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Abstract

In thesis we study greedy algorithms for construction and optimization of partial
(approximate) decision rules.

The study of partial decision rules is based on the study of partial covers. We prove
that under some natural assumptions on the class NP , the greedy algorithm is close
(from the point of view of precision) to the best polynomial approximate algorithms

for minimization of the length of partial decision rules and minimization the total
weight of attributes in partial decision rule.

Based on an information received during the greedy algorithm work, it is possible
to obtain nontrivial lower and upper bounds on the minimal complexity of partial

decision rules. Theoretical and experimental results show that these bounds can be
used in practice.

We obtain a new bound on the precision of greedy algorithm for partial decision
rule construction that does not depend on the number of rows in decision table.

Under some assumptions on the number of rows and number of columns in decision

tables we prove that, for the most part of binary decision tables exist short irreducible
partial decision rules.

Theoretical and experimental results confirm the following 0.5-hypothesis for deci-
sion rules: for the most part of decision tables greedy algorithm during partial decision

rules construction chooses an attribute, that separates at least one-half of unsepa-
rated rows which should be separated. It means that greedy algorithm constructs
often short partial rules with relatively high accuracy.

Results of experiments with decision tables from UCI Repository of Machine
Learning Databases show that, the accuracy of classifiers based on partial decision

rules is often better than the accuracy of classifiers based on exact decision rules.



Streszczenie

Tematyka pracy związana jest z badaniem algorytmów zachłannych dla konstruowa-
nia i optymalizacji częściowych (przybliżonych) reguł decyzyjnych.

Przedstawione w pracy badania dotyczące częściowych reguł decyzyjnych opierają
się na wynikach badań uzyskanych dla problemu częściowego pokrycia zbioru.

Zostało udowodnione, że biorąc pod uwagę pewne założenia dotyczące klasy NP,

algorytm zachłanny pozwala uzyskać wyniki, bliskie wynikom uzyskiwanym przez na-
jlepsze przybliżone wielomianowe algorytmy, dla minimalizacji długości częściowych

reguł decyzyjnych oraz minimalizacji całkowitej wagi atrybutów tworzących częściową
regułę decyzyjną.

Na podstawie danych uzyskanych podczas pracy algorytmu zachłannego, dokonano
oszacowania najlepszych górnych i dolnych granic minimalnej złożoności częściowych

reguł decyzyjnych. Teoretyczne i eksperymentalne wyniki badań pokazały możliwość
wykorzystania tych granic w praktycznych zastosowaniach.

Dokonano także oszacowania granicy dokładności algorytmu zachłannego dla

generowania częściowych reguł decyzyjnych, która nie zależy od liczby wierszy
w rozważanej tablicy decyzyjnej.

Biorąc pod uwagę pewne założenia dotyczące liczby wierszy i kolumn w tablicach
decyzyjnych udowodniono, że dla większości binarnych tablic decyzyjnych istnieją

tylko krótkie, nieredukowalne częściowe reguły decyzyjne.
Wyniki przeprowadzonych eksperymentów pozwoliły potwierdzić 0.5-hipotezę: dla

większości tablic decyzyjnych algorytm zachłanny w każdej iteracji, podczas ge-

nerowania częściowej reguły wybiera atrybut, który pozwala oddzielić przynajmniej
50% wierszy jeszcze nie oddzielonych.

W przypadku klasyfikacji okazało się, że dokładność klasyfikatorów opartych na
częściowych regułach decyzyjnych jest często lepsza, niż dokładność klasyfikatorów

opartych na dokładnych regułach decyzyjnych.
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Introduction

The subject matter of this thesis is connected with the following two problems of
data mining and knowledge discovery:

1. Representation of knowledge, contained in a decision table, in a form which is
convenient for understanding. The length of knowledge description is crucial in

this case.
2. Prediction of the value of decision attribute for a new object. The accuracy of

prediction is the most important aspect of this problem.

These two aims (short description and high accuracy) seem to be incompatible.

However, it is known that classifiers with shorter description are often more precise.
This dissertation is one more confirmation of this fact.

In this thesis, we study one of the main notions of rough set theory: the notion of
decision rule (local reduct) [45, 47, 48, 49, 56, 69].

Let T be a table with n rows labeled with nonnegative integers (decisions) and

m columns labeled with conditional attributes f1, . . . , fm. This table is filled by non-
negative integers (values of attributes). The table T is called a decision table. We say

that an attribute fi separates rows r1 and r2 of T if these rows have different values
at the intersection with the column fi. Two rows are called different if at least one

attribute fi separates these rows.
Let r = (b1, . . . , bm) be a row of T labeled with a decision d. By U(T, r) we denote

the set of rows from T which are different from r and are labeled with decisions
different from d. Let α ∈ IR and 0 ≤ α < 1. A decision rule

(fi1 = bi1) ∧ . . . ∧ (fit = bit) → d

is called an α-decision rule for T and r if attributes fi1 , . . . , fit separate from r at
least (1 − α)|U(T, r)| rows from U(T, r).

Exact decision rules are widely used in rough set theory both for construction of

classifiers and as a way of knowledge representation [55]. In particular, the presence
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of decision rules with small number of attributes can simplify the understanding of

relationships among decision and conditional attributes. Note that notions similar to
the notion of decision rule are studied deeply also in test theory [6, 10, 65, 73, 76, 77],
where the notion of control test is not far from the notion of decision rule, and in

logical analysis of data (LAD) [1, 9], where pattern is an analog of decision rule.
The main idea of the thesis is the following: instead of exact decision rules we can

use partial (approximate) rules. Exact decision rules can be overfitted, i.e., dependent
essentially on the noise or adjusted too much to the existing examples. If decision

rules are considered as a way of knowledge representation, then instead of an exact
decision rule with many attributes, it is more appropriate to work with a partial
decision rule containing smaller number of attributes that separate from given row

almost all other rows with different decisions.
The considered idea is not new. For years, in rough set theory partial reducts and

partial decision rules (partial local reducts) are studied intensively by H.S. Nguyen,
A. Skowron, D. Ślȩzak, Z. Pawlak, J. Wróblewski and others [2, 42, 43, 46, 47, 60,

61, 62, 63, 64, 71]. There is a number of approaches to the definition of approximate
reducts [62]. In [43, 61, 62, 63] it was proved that for each of the considered approaches

the problem of partial reduct minimization (construction of a partial reduct with
minimal cardinality) is NP -hard. The approach considered in [43] is similar to the
approach studied in this dissertation (see also [61, 63]). More detailed discussion of

partial decision rules considered in this thesis can be found in Chap. 5. Approximate
reducts are also investigated by W. Ziarko, M. Quafafou and others in the extensions

of rough set model such as variable precision rough sets (VPRS) [78] and alpha rough
set theory (α-RST) [51].

There are different measures of the quality of decision rules: the length of rule, the
total weight of attributes in decision rule, the support of decision rule, etc. We are
concentrate here on minimization of the length of rules (which allows us to design

more precise classifiers or obtain more compact representation of knowledge contained
in decision tables) or on minimization of the total weight of rules (which allows us to

minimize time complexity or cost, or risk of classifier work).
There are different approaches to construction of decision rules: brute-force ap-

proach which is applicable to tables with relatively small number of attributes, ge-
netic algorithms [64, 72], simulated annealing [15], Boolean reasoning [42, 49, 56], ant

colony optimization [23], algorithms based on decision tree construction [4, 14, 25, 52],
different kinds of greedy algorithms [40, 42, 59].

Each method can have different modifications. For example, as in the case of

decision trees, we can use greedy algorithms based on Gini index, entropy, etc., for
construction of decision rules.
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In thesis we study mainly greedy algorithms for construction of rules. Of course,

these algorithms are not new, and were used by different authors [16]. Our choice is
connected with mathematical results obtained for greedy algorithms. In particular,
we prove that, under some natural assumptions on the class NP , greedy algorithms

are not far from the best polynomial algorithms for decision rules optimization.
The most important feature of this thesis is a serious mathematical analysis of

problems of partial decision rule construction, which is closely connected with results
of experiments. In many cases, experimental results led to important and unexpected

new statements, and mathematical analysis allowed us to choose new directions of
research in a well-grounded way.

