  be real numbers such that 0 < < a < 1. Then

l—a+
Rgreedy(a) < Rmin(Oé — ﬂ) In <Tﬂ> + 1.
In Chap. 1, it is shown that for decision rules (maximally discerning local reducts)
this bound is, in some sense, unimprovable: it is impossible to multiply the right-hand
side of the considered inequality by any real ¢ such that 6 < 1 (see Theorem 1.52).

5.4 Conclusions

The chapter is devoted to discussion of universal problem of attribute reduction
and to analysis of greedy algorithm for this problem solving. The obtained results
show that, under some natural assumptions on the class NP, greedy algorithm is
close to the best polynomial approximate algorithms for the minimization of partial
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test cardinality. Based on an information received during greedy algorithm work it
is possible to obtain nontrivial lower bound on the minimal cardinality of partial
reducts.

A part of obtained results (Theorems 5.2, 5.4, 5.8, 5.9, and 5.10) is true for any
special kind of reduct that can be represented as a (0, P)-reduct for appropriate P,
in particular, for usual decision and local reducts.

Another part of results (Theorems 5.3, 5.5, 5.6, and 5.7) is proved only for the
whole universal attribute reduction problem and for maximally discerning decision
and local reducts. To obtain, for an another special kind of reducts, results similar
to Theorems 5.3, 5.5, 5.6, and 5.7 we should make additional investigations.



Final Remarks

In this thesis, we study partial decision rules for the case, where the weight of each
conditional attribute of a decision table is equal to 1, and for the case, where condi-
tional attributes can have arbitrary natural weights.

In both cases, under some natural assumptions on the class N P, greedy algorithms
for partial decision rule construction are close to the best (from the point of view
of accuracy) polynomial approximate algorithms for minimization of complexity of
partial rules.

We consider the accuracy of algorithms in the worst case. It means that we can
try to find algorithms which will work better than greedy algorithms for some part of
problems. We make such attempts. The results of experiments with new polynomial
approximate algorithms, which are modifications of greedy algorithms, seem to be
promising.

We find new nontrivial lower bounds on the minimal complexity of partial deci-
sion rules based on an information obtained during the work of greedy algorithms.
Experimental results show that these bounds can be used in practice.

One of the main aims of the thesis is to evaluate possibilities of the use of partial
decision rules for the improvement of accuracy of classifiers, and for more compact
representation of knowledge.

Results of experiments with decision tables from UCI Repository of Machine
Learning Databases show that the accuracy of classifiers based on partial decision
rules is often better than the accuracy of classifiers based on exact decision rules.

Experimental and some theoretical results confirm the following 0.5-hypothesis:
in the most part of cases, greedy algorithm during each step chooses an attribute
which separates at least one-half of unseparated rows that should be separated. It
means that greedy algorithm constructs often short partial rules with relatively high
accuracy.
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We design also new algorithm for construction of the set of all irreducible partial
decision rules for almost all decision tables of a special kind. The considered algorithm
has too high time complexity to be used in practice. However, this algorithm has
essentially lesser complexity than the brute-force algorithms.

The obtained results will further to wider use of partial decision rules in rough set
theory and related theories such as test theory and logical analysis of data (LAD).

The most part of results of the thesis is based on the study of set cover problem.
We formulate an “universal attribute reduction problem”, and show how the results
obtained for the set cover problem can be used for the study of another kinds of
reducts such as reducts for information systems, local and decision reducts based on
the generalized decision, etc.
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Uwagi

W niniejszym opracowaniu przedstawiono streszczenie pracy doktorskiej pt. ,,Con-
struction and Optimization of Partial Decision Rules”, ktora zostata napisana w jezyku
angielskim. W streszczeniu zostaly pominiete twierdzenia wraz z dowodami. Przed-

stawiono jedynie najwazniejsze rezultaty rozprawy oraz cze$é¢ bibliografii.