The study of partial decision rules is based on the study of partial covers. Let

A = {a1, . . . , an} be a nonempty finite set and S = {B1, . . . , Bm} be a family of
subsets of A such that B1 ∪ . . . ∪ Bm = A. Let α ∈ IR and 0 ≤ α < 1. A subfamily

Q = {Bi1, . . . , Bit} of the family S is called an α-cover for (A, S) if |Bi1 ∪ . . .∪Bit | ≥
(1 − α)|A|.

There exists simple reduction of the problem of construction of a 0-cover with
minimal cardinality to the problem of construction of a 0-decision rule with minimal

length. There exists also the opposite reduction which is simple too. The similar
situation is with partial covers and partial rules (where α > 0). This fact allows us to
use various mathematical results obtained for the set cover problem by J. Cheriyan

and R. Ravi [7], V. Chvátal [8], U. Feige [11], D.S. Johnson [16], R.M. Karp [17],
M.J. Kearns [18], L. Lovász [24], R.G. Nigmatullin [44], R. Raz and S. Safra [53], and

P. Slavík [57, 58] for analysis of partial rules. In addition, we use a technique created
by D. Ślȩzak [61, 63] for the proof of NP -hardness of partial reduct optimization.

Known and new (obtained in this thesis) results for covers and partial covers will
be useful for wider spectrum of problems considered in rough set theory, for example,
for the investigation of (i) reducts and rules for information systems, (ii) reducts and

rules for decision tables with missing values, (iii) subsystems of a given decision rule
system which “cover" the same set of rows, etc.

The thesis contains five chapters.
In Chap. 1, we prove that, under some natural assumptions on the class NP , the

greedy algorithm is close (from the point of view of precision) to the best polynomial
approximate algorithms for partial cover optimization.

Information about the greedy algorithm work can be used for obtaining lower
and upper bounds on the minimal cardinality of partial covers. We fix some kind of
information, and find the best lower and upper bounds depending on this information.

Theoretical and experimental (see also Chap. 4) results show that the obtained lower
bound is nontrivial and can be used in practice.
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We obtain a new bound on the precision of greedy algorithm for partial cover

construction that does not depend on the cardinality of covered set, and prove that
this bound is, in some sense, unimprovable.

We prove that for the most part of set cover problems there exist exact (and,

consequently, partial) covers with small cardinality. Results of experiments with ran-
domly generated set cover problems allow us to formulate the following informal

0.5-hypothesis: for the most part of set cover problems, during each step the greedy
algorithm chooses a subset which covers at least one-half of uncovered elements. We

prove that, under some assumptions, the 0.5-hypothesis is true.
The most part of results obtained for partial covers is generalized to the case of

partial decision rules.

In particular, we show that, under some natural assumptions on the class NP ,
greedy algorithm is close to the best polynomial approximate algorithms for the

minimization of the length of partial decision rules.
Based on an information received during the greedy algorithm work, it is possible

to obtain nontrivial lower and upper bounds on the minimal length of partial decision
rules.

For the most part of randomly generated binary decision tables, the greedy al-
gorithm constructs simple partial decision rules with relatively high accuracy. In
particular, experimental and theoretical results confirm the following 0.5-hypothesis

for decision rules: in the most part of cases, greedy algorithm chooses an attribute
that separates at least one-half of unseparated rows which should be separated.

In Chap. 2, we study the case, where each subset used for covering has its own
weight, and we should minimize the total weight of subsets in partial cover. The

same situation is with partial decision rules: each conditional attribute has its own
weight, and we should minimize the total weight of attributes in partial decision rule.
The weight of attribute characterizes time complexity, cost or risk (as in medical or

technical diagnosis) of attribute value computation. The most part of results obtained
in Chap. 1 is generalized to the case of arbitrary natural weights.

We generalize usual greedy algorithm with weights, and consider greedy algorithm
with two thresholds. The first threshold gives the exactness of constructed partial

cover, and the second one is an interior parameter of the considered algorithm. We
prove that, for the most part of set cover problems there exists a weight function

and values of thresholds such that, the weight of partial cover constructed by greedy
algorithm with two thresholds is less than the weight of partial cover constructed by
usual greedy algorithm. The same situation is with partial decision rules. Based on

greedy algorithm with two thresholds we create new polynomial time approximate
algorithms for minimization of total weights of partial covers and decision rules.
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Results of massive experiments with randomly generated set cover problems and

binary decision tables show that the new algorithms can be used in practice.
In Chap. 3, we consider binary decision tables with m conditional attributes, in

which the number of rows is equal to bmαc, where α is a positive real number, and par-

tial decision rules that can leave unseparated from a given row at most 5
⌈

(log2 m)β
⌉

different rows with different decisions, where β is a real number such that β ≥ 1.

We show that for almost all such tables for any row with minor decision (minor
decision is a decision which is attached to at most one-half of rows of decision table)

the length of each irreducible partial decision rule is not far from α log2 m and the
number of irreducible partial decision rules is not far from mα log2 m.

Based on these results, we prove that there is no algorithm which for almost all

decision tables for each row with minor decision constructs the set of irreducible par-
tial decision rules and has for these tables polynomial time complexity depending on

the length of input. However, there exists an algorithm which for almost all decision
tables for each row with minor decision constructs the set of irreducible partial de-

cision rules and has for these tables polynomial time complexity depending on the
length of input and the length of output.

Chapter 4 is devoted to consideration of results of experiments with decision tables
from UCI Repository of Machine Learning Databases [41]. The aim of the first group
of experiments is to verify 0.5-hypothesis for real-life decision tables. We made ex-

periments with 23 decision tables. Results of 20 experiments confirm 0.5-hypothesis:
under the construction of partial decision rule, during each step the greedy algorithm

chooses an attribute which separates from r at least one-half of unseparated rows that
are different from r and have other decisions. It means that the greedy algorithm can

often construct short partial decision rules with relatively high “accuracy". In par-
ticular, for the cases, where 0.5-hypothesis is true, the greedy algorithm constructs a
partial decision rule with seven attributes only which separate from a given row at

least 99% of different rows with different decisions. Such short partial decision rules
are easy for understanding.

The aim of the second group of experiments is the comparison of accuracy of
classifiers based on exact and partial decision rules. The considered approach to

construction of classifiers is the following: for a given decision table and each row
we construct a (partial) decision rules using greedy algorithm. By removing some

attributes from this (partial) decision rule we obtain an irreducible (partial) decision
rule. The obtained system of rules jointly with simple procedure of voting can be
considered as a classifier [19, 20, 55]. We made experiments with 21 decision tables

using test-and-train method. In 11 cases, we found partial decision rules for which
the accuracy of the constructed classifiers is better than the accuracy of classifiers
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based on exact decision rules. We made also experiments with 17 decision tables

using cross-validation method. In 9 cases, we found partial decision rules for which
the accuracy of the constructed classifiers is better than the accuracy of classifiers
based on exact decision rules.

In Chap. 5, we consider an universal attribute reduction problem. Let T be a deci-
sion table and P be a subset of pairs of discernible rows (objects) of T . Then a reduct

for T relative to P is a minimal (relative to inclusion) subset of conditional attributes
which separate all pairs from P. Reducts for information systems, usual decision and

local reducts (decision rules) for decision tables, decision and local reducts, which are
based on the generalized decision, can be represented in such a form. We study not
only exact, but also partial reducts. Moreover, we consider a scenario of the work

with real data tables that can contain continuous variables, discrete variables with
large number of values, and variables with missing values.

Based on results from Chap. 1, we obtain bounds on precision of greedy algorithm
for partial super-reduct construction. We prove that, under some natural assumptions

on the class NP , the greedy algorithm is close to the best (from the point of view
of precision) polynomial approximate algorithms for minimization of cardinality of

partial super-reducts. We show that based on an information received during the
greedy algorithm work it is possible to obtain a nontrivial lower bound on minimal
cardinality of partial reduct. We obtain also a bound on precision of greedy algorithm

which does not depend on the cardinality of the set P.
Experimental and theoretical results obtained in this thesis show that the use

of partial decision rules instead of exact ones can allow us to obtain more compact
description of knowledge contained in decision tables, and to design more precise

classifiers. This is a reason to use partial decision rules in data mining and knowledge
discovery for knowledge representation and for prediction.

The results obtained in this thesis can be useful for researchers in such areas as

machine learning, data mining and knowledge discovery, especially for those who are
working in rough set theory, test theory and logical analysis of data.

An essential part of software used in experiments described in Chaps. 1 and 4
will be accessible soon in RSES – Rough Set Exploration System [54] (Institute of

Mathematics, Warsaw University, head of project – Professor Andrzej Skowron).



1

Partial Covers and Decision Rules

In this chapter, we consider theoretical and experimental results on partial decision
rules. These investigations are based on the study of partial covers.

Based on the technique created by Ślȩzak in [61, 63], we generalize well known
results of Feige [11], and Raz and Safra [53] on the precision of approximate poly-
nomial algorithms for exact cover minimization (construction of an exact cover with

minimal cardinality) to the case of partial covers. From obtained results and results
of Slavík [57, 58] on the precision of greedy algorithm for partial cover construction it

follows that, under some natural assumptions on the class NP , the greedy algorithm
for partial cover construction is close (from the point of view of precision) to the best

polynomial approximate algorithms for partial cover minimization.
An information about the greedy algorithm work can be used for obtaining lower

and upper bounds on the minimal cardinality of partial covers. We fix some kind of
information, and find the best lower and upper bounds depending on this information.

We obtain a new bound on the precision of greedy algorithm for partial cover

construction which does not depend on the cardinality of covered set. This bound
generalizes the bound obtained by Cheriyan and Ravi [7] and improves the bound

obtained by Moshkov [27]. Based on the results of Slavík [57, 58] on the precision of
greedy algorithm for partial cover construction, we prove that obtained bound is, in

some sense, unimprovable.
We prove that for the most part of set cover problems there exist exact (and,

consequently, partial) covers with small cardinality. Experimental results allows us

to formulate the following informal 0.5-hypothesis for covers: for the most part of set
cover problems, during each step the greedy algorithm chooses a subset which covers

at least one-half of uncovered elements. We prove that, under some assumption, the
0.5-hypothesis for covers is true.

The most part of results obtained for partial covers is generalized to the case of
partial decision rules. In particular, we show that
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• Under some natural assumptions on the class NP , greedy algorithm is close to

the best polynomial approximate algorithms for the minimization of the length of
partial decision rules.

• Based on an information received during the greedy algorithm work, it is possible

to obtain nontrivial lower and upper bounds on the minimal length of partial
decision rules.

• For the most part of randomly generated binary decision tables, greedy algorithm
constructs simple partial decision rules with relatively high accuracy. In particular,

experimental and theoretical results confirm the 0.5-hypothesis for decision rules.

This chapter is based on papers [31, 38, 79].
The chapter consists of three sections. In Sect. 1.1, partial covers are studied. In

Sect. 1.2, partial decision rules are considered. Section 1.3 contains short conclusions.

1.1 Partial Covers

This section consists of six subsections. In Sect. 1.1.1, main notions are described.

In Sect. 1.1.2, known results are considered. In Sect. 1.1.3, polynomial approximate
algorithms for partial cover minimization (construction of partial cover with minimal

cardinality) are studied. In Sect. 1.1.4, upper and lower bounds on minimal cardi-
nality of partial covers based on an information about greedy algorithm work are in-

vestigated. In Sect. 1.1.5, an upper bound on cardinality of partial cover constructed
by the greedy algorithm is considered. In Sect. 1.1.6, exact and partial covers for

the most part of set cover problems are discussed from theoretical and experimental
points of view.

1.1.1 Main Notions

Let A = {a1, . . . , an} be a nonempty finite set and S = {Bi}i∈{1,...,m} = {B1, . . . , Bm}
be a family of subsets of A such that B1 ∪ . . . ∪ Bm = A. We assume that S can
contain equal subsets of A. The pair (A, S) is called a set cover problem.

Let I be a subset of {1, . . . , m}. The family P = {Bi}i∈I is called a subfamily of S.
The number |I| is called the cardinality of P and is denoted by |P |. Let P = {Bi}i∈I

and Q = {Bi}i∈J be subfamilies of S. The notation P ⊆ Q means that I ⊆ J . Let
P ∪ Q = {Bi}i∈I∪J , P ∩ Q = {Bi}i∈I∩J , and P \ Q = {Bi}i∈I\J .

A subfamily Q = {Bi1 , . . . , Bit} of the family S is called a partial cover for (A, S).
Let α ∈ IR and 0 ≤ α < 1. The subfamily Q is called an α-cover for (A, S) if
|Bi1 ∪ . . .∪Bit| ≥ (1−α)|A|. For example, 0.01-cover means that we should cover at

least 99% of elements from A. Note that a 0-cover is an exact cover. By Cmin(α) =
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Cmin(α, A, S) we denote the minimal cardinality of α-cover for (A, S). The notation

Cmin(α) will be used in cases, where A and S are known.
Let us consider a greedy algorithm with threshold α which constructs an α-cover

for (A, S) (see Algorithm 1).

Algorithm 1: Greedy algorithm for partial cover construction
Input : Set cover problem (A,S) with S = {B1, . . . , Bm}, and real number α, 0 ≤ α < 1.

Output: α-cover for (A,S).

Q←− ∅;

while Q is not an α-cover for (A, S) do
select Bi ∈ S with minimal index i such that Bi covers the maximal number of elements from A

uncovered by subsets from Q;

Q←− Q ∪ {Bi};

end

return Q;

By Cgreedy(α) = Cgreedy(α, A, S) we denote the cardinality of constructed α-cover

for (A, S).

1.1.2 Known Results

First, we consider some known results for exact covers, where α = 0.

Theorem 1.1. (Nigmatullin [44])

Cgreedy(0) ≤ Cmin(0)(1 + ln |A| − ln Cmin(0)) .

Theorem 1.2. (Johnson [16], Lovász [24])

Cgreedy(0) ≤ Cmin(0)(1 + ln(max
Bi∈S

|Bi|)) ≤ Cmin(0)(1 + ln |A|) .

More exact bounds (depending only on |A|) were obtained by Slavík [57, 58].

Theorem 1.3. (Slavík [57, 58]) If |A| ≥ 2, then Cgreedy(0) < Cmin(0)(ln |A| −
ln ln |A| + 0.78).

Theorem 1.4. (Slavík [57, 58]) For any natural m ≥ 2, there exists a set cover

problem (A, S) such that |A| = m and Cgreedy(0) > Cmin(0)(ln |A| − ln ln |A| − 0.31).

There are some results on exact and approximate polynomial algorithms for cover

minimization.

Theorem 1.5. (Karp [17]) The problem of construction of 0-cover with minimal car-

dinality is NP -hard.
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Theorem 1.6. (Feige [11]) If NP 6⊆ DTIME(nO(log log n)), then for any ε, 0 < ε < 1,

there is no polynomial algorithm that for a given set cover problem (A, S) constructs

a 0-cover for (A, S) which cardinality is at most (1 − ε)Cmin(0) ln |A|.

Theorem 1.7. (Raz and Safra [53]) If P 6= NP , then there exists γ > 0 such that

there is no polynomial algorithm that for a given set cover problem (A, S) constructs

a 0-cover for (A, S) which cardinality is at most γCmin(0) ln |A|.

Note that some results on the minimal exact covers for almost all set cover prob-
lems from some classes were obtained by Vercellis [66]. Kuzjurin in [22] investigated

the behavior of greedy algorithm during the construction of exact covers for almost
all problems from some classes of set cover problems such that each element from A

belongs to the same number of subsets from S.
We now consider some known results for partial covers, where α ≥ 0.

Theorem 1.8. (Slavík [57, 58]) Let 0 ≤ α < 1 and d(1 − α)|A|e ≥ 2. Then

Cgreedy(α) < Cmin(α)(ln d(1 − α)|A|e − ln ln d(1 − α)|A|e + 0.78).