Streszczenie

Zagadnienia poruszane w rozprawie doktorskiej zwigzane sa z problemami wystepu-
jacymi w dziedzinie odkrywania i wydobywania wiedzy z danych (ang. data mining
and knowledge discovery). Pierwszy problem, to reprezentacja wiedzy zawartej w ta-
blicy decyzyjnej w formie dogodnej dla zrozumienia. W tej sytuacji dlugos¢ opisu
wiedzy odgrywa istotna role. Drugi problem, to przewidywanie wartosci atrybutu de-
cyzyjnego dla nowych obiektow. Wowezas doktadnosé przewidywania (klasyfikacji)
ma duze znaczenie, np. w medycynie.

Te dwa cele (zwiezty opis i wysoka dokladnosé) wydaja sie by¢ sprzeczne ze
soba, aczkolwiek wiadomo jest, ze klasyfikatory ze zwieztym opisem wiedzy sa czesto
bardziej dokladne. Przedstawiona rozprawa doktorska stanowi potwierdzenie tego
faktu.

Praca poswiecona jest rozwazaniom dotyczacym jednego z gtéwnych pojeé teorii
zbioréw przyblizonych: pojeciu reguly decyzyjnej (lokalnego reduktu) [16, 18, 20,
23, 24, 31, 32]. Definicja rozwazanej w pracy czesciowej reguly decyzyjnej zostata
przedstawiona ponizej.

Niech T" bedzie tablica z n wierszami oznaczonymi przez nieujemne liczby catkowite
(decyzje) i m kolumnami oznaczonymi jako atrybuty warunkowe f, ..., f,,. Tablica
ta wypelniona jest przez nieujemne liczby catkowite (wartosci atrybutow). Tablica T'
jest nazywana tablica decyzyjna. Powiemy, ze atrybut f; separuje (oddziela) wiersze
ry1 i ry tablicy T', jesli wiersze te posiadaja rozne wartos$ci na przecieciu z kolumna f;.
Wiersze te nazywane sa roznymi, jesli przynjamniej jeden atrybut f; je separuje.

Niech r = (by,...,b,) bedzie wierszem tablicy T oznaczonym przez decyzje d.
Przez U(T,r) oznaczamy zbior wierszy z T', ktore sa rozne od 7 i sg oznaczone przez
decyzje inne niz d. Niech « € IR i 0 < a < 1. Reguta decyzjna

(fiy =bi) Ao A (fi, = i) — d
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jest nazywana a-regufq decyzyjng dla T' i r jesli atrybuty f;,,..., f;, separuja od r
przynjamniej (1 — «)|U(T,r)| wierszy ze zbioru U(T,r) (taka regula nazywana jest
takze czesciowq reguty decyzyjna).

Doktadne reguty decyzyjne sg szeroko stosowane w teorii zbioréw przyblizonych,
zarowno dla konstruowania klasyfikatorow oraz jako sposob reprezentacji wiedzy [23].
I[stnienie regut decyzyjnych z matg liczba atrybutéw moze utatwié¢ zrozumienie relacji
pomiedzy atrybutami warunkowymi a decyzja. Nalezy takze zauwazy¢, ze pojecia
podobne do pojecia reguty decyzyjnej byly badane w teorii testow (gdzie pojecie
testu kontrolnego nie jest dalekie od pojecia reguly decyzyjnej) oraz w logicznej
analizie danych LAD (ang. Logical Analysis of Data) (gdzie wzorzec jest analogia do
reguty decyzyjnej).

Glowna teza rozprawy doktorskiej jest nastepujaca: zastosowanie algorytmow
zachtannych do generowania regul decyzyjnych pozwala uzyska¢ krotkie czesciowe
reguty decyzyjne o odpowiednio wysokiej jakosci.

Doktadne reguty decyzyjne moga by¢ przeuczone tzn. zbyt mocno zalezne od
szumu lub (w przypadku klasyfikacji) zbyt mocno dopasowane do istniejacych przy-
padkow (obiektow). Jesli reguty decyzyjne sa traktowane jako sposob reprezentacji
wiedzy wowczas, zamiast doktadnych regut z wieloma atrybutami, nie gorsze wyniki
mozna uzyskac stosujac czesciowe reguty decyzyjne z mniejsza liczba atrybutow, ktore
oddzielaja od danego wiersza prawie wszystkie inne wiersze z inng decyzja.