Theorem 1.9. (Slavík [57, 58]) Let 0 ≤ α < 1. Then for any natural t ≥ 2

there exists a set cover problem (A, S) such that d(1 − α)|A|e = t and Cgreedy(α) >

Cmin(α)(ln d(1 − α)|A|e − ln ln d(1 − α)|A|e − 0.31).

Theorem 1.10. (Slavík [58]) Let 0 ≤ α < 1. Then Cgreedy(α) ≤ Cmin(α)(1 +

ln(maxBi∈S |Bi|)).

There are some bounds on Cgreedy(α) which does not depend on |A|. Note that in
the next two theorems we consider the case, where α > 0.

Theorem 1.11. (Cheriyan and Ravi [7]) Let 0 < α < 1. Then Cgreedy(α) ≤
Cmin(0) ln(1/α) + 1.

This bound was rediscovered by Moshkov in [26] and generalized in [27].

Theorem 1.12. (Moshkov [27]) Let 0 < β ≤ α < 1. Then Cgreedy(α) ≤ Cmin(α −
β) ln(1/β) + 1.

There is a result on exact polynomial algorithms for partial cover minimization.

Theorem 1.13. (Ślȩzak [61, 63]) Let 0 ≤ α < 1. Then the problem of construction

of α-cover with minimal cardinality is NP -hard.
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1.1.3 Polynomial Approximate Algorithms

In this subsection, using technique created by Ślȩzak in [61, 63], we generalize the

results of Feige, Raz and Safra (Theorems 1.6 and 1.7) to the case of partial covers.
When we say about a polynomial algorithm for set cover problems (A, S), it means

that the time complexity of the considered algorithm is bounded from above by a
polynomial depending on |A| and |S|.

When we say about an algorithm, that for a given set cover problem (A, S) con-
structs an α-cover which cardinality is at most f(A, S)Cmin(α, A, S), we assume that
in the case f(A, S) < 1 the considered algorithm constructs an α-cover for (A, S)

which cardinality is equal to Cmin(α, A, S).
We consider an arbitrary set cover problem (A, S) with S = {B1, . . . , Bm}. Let

α ∈ IR and 0 < α < 1. We correspond to (A, S) and α a set cover problem (Aα, Sα).
Let n(α) = b|A|α/(1− α)c and b1, . . . , bn(α) be elements which do not belong to the

set A. Then Aα = A ∪ {b1, . . . , bn(α)} and Sα = {B1, . . . , Bm, Bm+1, . . . , Bm+n(α)},
where Bm+1 = {b1}, . . . , Bm+n(α) = {bn(α)}.

It is clear that there exists a polynomial algorithm which for a given set cover
problem (A, S) and number α constructs the set cover problem (Aα, Sα).

Lemma 1.14. Let Q ⊆ S be a 0-cover for (A, S) and α be a real number such that

0 < α < 1. Then Q is an α-cover for (Aα, Sα).

Proof. It is clear that |Aα| = |A| + n(α). One can show that

|A| − 1 < (1 − α)|Aα| ≤ |A| . (1.1)

It is clear that subsets from Q cover exactly |A| elements from Aα. From (1.1) we
conclude that Q is an α-cover for (Aα, Sα). ut

Lemma 1.15. Let Qα ⊆ Sα be an α-cover for (Aα, Sα). Then there exists Q ⊆ S

which is a 0-cover for (A, S) and for which |Q| ≤ |Qα|. There exists a polynomial

algorithm which for a given Qα constructs corresponding Q.

Proof. Let Qα = Q0 ∪ Q1, where Q0 ⊆ S and Q1 ⊆ Sα \ S. If Q0 covers all elements

of the set A, then in the capacity of Q we can choose the set Q0. Let Q0 cover not all
elements from A, A′ be the set of uncovered elements from A, and |A′| = m. Taking

into account that Qα covers at least (1−α)|Aα| elements from Aα and using (1.1) we
conclude that Qα covers greater than |A| − 1 elements. Thus, Qα covers at least |A|
elements. It is clear that each subset from Sα\S covers exactly one element. Therefore,
|Q1| ≥ m. One can show that there exists a polynomial algorithm which finds t ≤ m

subsets Bi1 , . . . , Bit from S covering all elements from A′. Set Q = Q0∪{Bi1 , . . . , Bit}.
It is clear that Q is a 0-cover for (A, S), and |Q| ≤ |Qα|. ut
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Corollary 1.16. Let α ∈ IR and 0 < α < 1. Then

Cmin(0, A, S) = Cmin(α, Aα, Sα) .

Proof. From Lemma 1.14 it follows that Cmin(α, Aα, Sα) ≤ Cmin(0, A, S). From

Lemma 1.15 it follows that Cmin(0, A, S) ≤ Cmin(α, Aα, Sα). ut

Lemma 1.17. Let α, b and δ be real numbers such that 0 < α < 1, b > 0 and δ > 0,

and let there exist a polynomial algorithm A that, for a given set cover problem (A, S),

constructs an α-cover which cardinality is at most b ln |A|Cmin(α, A, S). Then there

exists a polynomial algorithm B that, for a given set cover problem (A, S), constructs

a 0-cover which cardinality is at most (b + δ) ln |A|Cmin(0, A, S).

Proof. Let us describe the work of the algorithm B. Let β = 1 + α/(1 − α) and

a = max {1/b, b ln β/δ}. If ln |A| ≤ a, then, in polynomial time, we construct all
subfamilies of S, which cardinality is at most |A|, and find among them a 0-cover

for (A, S) with minimal cardinality. It is clear that the cardinality of this 0-cover is
equal to Cmin(0, A, S).

Let ln |A| > a. Then b ln |A| > 1, (b + δ) ln |A| > 1 and

δ ln |A| > b ln β . (1.2)

In polynomial time, we construct the problem (Aα, Sα), and apply to this problem
the polynomial algorithm A. As a result, we obtain an α-cover Qα for (Aα, Sα) such

that |Qα| ≤ b ln |Aα|Cmin(α, Aα, Sα).
It is clear that |Aα| ≤ |A|β. By Corollary 1.16, Cmin(α, Aα, Sα) = Cmin(0, A, S).

Therefore, |Qα| ≤ b(ln |A| + lnβ)Cmin(0, A, S).

From (1.2) we obtain b(ln |A|+lnβ) = (b+δ) ln |A|−δ ln |A|+b ln β ≤ (b+δ) ln |A|.
Therefore, |Qα| ≤ (b + δ) ln |A|Cmin(0, A, S). From Lemma 1.15 we conclude that, in

polynomial time, we can construct a 0-cover Q for (A, S) such that |Q| ≤ (b +

δ) ln |A|Cmin(0, A, S). ut

We now generalize Theorem 1.6 to the case of partial covers.

Theorem 1.18. Let α ∈ IR and 0 ≤ α < 1. If NP 6⊆ DTIME(nO(log log n)), then

for any ε, 0 < ε < 1, there is no polynomial algorithm that for a given set cover

problem (A, S) constructs an α-cover for (A, S) which cardinality is at most (1 −
ε)Cmin(α, A, S) ln |A|.

Proof. If α = 0, then the statement of the theorem coincides with Theorem 1.6.
Let α > 0. Let us assume that the considered statement does not hold: let NP 6⊆
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DTIME(nO(log log n)) and for some ε, 0 < ε < 1, there exist a polynomial algorithm

A that, for a given set cover problem (A, S), constructs an α-cover for (A, S) which
cardinality is at most (1 − ε)Cmin(α, A, S) ln |A|.

Applying Lemma 1.17 with parameters b = (1 − ε) and δ = ε/2 we conclude

that, under the assumption NP 6⊆ DTIME(nO(log log n)), there exists a polynomial
algorithm B that, for a given set cover problem (A, S), constructs a 0-cover for (A, S)

which cardinality is at most (1− ε/2)Cmin(0, A, S) ln |A|. The last statement contra-
dicts Theorem 1.6. ut

From Theorem 1.10 it follows that Cgreedy(α) ≤ Cmin(α)(1 + ln |A|). From this
inequality and from Theorem 1.18 it follows that, under the assumption NP 6⊆
DTIME(nO(log log n)), the greedy algorithm is close to the best polynomial approxi-
mate algorithms for partial cover minimization.

We now generalize Theorem 1.7 to the case of partial covers.

Theorem 1.19. Let α ∈ IR and 0 ≤ α < 1. If P 6= NP , then there exists % > 0

such that there is no polynomial algorithm that for a given set cover problem (A, S)

constructs an α-cover for (A, S) which cardinality is at most %Cmin(α, A, S) ln |A|.

Proof. If α = 0, then the statement of the theorem coincides with Theorem 1.7. Let

α > 0. We will now show that in the capacity of % we can take the number γ/2, where
γ is the constant from Theorem 1.7. Let us assume the contrary: let P 6= NP , and a
polynomial algorithm A exist that, for a given set cover problem (A, S), constructs

an α-cover for (A, S) which cardinality is at most (γ/2)Cmin(α, A, S) ln |A|.
Applying Lemma 1.17 with parameters b = γ/2 and δ = γ/2 we conclude that,

under the assumption P 6= NP , there exists a polynomial algorithm B that, for a
given set cover problem (A, S), constructs a 0-cover for (A, S) which cardinality is at

most γCmin(0, A, S) ln |A|. The last statement contradicts Theorem 1.7. ut

1.1.4 Bounds on Cmin(α) Based on Information About Greedy

Algorithm Work

Using information on the greedy algorithm work we can obtain bounds on Cmin(α).

We consider now two simple examples. It is clear that Cmin(α) ≤ Cgreedy(α). From
Theorem 1.10 it follows that Cgreedy(α) ≤ Cmin(α)(1 + ln |A|). Therefore, Cmin(α) ≥
Cgreedy(α)/(1 + ln |A|). Another lower bounds on Cmin(α) can be obtained based on

Theorems 1.8 and 1.12.
In this subsection, we fix some information on the greedy algorithm work, and find

the best upper and lower bounds on Cmin(α) depending on this information.
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Information on Greedy Algorithm Work

Let us assume that (A, S) is a set cover problem and α is a real number such that
0 ≤ α < 1. We now apply the greedy algorithm with threshold α to the problem
(A, S). Let us assume that during the construction of α-cover the greedy algorithm

chooses consequently subsets Bj1 , . . . , Bjt
. Set Bj0 = ∅ and for i = 1, . . . , t set δi =

|Bji
\ (Bj0 ∪ . . . ∪ Bji−1

)|.
Write ∆(α, A, S) = (δ1, . . . , δt). As information on the greedy algorithm work we

will use the tuple ∆(α, A, S) and numbers |A| and α. Note that δ1 = max{|Bi| : Bi ∈
S} and t = Cgreedy(α, A, S). Let us denote by PSC the set of set cover problems and
DSC = {(α, |A|, ∆(α, A, S)) : α ∈ IR, 0 ≤ α < 1, (A, S) ∈ PSC}.

Lemma 1.20. A tuple (α, n, (δ1, . . . , δt)) belongs to the set DSC if and only if α is

a real number such that 0 ≤ α < 1, and n, δ1, . . . , δt are natural numbers such that

δ1 ≥ . . . ≥ δt,
∑t−1

i=1 δi < (1 − α)n and (1 − α)n ≤ ∑t
i=1 δi ≤ n.

Proof. Let (α, n, (δ1, . . . , δt)) ∈ DSC and (α, n, (δ1, . . . , δt)) = (α, |A|, ∆(α, A, S)). It
is clear that α is a real number, 0 ≤ α < 1, and n, δ1, . . . , δt are natural numbers. From

the definition of greedy algorithm it follows that δ1 ≥ . . . ≥ δt. Taking into account
that α is the threshold for the greedy algorithm we obtain

∑t−1
i=1 δi < (1 − α)n and

(1 − α)n ≤ ∑t
i=1 δi ≤ n.

Let (α, n, (δ1, . . . , δt)) be a tuple for which α is a real number such that 0 ≤ α < 1,
and n, δ1, . . . , δt are natural numbers such that δ1 ≥ . . . ≥ δt,

∑t−1
i=1 δi < (1− α)n and

(1−α)n ≤ ∑t
i=1 δi ≤ n. We define a set cover problem (A, S) in the following way: A =

{a1, . . . ,an} and S ={{a1, . . . ,aδ1}, . . . ,{aδ1+...+δt−1+1, . . . ,aδ1+...+δt
},{aδ1+...+δt+1}, . . . ,{an}}

(for simplicity, we omit here notation B1 = {a1, . . . , aδ1}, . . . ). It is not difficult to
show that ∆(α, A, S) = (δ1, . . . , δt). Thus, (α, n, (δ1, . . . , δt)) ∈ DSC . ut

The Best Upper Bound on Cmin(α)

We define a function USC : DSC → IN. Let (α, n, (δ1, . . . , δt)) ∈ DSC . Then

USC(α, n, (δ1, . . . , δt)) = max{Cmin(α, A, S) : (A, S) ∈ PSC , |A| = n, ∆(α, A, S) =

(δ1, . . . , δt)}. It is clear that

Cmin(α, A, S) ≤ USC(α, |A|, ∆(α, A, S))

is the best upper bound on Cmin(α) depending on α, |A| and ∆(α, A, S).

Theorem 1.21. Let (α, n, (δ1, . . . , δt)) ∈ DSC. Then USC(α, n, (δ1, . . . , δt)) = t.
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Proof. Let us consider an arbitrary set cover problem (A, S) such that |A| = n

and ∆(α, A, S) = (δ1, . . . , δt). It is clear that Cmin(α, A, S) ≤ Cgreedy(α, A, S). Since
Cgreedy(α, A, S)= t, we have U(α, n, (δ1, . . . , δt)) ≤ t.

We now consider the set cover problem (A, S): A = {a1, . . . , an} and S =

{{a1, . . . , aδ1}, . . . , {aδ1+...+δt−1+1, . . . , aδ1+...+δt
}, {aδ1+...+δt+1}, . . . , {an}} (we omit

here notation B1 = {a1, . . . , aδ1}, . . .). It is clear that |A| = n. Lemma 1.20 now

shows that ∆(α, A, S) = (δ1, . . . , δt). Taking into account that all subsets from S are
pairwise disjoint it is not difficult to prove that Cmin(α, A, S) = Cgreedy(α, A, S) = t.

Therefore, USC(α, n, (δ1, . . . , δt)) ≥ t. ut

Thus, Cmin(α, A, S) ≤ Cgreedy(α, A, S) is the best upper bound on Cmin(α) depend-

ing on α, |A| and ∆(α, A, S).

The Best Lower Bound on Cmin(α)

We define a function LSC : DSC → IN. Let (α, n, (δ1, . . . , δt)) ∈ DSC . Then

LSC(α, n, (δ1, . . . , δt)) = min{Cmin(α, A, S) : (A, S) ∈ PSC , |A| = n, ∆(α, A, S) =

(δ1, . . . , δt)}. It is clear that

Cmin(α, A, S) ≥ LSC(α, |A|, ∆(α, A, S))

is the best lower bound on Cmin(α) depending on α, |A| and ∆(α, A, S). For

(α,n,(δ1, . . . , δt))∈ DSC and δ0 = 0, set

l(α, n, (δ1, . . . , δt)) = max

{⌈

d(1 − α)ne − (δ0 + . . . + δi)

δi+1

⌉

: i = 0, . . . , t − 1

}

.

Theorem 1.22. Let (α, n, (δ1, . . . , δt)) ∈ DSC. Then

LSC(α, n, (δ1, . . . , δt)) = l(α, n, (δ1, . . . , δt)).

Proof. Let us consider an arbitrary set cover problem (A, S) such that |A| = n and

∆(α, A, S) = (δ1, . . . , δt). Set p = Cmin(α, A, S). It is clear that there exist p subsets
from S which cover a subset V of the set A such that |V | ≥ d(1 − α)ne.