Rozwazana idea nie jest nowa. Od lat w teorii zbioréw przyblizonych czesciowe re-
dukty i czesciowe regulty decyzyjne (czesciowe redukty lokalne) sa intensywnie badane
przez H.S. Nguyena, A. Skowrona, D. Slezaka, Z. Pawlaka, J. Wroblewskiego i innych
[1, 15, 17, 18, 33].

Istnieja rozne podejscia do definiowania przyblizonych reduktow. W [15, 28|
zostalo udowodnione, ze dla kazdego z rozwazanych podej$é, problem minima-
lizacji czesciowych reduktow (konstruowania czesciowych reduktéw o minimalne;j
licznosci) jest N P-trudny. Podejscie przedstawione w [15] jest podobne do podejscia
rozwazanego w tej rozprawie. Szczegotowa dyskusja dotyczaca czesciowych regut de-
cyzyjnych zostata zawarta w rozdziale 5 rozprawy. Przyblizone redukty byty takze
badane przez W. Ziarko, M. Quafafou i innych, w rozszerzonym modelu zbioréw przy-
blizonych VPRS (ang. Variable Precision Rough Sets) i «-RST (ang. alpha Rough
Set Theory).

Istnieja rézne miary jakosci regul decyzyjnych: dtugosé reguty, catkowita waga
atrybutow zawartych w regule decyzyjnej, wsparcie reguty decyzyjnej i inne. W pracy
koncentrujemy sie na minimalizacji dlugosci regul (co pozwala konstruowaé klasy-
fikatory o wiekszej doktadnosci lub uzyska¢ bardziej zwiezla reprezentacje wiedzy
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zawarte] w tablicach decyzyjnych) oraz na minimalizacji caltkowitej wagi regut (co
pozwala zmniejszy¢ zlozonos¢ czasowa, koszt lub ryzyko pracy klasyfikatorow).

Istnieja rozne podejscia do konstruowania regut decyzyjnych: brute-force algorytm,
ktory jest stosowany do tablic decyzyjnych o stosunkowo matej liczbie atrybutow, al-
gorytmy genetyczne, symulowane wyzarzanie, wnioskowanie Boolowskie, algorytmy
optymalizacji mrowiskowej, algorytmy oparte na tworzeniu drzew decyzyjnych, algo-
rytmy zachtanne.

Kazda z tych metod posiada liczne modyfikacje. Np. w przypadku drzew de-
cyzyjnych mozna stosowaé¢ algorytmy zachtanne oparte na entropii, indeksie Gini,
dla konstruowania regut decyzyjnych.

W przedstawianej rozprawie doktorskiej stosujemy algorytmy zachtanne do kon-
struowania regul. Oczywiscie, algorytmy te nie sa nowe i byly uzywane przez
licznych autoréw [3]. Nasz wybor zwiazany jest z matematycznymi wynikami badan
uzyskanymi dla algorytmoéw zachtannych. Zostalo udowodnione, ze biorac pod uwage
pewne zalozenia dotyczace klasy N P, algorytmy zachtanne pozwalaja uzyska¢ wyniki
bliskie wynikom uzyskiwanym przez najlepsze przyblizone wielomianowe algorytmy
dla optymalizacji regut decyzyjnych.

Wazng cze$cia rozprawy doktorskiej jest matematyczna analiza problemu kon-
struowania czesciowych regut decyzyjnych, ktorej wyniki sg blisko zwigzane z wynika-
mi eksperyemntow. W wielu przypadkach, wyniki eksperymentéow prowadzity do is-
totnych, nowych stwierdzen a matematyczna analiza pozwolita wybraé¢ nowe kierunki
badan.

Badania dotyczace czesciowych regut decyzyjnych opieraja sie na badaniach doty-
czacych czesciowych pokryé. Niech A = {ay,...,a,} bedzie niepustym, skonczonym
zbiorem i S = { By, ..., By} bedzie rodzina podzbioréw A taka, ze BiU...UB,, = A.
Niech « € R10 < a < 1. Podrodzina @ = {B,,, ..., B;,} rodziny S jest nazywana
a-pokryciem dla pary (A, S) jesli |B;, U...UB;,| > (1 —a)|A].