Let i ∈ {0, . . . , t − 1}. After i steps of the greedy algorithm work, at least
d(1 − α)ne − (δ0 + . . . + δi) elements from the set V are uncovered. Therefore, in

the family S there is a subset which can cover at least (d(1 − α)ne − (δ0 + . . . +

δi))/p of uncovered elements. Thus, δi+1 ≥ (d(1 − α)ne − (δ0 + . . . + δi))/p and

p ≥ (d(1 − α)ne − (δ0 + . . . + δi))/δi+1. Since p is a natural number, we have
p ≥ d(d(1 − α)ne − (δ0 + . . . + δi))/δi+1e. Taking into account that i is an arbi-
trary number from {0, . . . , t−1} we obtain Cmin(α, A, S) ≥ l(α, n, (δ1, . . . , δt)). Thus,

LSC(α, n, (δ1, . . . , δt)) ≥ l(α, n, (δ1, . . . , δt)).
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Let us show that LSC(α, n, (δ1, . . . , δt)) ≤ l(α, n, (δ1, . . . , δt)).

Write d = l(α, n, (δ1, . . . , δt)), r = d(1 − α)ne and q = n − (δ1 + . . . + δt). Let us
consider the following set cover problem (A, S): A = {a1, . . . , an} and
S = {B1, . . . , Bt, Bt+1, . . . , Bt+q, Bt+q+1, . . . , Bt+q+d}, where B1 = {a1, . . . , aδ1}, ...,

Bt = {aδ1+...+δt−1+1, . . . , aδ1+...+δt
}, Bt+1 = {aδ1+...+δt+1}, ..., Bt+q = {an}. Let D =

{a1, . . . , ar}. For j = 1, . . . , d, the set Bt+q+j includes all elements from the set D of

the kind ar−id−j+1, i = 0, 1, 2, . . ., and only such elements.
It is clear that subsets Bt+q+1, . . . , Bt+q+d form an α-cover for (A, S). Therefore,

Cmin(α, A, S) ≤ d.
We prove by induction on j = 1, . . . , t that, during the step number j, the greedy

algorithm chooses the subset Bj from S. From Lemma 1.20 it follows that δ1 ≥ . . . ≥
δt.

Let us consider the first step of greedy algorithm. It is clear that the cardinality

of B1 is equal to δ1, and δ1 is greater than or equal to the cardinality of each of sets
B2, . . . , Bt+q. Let us show that δ1 is greater than or equal to the cardinality of each

of sets Bt+q+1, . . . , Bt+q+d. We have dr/δ1e ≤ d. Therefore, r/δ1 ≤ d and r/d ≤ δ1.
Let r = sd + a, where s is a nonnegative integer and a ∈ {0, 1, . . . , d − 1}. Then the

cardinality of each of the sets Bt+q+1, . . . , Bt+q+d is equal to s if a = 0, and is at most
s + 1 if a > 0. From the inequality r/d ≤ δ1 it follows that δ1 ≥ s if a = 0, and
δ1 ≥ s + 1 if a > 0. So at the first step the greedy algorithm chooses the set B1.

Let us assume that during j steps, 1 ≤ j ≤ t−1, the greedy algorithm chooses the
sets B1, . . . , Bj. Let us consider the step number j + 1. It is clear that Bj+1 covers

δj+1 uncovered elements. One can show that each set from Bj+2, . . . , Bt+q covers at
most δj+1 uncovered elements. Set u = r − (δ1 + . . . + δj). Let u = sd + a, where s

is a nonnegative integer and a ∈ {0, 1, . . . , d − 1}. One can show that each set from
Bt+q+1, . . . , Bt+q+d covers at most s uncovered elements if a = 0, and at most s + 1

uncovered elements if a > 0. It is clear that du/δj+1e ≤ d. Therefore, u/δj+1 ≤ d and

u/d ≤ δj+1. Hence, δj+1 ≥ s if a = 0, and δj+1 ≥ s+1 if a > 0. So at the step number
j + 1 the greedy algorithm chooses the set Bj+1.

Since greedy algorithm chooses subsets B1, . . . , Bt, we have ∆(α, A, S) = (δ1, . . . , δt).
Therefore, Cmin(α) ≥ d. As it was proved earlier, Cmin(α) ≤ d. Hence, Cmin(α) = d

and LSC(α, n, (δ1, . . . , δt)) ≤ l(α, n, (δ1, . . . , δt)). Therefore, LSC(α, n, (δ1, . . . , δm)) =

l(α, n, (δ1, . . . , δt)). ut

So Cmin(α, A, S) ≥ l(α, |A|, ∆(α, A, S)) is the best lower bound on Cmin(α) de-
pending on α, |A| and ∆(α, A, S).
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Properties of the Best Lower Bound on Cmin(α)

Let us assume that (A, S) is a set cover problem and α is a real number such that
0 ≤ α < 1. Let

lSC(α) = lSC(α, A, S) = l(α, |A|, ∆(α, A, S)) .

Lemma 1.23. Let α1, α2 ∈ IR and 0 ≤ α1 < α2 < 1. Then lSC(α1) ≥ lSC(α2).

Proof. Let ∆(α1, A, S) = (δ1, . . . , δt1) and ∆(α2, A, S) = (δ1, . . . , δt2). We have t1 ≥
t2. Let δ0 = 0, j ∈ {0, . . . , t2 − 1} and

⌈

d|A|(1 − α2)e − (δ0 + . . . + δj)

δj+1

⌉

= lSC(α2) .

It is clear that lSC(α1) ≥ d(d|A|(1 − α1)e − (δ0 + . . . + δj))/δj+1e ≥ lSC(α2). ut

Corollary 1.24. lSC(0) = max{lSC(α) : 0 ≤ α < 1}.

The value lSC(α) can be used for obtaining upper bounds on the cardinality of

partial covers constructed by the greedy algorithm.

Theorem 1.25. Let α and β be real numbers such that 0 < β ≤ α < 1. Then

Cgreedy(α) < lSC(α − β) ln ((1 − α + β)/β) + 1.

Proof. Let ∆(α−β, A, S) = (δ1, . . . , δt), δ0 = 0, M = (1−α+β)|A| and l = lSC(α−β).

We have l ≥ 1 and

l ≥ max

{

M − (δ0 + . . . + δi)

δi+1
: i = 0, . . . , t − 1

}

.

Therefore, for i = 0, . . . , t − 1, (M − (δ0 + . . . + δi))/δi+1 ≤ l and

M − (δ0 + . . . + δi)

l
≤ δi+1 . (1.3)

Let us assume that l = 1. Then δ1 ≥ M and Cgreedy(α) = 1. It is clear that

lSC(α − β) ln ((1 − α + β)/β) > 0. Therefore, if l = 1, then the statement of the
theorem holds. Let l ≥ 2. Let us show that for j = 1, . . . , t,

M − (δ0 + . . . + δj) ≤ M
(

1 − 1

l

)j

. (1.4)

For i = 0, from (1.3) it follows that δ1 ≥ M/l. Therefore, (1.4) holds for j = 1.
Let us assume that (1.4) holds for some j, 1 ≤ j ≤ t − 1. Let us show that

M − (δ0 + . . . + δj+1) ≤ M
(

1 − 1

l

)j+1

. (1.5)
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Write Q = M − (δ0 + . . .+ δj). For i = j, from (1.3) it follows that δj+1 ≥ Q/l. Using

this inequality and (1.4) we obtain M − (δ0 + . . . + δj+1) ≤ Q−Q/l ≤ Q (1 − 1/l) ≤
M (1 − 1/l)j+1. Therefore, (1.5) holds. Thus, (1.4) holds.

Let Cgreedy(α) = p. It is clear that Cgreedy(α) ≤ Cgreedy(α−β) = t. Therefore, p ≤ t.

It is clear that δ1+. . .+δp−1 < |A|(1−α). Using (1.4) we obtain M−M (1 − 1/l)p−1 ≤
δ1+. . .+δp−1. Therefore, |A|(1−α+β)−|A|(1−α+β) (1 − 1/l)p−1 < |A|(1−α). Hence,

|A|β < |A|(1−α+β) (1 − 1/l)p−1 = |A|(1−α+β) ((l − 1)/l)p−1 and (l/(l − 1))p−1 <

(1 − α + β)/β. If we take the natural logarithm of both sides of this inequality, we

obtain (p − 1) ln (1 + 1/(l − 1)) < ln ((1 − α + β)/β). Taking into account that l − 1

is a natural number, and using the inequality ln (1 + 1/r) > 1/(r + 1), which holds
for any natural r, we obtain ln (1 + 1/(l − 1)) > 1/l. Therefore, Cgreedy(α) = p <

l ln ((1 − α + β)/β) + 1 = lSC(α − β) ln ((1 − α + β)/β) + 1. ut
Corollary 1.26. Let α ∈ IR, 0 < α < 1. Then Cgreedy(α) < lSC(0) ln (1/α) + 1.

If lSC(0) is a small number, then we have a good upper bound on Cgreedy(α). If
lSC(0) is a big number, then we have a big lower bound on Cmin(0) and on Cmin(α)

for some α.

1.1.5 Upper Bound on Cgreedy(α)

In this subsection, we obtain one more upper bound on Cgreedy(α) which does not
depend on |A|, and show that, in some sense, this bound is unimprovable.

Theorem 1.27. Let α and β be real numbers such that 0 < β ≤ α < 1. Then

Cgreedy(α) < Cmin(α − β) ln ((1 − α + β)/β) + 1.

Proof. By Theorem 1.25, Cgreedy(α) < lSC(α − β) ln ((1 − α + β)/β) + 1, and by
Theorem 1.22, lSC(α − β) ≤ Cmin(α − β). ut

Let us show that obtained bound is, in some sense, unimprovable.

Lemma 1.28. Let α be a real number, 0 ≤ α < 1, j ∈ {0, . . . , |A| − 1} and j/|A| ≤
α < (j + 1)/|A|. Then Cmin(α) = Cmin(j/|A|) and Cgreedy(α) = Cgreedy(j/|A|).

Proof. Taking into account that j/|A| ≤ α we conclude that Cmin(α) ≤ Cmin(j/|A|)
and Cgreedy(α) ≤ Cgreedy(j/|A|).

Let Q = {Bi1 , . . . , Bit} be an arbitrary α-cover for (A, S). Let M = |Bi1∪. . .∪Bit |.
It is clear that M ≥ |A|(1− α). Therefore, 1−M/|A| ≤ α. Taking into account that

α < (j + 1)/|A| we obtain |A| − M < j + 1. Hence, |A| − M ≤ j and |A| − j ≤ M .
Therefore, M ≥ |A|(1− j/|A|), and Q is also an (j/|A|)-cover. Thus, each α-cover is
an (j/|A|)-cover. Using this fact it is not difficult to show that Cmin(α) ≥ Cmin(j/|A|)
and Cgreedy(α) ≥ Cgreedy(j/|A|). ut
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Theorem 1.29. There is no real δ < 1 such that for any set cover problem (A, S)

and for any real α and β, 0 < β ≤ α < 1, the following inequality holds:

Cgreedy(α) ≤ δ

(

Cmin(α − β) ln

(

1 − α + β

β

)

+ 1

)

. (1.6)

Proof. We assume the contrary: let such δ exist. We now consider an arbitrary α,

0 < α < 1, and an arbitrary set cover problem (A, S). Let j ∈ {0, . . . , |A| − 1} and
j/|A| ≤ α < (j + 1)/|A|. Using (1.6) we obtain

Cgreedy

(

j

|A| +
1

2|A|

)

≤ δ



Cmin

(

j

|A|

)

ln





1 − j
|A|

− 1
2|A|

+ 1
2|A|

1
2|A|



+ 1





= δ

(

Cmin

(

j

|A|

)

ln (|A| − j) + Cmin

(

j

|A|

)

ln 2 + 1

)

.

Lemma 1.28 now shows Cgreedy (j/|A| + j/(2|A|)) = Cgreedy (j/|A|) = Cgreedy (α)

and Cmin(j/|A|) = Cmin(α). Let us evaluate the number |A| − j. We have j ≤ α|A| <

j + 1. Therefore, |A| − j − 1 < |A| − α|A| ≤ |A| − j and |A| − j = d(1 − α)|A|e.
Finally, we have

Cgreedy(α) ≤ δ (Cmin (α) ln (d(1 − α)|A|e) + Cmin (α) ln 2 + 1) . (1.7)

Using Theorem 1.9 we conclude that for any natural t ≥ 2 there exists a
set cover problem (At, St) such that d(1 − α)|At|e = t and Cgreedy(α, At, St) >

Cmin(α, At, St)(ln t − ln ln t − 0.31). Let Ct = Cmin(α, At, St). Using (1.7) we obtain
for any t ≥ 2, Ct(ln t− ln ln t− 0.31) < δ(Ct ln t + Ct ln 2 + 1). If we divide both sides

of this inequality by Ct ln t, we obtain

1 − ln ln t

ln t
− 0.31

ln t
< δ +

δ ln 2

ln t
+

δ

Ct ln t
.

It is clear that Ct ≥ 1. Therefore, with growth of t the left-hand side of this
inequality tends to 1, and the right-hand side of this inequality tends to δ, which is
impossible. ut

1.1.6 Covers for the Most Part of Set Cover Problems

In this subsection, covers for the most part of set cover problem are discussed from

theoretical and experimental points of view. In particular, we obtain some theoretical
and experimental confirmations of the following informal 0.5-hypothesis for covers:
for the most part of set cover problems, during each step the greedy algorithm chooses

a subset which covers at least one-half of uncovered elements.
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We assume that (A, S) is a set cover problem, the elements of A are enumerated by

numbers 1, . . . , n, and sets from S are enumerated by numbers 1, . . . , m. It is possible
that sets from S with different numbers are equal. There is a one-to-one correspon-
dence between such set cover problems and tables with n rows and m columns filled

by numbers from {0, 1} and having no rows filled only by 0. Let A = {a1, . . . , an}
and S = {B1, . . . , Bm}. Then the problem (A, S) corresponds to the table which, for

i = 1, . . . , n and j = 1, . . . , m, has 1 at the intersection of i-th row and j-th column
if and only if ai ∈ Bj.

A table filled by numbers from {0, 1} will be called SC-table if this table has no
rows filled only by 0.

Lemma 1.30. The number of SC-tables with n rows and m columns is at least 2mn−
2mn−m+log2 n.

Proof. Let i ∈ {1, . . . , n}. The number of tables, in which the i-th row is filled by 0

only, is equal to 2mn−m. Therefore, the number of tables, which are not SC-tables,

is at most n2mn−m = 2mn−m+log2 n. Thus, the number of SC-tables is at least 2mn −
2mn−m+log2 n. ut

Exact Covers for the Most Part of Set Cover Problems

First, we study exact covers for the most part of set cover problems such that m ≥
dlog2 ne + t and t is large enough.

Theorem 1.31. Let us consider set cover problems (A, S) such that A = {a1, . . . , an},
S = {B1, . . . , Bm} and m ≥ dlog2 ne + t, where t is a natural number. Let

i1, . . . , idlog2 ne+t be pairwise different numbers from {1, . . . , m}. Then the fraction of

set cover problems (A, S), for which {Bi1 , . . . , Bidlog2 ne+t
} is an exact cover for (A, S),

is at least 1 − 1/(2t − 1).

Proof. Let k = dlog2 ne+t. The analyzed fraction is equal to the fraction of SC-tables
with n rows and m columns which have no rows with only 0 at the intersection with

columns i1, . . . , ik. Such SC-tables will be called correct.
Let j ∈ {1, . . . , t}. The number of tables with n rows and m columns filled by 0

and 1, in which the j-th row has only 0 at the intersection with columns i1, . . . , ik, is
equal to 2mn−k. Therefore, the number of SC-tables, which are not correct, is at most

n2mn−k = 2mn−k+log2 n. Using Lemma 1.30 we conclude that the fraction of correct
SC-tables is at least

1 − 2mn−k+log2 n

2mn − 2mn−m+log2 n
= 1 − 1

2k−log2 n − 2k−m
≥ 1 − 1

2t − 1
.

ut
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For example, if t = 7, then for at least 99% of set cover problems (A, S) the subsets

Bi1 , . . . , Bidlog2 ne+t
form an exact cover for (A, S).