Istnieje prosta redukcja problemu konstruowania O-pokrycia o minimalnej licznosci
do problemu konstruowania 0-reguty decyzyjnej o minimalnej dtugosci. Istnieje takze
odwrotna redukcja. Podobna sytuacja dotyczy czesciowych pokry¢ i cze$ciowych regut
(kiedy « > 0). Fakt ten pozwolit wykorzystaé¢ rézne matematyczne wyniki dotyczace
problemu pokrycia zbioru uzyskane przez J. Cheriyana i R. Raviego, V. Chva tala,
U. Feigego [2], D.S. Johnsona [3]|, R.M. Karpa, M.J. Kearnsa, L. Lovasza, R.G. Nig-
matullina, R. Raza i S. Safra, oraz P. Slavika [25, 26], dla analizy czesciowych regul.
Dodatkowo, korzystamy z techniki stworzonej przez D. Slezaka [28] dla dowodu N P-
trudnosci optymalizacji czeSciowych reduktow.

Zmnane i uzyskane w tej pracy wyniki badan dla pokry¢ i cze$ciowych pokry¢ moga

zosta¢ wykorzystane w szerszym spektrum probleméw rozwazanych w teorii zbioréw
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przyblizonych, np. dla badania (i) reduktow i regut systemoéw informacyjnych, (ii)
reduktow i regul dla tablic decyzyjnych z brakujacymi wartosciami, (iii) podsystemow
danego systemu regut, ktore ,pokrywaja’ ten sam zbioér wierszy.

Rozprawa doktorska sklada sie z pieciu rozdzialow.

Rozdziat 1 dotyczy czesciowych pokry¢ i czeSciowych regut decyzyjnych. Zawiera
m.in podstawowe pojecia, znane wyniki badan dla problemu pokrycia i czeSciowego
pokrycia zbioru, relacje pomiedzy czesciowymi pokryciami i czeSciowymi regutami
decyzyjnymi, oszacowanie doktadnosci algorytmu zachtannego, oszacowanie gérnych
i dolnych granic minimalnej liczno$ci czesciowych pokry¢ oraz minimalnej dtugosci
czesciowych regut decyzyjnych, oszacowanie gérnych granic licznosci czesciowych
pokryé i odpowiednio dtugosci czesciowych regut decyzyjnych, oraz wyniki badan
dotyczace pokryé¢ dla wiekszej czesci probleméw pokrycia zbioru i odpowiednio,
wyniki badan dotyczace regut decyzyjnych dla wiekszej czesci binarnych tablic de-
cyzyjnych.

W rozdziale 1 udowodnilismy, ze biorac pod uwage pewne zalozenia dotyczace
klasy N P, algorytm zachtanny jest bliski (z punktu widzenia doktadnosci) najlepszym
przyblizonym wielomianowym algorytmom dla optymalizacji cze$ciowych pokryé.

Dane uzyskane podczas pracy algorytmu zachtannego moga zostaé¢ wykorzystane
do oszacowania dolnych i gérnych granic minimalnej licznosci czesciowych pokryé.
W ten sposob zostaly znalezione najlepsze dolne i gérne granice zalezne od tych
danych. Teoretyczne i eksperymentalne wyniki badan (rozdzial 4) pokazuja, ze
uzyskana dolna granica jest nietrywialna i moze zosta¢ uzyta w praktycznych za-
stosowanich.

Dokonaliémy takze oszacowania granicy doktadnosci algorytmu zachtannego dla
konstruowania czesciowych pokry¢, ktora nie zalezy od licznosci pokrywanego zbioru.

Udowodnilismy, ze dla wiekszej czesci problemow pokrycia zbioru istnieja doktadne
(i odpowiednio czesciowe) pokrycia o matlej licznosci. Wyniki eksperymentow dla
losowo generowanych probleméw pokrycia zbioru pozwolity sformuowaé nieformalng
0.5-hipoteze: dla wiekszej czesci probleméw pokrycia zbioru, algorytm zachtanny
w kazdej iteracji wybiera podzbior, ktéry pokrywa przynajmniej potowe niepokry-
tych dotychczas elementow.

Wieksza czesé wynikow badani uzyskanych dla czesciowych pokryé zostata uogol-
niona dla przypadku czesciowych regut decyzyjnych.

Pokazalismy, ze przyjmujac pewne zalozenia dotyczace klasy NP, algorytm za-
chtanny pozwala uzyska¢ wyniki bliskie wynikom uzyskiwanym przez najlepsze przy-
blizone wielomianowe algorytmy, dla minimalizacji dlugosci cze$ciowych regut de-
cyzyjnych.
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Na podstawie danych uzyskanych podczas pracy algorytmu zachtannego zostaly
znalezione nietrywialne dolne i gérne granice minimalnej dtugosci cze$ciowych regut
decyzyjnych.

Dla wiekszej czesci losowo generowanych binarnych tablic decyzyjnych, algorytm
zachtanny konstruuje proste czesciowe reguty decyzyjne, o odpowiednio wysokiej
jakosci. Eksperymentalne i teoretyczne wyniki badan potwierdzity 0.5-hipoteze dla
regut decyzyjnych: dla wickszosci tablic decyzyjnych, algorytm zachtanny podczas
generowania reguly w kazdej iteracji wybiera atrybut, ktéry separuje przynajmniej
potowe wierszy dotychczas nie oddzielonych.

Rozdziat 2 dotyczy czeSciowych pokry¢ i czeSciowych regul decyzyjnych z uwzgle-
dnieniem wag atrybutow. Zawiera m.in podstawowe pojecia, znane wyniki badan
dla problemu pokrycia i cze$ciowego pokrycia zbioru z wagami, relacje pomiedzy
czesciowymi pokryciami i cze$ciowymi regutami decyzyjnymi z uwzglednieniem wag,
oszacowanie dokltadnosci algorytmu zachtannego, poréwnanie zwyklego algorytmu
zachtannego z wagami i algorytmu zachtannego z dwoma progami, oszacowanie
dolnej granicy minimalnej wagi czeSciowego pokrycia oraz minimalnej catkowite;
wagi atrybutéw czesciowej reguly decyzyjnej, oszacowanie gornej granicy wagi cze-
Sciowego pokrycia i odpowiednio gornej granicy catkowitej wagi atrybutow tworza-
cych czesciows regule decyzyjna, oraz wyniki eksperymentéw dla czesciowych pokryé
z wagami i czesciowych regut decyzyjnych z wagami.

W rodziale 2 zostal zbadany przypadek, kiedy kazdy podzbiér uzywany do
pokrycia posiada wtasnag wage i nalezy zminimalizowa¢ catkowita wage podzbiorow
tworzacych czesciowe pokrycie. Taka sama sytuacja dotyczy czesciowych regut de-
cyzyjnych: kazdy atrybut warunkowy posiada wtasna wage i nalezy zminimalizowaé
catkowita wage atrybutow tworzacych cze$ciowa regute decyzyjna. Waga atrybutu
moze chrakteryzowaé ztozonosé czasowa, koszt lub ryzyko (w medycynie lub diagno-
styce technicznej) obliczenia wartosci atrybutu.

Wigksza czesé wynikow badan przedstawionych w rozdziale 1 zostata uogoélniona
dla przypadku arbitralnych, naturalnych wag.

Udowodnilismy, ze biorac pod uwage pewne zalozenia dotyczace klasy NP, al-
gorytm zachtanny z wagami jest bliski (z punktu widzenia doktadnosci) najlepszym
przyblizonym wielomianowym algorytmom dla konstruowania czesciowego pokrycia
o minimalnej wadze i odpowiednio dla minimalizacji calkowitej wagi atrybutow
tworzacych czesciows regute decyzyjng.

Na podstawie danych uzyskanych podczas pracy algorytmu zachtannego oszacowa-
liSmy dolne granice minimalnej wagi czesciowego pokrycia i odpowiednio minimalnej

catkowitej wagi atrybutow tworzacych czesciowa regute decyzyjna.
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Uogolnilismy zwykty algorytm zachtanny z wagami i zbadalismy algorytm zachtan-
ny z dwoma progami. Pierwszy prog okresla doktadno$é¢ konstruowanego pokrycia,
drugi jest wewnetrznym parametrem rozwazanego algorytmu. Udowodnilismy, ze dla
wiekszej czesci probleméw pokrycia zbioru istnieje funkcja wagi i wartosci progoéw
takie, ze waga czeSciowego pokrycia konstruowanego przez algorytm zachtanny z dwo-
ma progami jest mniejsza, niz waga czesSciowego pokrycia konstruowanego przez
zwyktly algorytm zachtanny z wagami. Taka sama sytuacja dotyczy czesciowych
regut decyzyjnych. Opierajac sie na algorytmie z dwoma progami stworzylismy nowe
przyblizone wielomianowe algorytmy dla minimalizacji catkowitej wagi czesciowych
pokry¢ i czesciowych regul decyzyjnych. Wyniki duzej liczby eksperymentow dla
losowo generowanych probleméw pokrycia zbioru i binarnych tablic decyzyjnych
pokazuja, ze algorytmy te moga zosta¢ wykorzystane w praktyce.

Rozdziat 2 rozprawy doktorskiej, stanowi w pewnym sensie rozszerzenie rozdziatu
1 dla przypadku, kiedy wagi nie sa rowne 1. Nalezy zauwazy¢, ze nawet jesli wagi
sg rowne 1, to wyniki pracy algorytmoéow zachtannych rozwazanych w tym rozdziale
moga sie r6zni¢ od wynikéw przedstawionych w rozdziale 1. Np. dla regut decyzyjnych
liczba atrybutéw wybieranych przez algorytm zachtanny jest taka sama, ale ostatnie
atrybuty moga sie réznic.

Rozdziat 3 dotyczy konstruowania wszystkich nieredukowalnych czesciowych regut
decyzyjnych. Zawiera m.in podstawowe pojecia dotyczace nieredukowalnych t-regut
decyzyjnych, oszacowanie dtugosci i liczby tych regul, algorytmy konstruowania
wszystkich nierdukowalnych t-regut decyzyjnych oraz wyniki eksperymentow.

Niech ¢ bedzie liczbg naturalna. Reguta decyzjna

(fjl = bjl) VANRWAN (fjp = bjp) = dz

jest nazywana t-requtq decyzyjng dla tablicy decyzyjnej T i wiersza r, jesli atrybuty
fis -+, [j, oddzielaja od r przynajmniej |U (T, r)| —t wierszy ze zbioru U(T,r). W tej
sytuacji powiemy, ze atrybuty f;, ..., f;, tworzq t-regul¢ decyzyjng dla T'i r. Jesli
usuniemy pewne warunki f;, = b;., s € {1,...,p}, z rozwazanej reguly, otrzymamy
jej podregute. Podreguta pewnej reguly jest nazywana wtasciwg jesli nie jest réwna
poczatkowej regule. t-reguta decyzyjna dla T i r jest nazywana nieredukowalng, jesli
kazda wtasciwa podregula tej reguty nie jest t-reguta decyzyjna dla 71 r.

W rozdziale 3 zostaly zbadane binarne tablice decyzyjne z m atrybutami warunko-
wymi, w ktorych liczba wierszy wynosi |m® |, gdzie « jest dodatnia liczba rzeczywista
i czesciowe reguty decyzyjne moga pozostawié¢ nie odseparowanych od danego wier-
sza najwyzej 5 [(log2 m)ﬂ roznych wierszy z innymi decyzjami, gdzie [ jest liczba
rzeczywista taka, ze 3 > 1.
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Pokazalismy, ze dla prawie wszystkich takich tablic, dla kazdego wiersza z minor
decyzja (minor decyzja to decyzja, ktora dotyczy najwyzej polowy wierszy z ta-
blicy decyzyjnej), dtugos¢ kazdej nieredukowalnej czesciowej reguly decyzyjnej nie
jest wieksza od arlog, m i liczba nieredukowalnych czesciowych regut decyzyjnych nie
jest daleka od m®!oe2m,

Opierajac sie na tych wynikach udowodnilis$my, zZe nie istnieje algorytm, ktory dla
prawie wszystkich tablic decyzyjnych, dla kazdego wiersza z minor decyzja, konstru-
uje zbiér nieredukowalnych czedciowych regut decyzyjnych i posiada dla tych tablic
wielomianows ztozonos¢ czasowa zalezna od dlugosci danych wejsciowych. Istnieje
jednak algorytm, ktory dla prawie wszystkich tablic decyzyjnych, dla kazdego wiersza
z minor decyzja, konstruuje zbiér nieredukowalnych cze$ciowych regut decyzyjnych
i posiada dla tych tablic wielomianowa ztozonos¢ czasowa zalezng od dtugosci danych
wejsciowych i dtugosci danych wyjéciowych.

Rozwiazanie problemu konstruowania wszystkich nieredukowalnych czesciowych
regut decyzyjnych pozwoli np. (i) znalez¢ najlepsze czesciowe reguly, (ii) oszacowaé
waznosé atrybutow, (iii) tworzy¢ zespoty klasyfikatorow.

Rozdzial 4 zawiera wyniki eksperymentéw przeprowadzonych na na tablicach
decyzyjnych znajdujacych sie w UCI Repository of Machine Learning Databases.
Eksperymenty zostaly podzielone na dwie grupy. Pierwsza dotyczy 0.5-hipotezy dla
czesciowych regul decyzyjnych. Druga grupa eksperymentéow dotyczy klasyfikacji
z wykorzytsaniem cze$ciowych regut decyzyjnych.

Celem pierwszej grupy eksperymentéw byta weryfikacja 0.5-hipotezy dla danych
rzeczywistych. Wykonalismy eksperymenty na 23 tablicach decyzyjnych. Wyniki 20
eksperymentow potwierdzity 0.5-hipoteze: podczas konstruowania cze$ciowej reguty
decyzyjnej, algorytm zachtanny w kazdej iteracji wybiera atrybut, ktory oddziela od
wiersza r przynajmniej polowe wierszy dotychczas nie oddzielonych, ktére sa rézne
od r i posiadaja inne decyzje. Oznacza to, ze algorytm zachlanny czesto konstruuje
krotkie czesciowe reguly decyzyjne o odpowiednio wysokiej jakosci. Szczegdlnie dla
przypadku, kiedy 0.5-hipoteza jest prawdziwa, algorytm zachlanny konstruuje cze-
Sciowa regule decyzyjna z siedmioma atrybutami, ktore separuja od danego wiersza co
najmmniej 99% roznych wierszy z innymi decyzjami. Takie krotkie czesciowe reguty
decyzyjne sa dogodniejsze dla zrozumienia.

Celem drugiej grupy eksperymentéw byto poréwnanie doktadnosci klasyfikatorow
opartych na doktadnych i czesciowych regutach decyzyjnych. Rozwazane podejscie
do konstruowania klasyfikatoréow jest nastepujace: dla kazdego wiersza danej tablicy
decyzyjnej algorytm zachtanny konstruuje (czesciowa) regule decyzyjna. Nastepnie
przez usuniecie z takiej (czesciowej) regulty decyzyjnej pewnych atrybutéow otrzymu-
jemy nieredukowalng (czesciowa) regute decyzyjna. Uzyskany system regul potaczony
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z prosta procedurg gltosowania stanowi klasyfikator. Metoda train-and-test wykona-
liSmy eksperymenty dla 21 tablic decyzyjnych. W 11 przypadkach okazalo sie, ze
doktadnosé klasyfikatorow opartych na czesciowych regutach decyzyjnych jest lepsza,
niz doktadnosé klasyfikatorow opartych na doktadnych regutach decyzyjnych. Metoda
cross-validation wykonaliSmy eksperymenty dla 17 tablic decyzyjnych. W 9 przypad-
kach okazalo sie, ze doktadno$é¢ klasyfikatorow opartych na czesciowych regutach de-
cyzyjnych jest lepsza, niz doktadnosé klasyfikatoréow opartych na doktadnych regutach
decyzyjnych.

Rozdzial 5 dotyczy uniwersalnego problemu redukcji atrybutéw. Zawiera m.in
definicje problemu, warianty pojecia redukt, oszacowanie dokladnosci algorytmu
zachtannego dla konstruowania czesciowego super-reduktu, oszacowanie dolnej granicy
minimalnej licznosci czesciowego super-reduktu oraz oszacowanie gornej granicy
licznosci czesciowego super-reduktu.

W rozdziale 5 zostal zbadany uniwerslany problem redukcji atrybutéw. Niech T'
bedzie tablica decyzyjna i P bedzie podzbiorem par réznych wierszy (obiektow) z T
Woéwcezas reduktem dla T wzgledem P jest minimalny (w sensie zawierania) podzbior
atrybutow warunkowych, ktore oddzielaja wszystkie pary wierszy od P. Redukty dla
systemow informacyjnych, redukty decyzyjne i lokalne redukty (reguty decyzyjne)
dla tablic decyzyjnych, decyzyjne i loklane redukty oparte na uogoélnionej decyzji,
moga by¢ reprezentowane w takiej formie. W rozdziale zostaly zbadane nie tylko
doktadne ale takze czesciowe redukty. Zostal takze przedstawiony scenariusz pracy
z rzeczywistymi tablicami danych, ktére moga zawiera¢ zmienne ciagle i dyskretne
o duzej liczbie wartosci, oraz zmienne z brakujacymi wartosciami.

Na podstawie wynikow badan przedstawionych w rozdziale 1, dokonaliémy osza-
cowania granic doktadnosci algorytmu zachtannego dla konstruowania super-reduktow.
Udowodniliémy, ze poza kilkoma wyjatkami dotyczacymi klasy N P, algorytm zachtan-
ny jest bliski (z punktu widzenia doktadnosci) przyblizonym wielomianowym algory-
tmom dla minimalizacji licznosci czesciowych super-reduktéw. Na podstawie danych
uzyskanych podczas pracy algorytmu zachtannego, uzyskaliémy nietrywialng dolna
granice minimalnej licznosci czesciowego reduktu. Dokonaliémy takze oszacowania
granicy doktadnosci algorytmu zachtannego, ktéra nie zalezy od licznosci zbioru P.

Eksperymentalne i teoretyczne wyniki badan przedstawione w pracy pokazuja,
ze zastosowanie czesSciowych regut decyzyjnych zamiast doktadanych regut, pozwala
uzyskac bardziej zwiezly opis wiedzy zawartej w tablicach decyzyjnych, oraz pozwala
konstruowaé klasyfikatory o wickszej doktadnosci. Sa to powody dla ktérych nalezy
zastosowaé czesciowe reguly decyzyjne w dziedzinie odkrywania i wydobywania
wiedzy z danych do reprezentacji wiedzy oraz do predykc;ji.
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Wyniki badani uzyskane w tej pracy moga byé¢ uzyteczne dla naukowcéw z takich
dziedzin jak np. uczenie maszynowe, odkrywanie i wydobywanie wiedzy z danych,
zwlaszcza pracujacych z teorig zbioréw przyblizonych.

Wyniki eksperymentéw opisanych w rozdziatach 1 i 4 zostaly przeprowadzone na
oprogramowaniu, ktére wkrotce zostanie dotgczone do systemu RSES — Rough Set
Exploration System [22| (Instytut Matematyki, Uniwersytet Warszawski, kierownik
projektu — prof. dr hab. Andrzej Skowron). Podstawowe funkcje biblioteki GRLib
to: generowanie czesciowych regutl decyzyjnych dla kazdego wiersza lub wybranego
wiersza z tablicy decyzyjnej, generowanie nieredukowalnych cze$ciowych regut de-
cyzyjnych, wyznaczenie dolnej i goérnej granicy minimalnej dtugosci dla wybranej
czesciowej reguly decyzyjnej lub wyznaczenie minimalnej, $redniej i maksymalne;j
wartosci dolnej i gbérnej granicy minimalnej dhugosci dla zbioru regut.
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