So if m ≥ dlog2 ne + t and t is large enough, then for the most part of set cover
problems there exist exact (and, consequently, partial) covers with small cardinality.

Partial Covers Constructed by Greedy Algorithm for the Most Part of

Set Cover Problems

We now study the behavior of greedy algorithm for the most part of set cover problems
such that m ≥ n + t and t is large enough.

Let us consider set cover problems (A, S) such that A = {a1, . . . , an} and S =

{B1, . . . , Bm}. A problem (A, S) will be called saturated if for any nonempty subset
A′ of A there exists a subset Bi from S which covers at least one-half of elements

from A′. For a saturated set cover problem, the greedy algorithm at each step chooses
a subset which covers at least one-half of uncovered elements. So for saturated set

cover problems the 0.5-hypothesis is true.
Let us evaluate the number of saturated set cover problems. First, we prove an

auxiliary statement.

Lemma 1.32. Let k be a natural number and σ ∈ {0, 1}. Then the number of k-tuples

from {0, 1}k, in which the number of σ is less than k/2, is at most 2k−1.

Proof. Let k be even. Then the number of k-tuples from {0, 1}k, in which the number
of σ is less than k/2, is equal to C0

k + . . . + C
k/2−1
k that is less than 2k−1. Let k be

odd. Then the number of k-tuples from {0, 1}k, in which the number of σ is less than
k/2, is equal to C0

k + . . . + C
bk/2c
k that is equal to 2k−1. ut

A table with n rows and m columns filled by numbers from {0, 1} will be called

saturated if for any k ∈ {1, . . . , n}, for any k rows there exists a column which has
at least k/2 one’s at the intersection with considered rows. Otherwise, the table will

be called unsaturated.

Theorem 1.33. Let us consider set cover problems (A, S) such that A = {a1, . . . , an},
S = {B1, . . . , Bm} and m > n. Then the fraction of saturated set cover problems

(A, S) is at least 1 − 1/(2m−n − 1).

Proof. It is clear that the analyzed fraction is equal to the fraction of saturated

SC-tables.
Let us consider tables with n rows and m columns filled by numbers from {0, 1}.

Let k ∈ {1, . . . , n} and i1, . . . , ik be pairwise different numbers from {1, . . . , n}. We

now evaluate the number of tables in which at the intersection of each column with
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rows i1, . . . , ik the number of one’s is less than k/2. Such tables will be called unsat-

urated in rows i1, . . . , ik.
From Lemma 1.32 it follows that the number of k-tuples from {0, 1}k, in which

the number of one’s is less than k/2, is at most 2k−1. Therefore, the number of tables,

which are unsaturated in rows i1, . . . , ik, is at most 2mn−m.
There are 2n different subsets of rows. Therefore, the number of unsaturated tables

is at most 2mn+n−m. Using Lemma 1.30 we conclude that the fraction of saturated
SC-tables is at least

1 − 2mn+n−m

2mn − 2mn−m+log2 n
= 1 − 1

2m−n − 2log2 n−n
≥ 1 − 1

2m−n − 1
.

ut
For example, if m = n + 7, then at least 99% of set cover problems are saturated.

Let us analyze the work of greedy algorithm on an arbitrary saturated set cover
problem (A, S). For i = 1, 2, . . ., after the step number i at most |A|/2i elements

from A are uncovered. We now evaluate the number Cgreedy(α), where 0 < α < 1. It
is clear that Cgreedy(α) ≤ i, where i is a number such that 1/2i ≤ α. One can show
that 1/2dlog2(1/α)e ≤ α. Therefore, Cgreedy(α) ≤ dlog2(1/α)e. Some examples can be

found in Table 1.1.

Table 1.1. Values of dlog2(1/α)e for some α

α 0.5 0.3 0.1 0.01 0.001

Percentage of covered elements 50 70 90 99 99.9

dlog2(1/α)e 1 2 4 7 10

Let us evaluate the number Cgreedy(0). It is clear that all elements from A will

be covered after a step number i if |A|/2i < 1, i.e., if i > log2 |A|. If log2 |A| is an
integer, we can set i = log2 |A| + 1. Otherwise, we can set i = dlog2 |A|e. Therefore,
Cgreedy(0) ≤ log2 |A| + 1.

We now evaluate the number lSC(0). Let ∆(0, A, S) = (δ1, . . . , δm). Set δ0 = 0.
Then lSC(0) = max {d(|A| − (δ0 + . . . + δi))/δi+1e : i = 0, . . . , m − 1}. Since (A, S) is

a saturated problem, we have δi+1 ≥ (|A| − (δ0 + . . . + δi))/2 and 2 ≥ (|A| − (δ0 +

. . . + δi))/δi+1 for i = 0, . . . , m − 1. Therefore, lSC(0) ≤ 2. Using Corollary 1.24 we

obtain lSC(α) ≤ 2 for any α, 0 ≤ α < 1.

Results of Experiments

We made some experiments with set cover problems (A, S) such that |A| ∈ {10, 50, 100,

1000, 3000, 5000} and |S| = 10. For each value of |A|, we generated randomly 10 prob-
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lems (A, S) such that for each element ai from A and for each subset Sj from S the

probability of ai to be in Sj is equal to 1/2. The results of experiments are represented
in Tables 1.2 and 1.3.

In Table 1.2 the average percentage of elements covered at the i-th step of greedy

algorithm is presented, i = 1, . . . , 10. For example, 52.5 means that, on the average,
52.5% of elements remaining uncovered before i-th step are covered at i-th step.

Table 1.2. Average percentage of elements covered at i-th step of greedy algorithm

Number of step i

|A| 1 2 3 4 5 6 7 8 9 10

10 71.0 87.5 100.0

50 62.4 67.5 80.1 100.0

100 58.9 60.6 62.9 67.8 82.7 95.0 100.0

1000 52.8 52.4 52.4 53.4 54.7 57.3 64.7 76.2 85.0 100.0

3000 51.2 51.5 52.5 52.6 53.6 54.2 56.9 61.2 72.3 100.0

5000 51.1 51.3 51.5 52.4 52.5 54.3 56.7 63.1 82.0 100.0

In Table 1.3 for each α ∈ {0.1, 0.01, 0.001, 0.0} the minimal, average and maximal

cardinalities of α-covers constructed by the greedy algorithm are presented.

Table 1.3. Cardinalities of α-covers for set cover problems (A,S) with |S| = 10

α

|A| 0.1 0.01 0.001 0.0

min avg max min avg max min avg max min avg max

10 2 2.0 2 2 2.4 3 2 2.4 3 2 2.4 3

50 2 2.6 3 4 4.0 4 4 4.0 4 4 4.0 4

100 3 3.0 3 5 5.5 7 5 5.5 7 5 5.5 7

1000 3 3.9 4 6 6.6 7 8 8.9 10 8 8.9 10

3000 4 4.0 4 6 6.9 7 8 9.0 10 9 9.9 10

5000 4 4.0 4 7 7.0 7 9 9.0 9 9 9.9 10

The obtained results show that for the most part of the considered set cover prob-
lems (not only for the case, where |S| > |A|) during each step the greedy algorithm
chooses a subset which covers at least one-half of uncovered elements.

It must be also noted that with increase of step number the percentage of elements,
covered at this step, grows for the most part of the considered set cover problems.
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1.2 Partial Decision Rules

This section consists of seven subsections. In Sect. 1.2.1, main notions are described.

In Sect. 1.2.2, relationships between partial covers and partial decision rules are
considered. In Sect. 1.2.3, generalizations of Slavík’s results to the case of partial
decision rules are given. In Sect. 1.2.4, polynomial approximate algorithms for partial

decision rule minimization (construction of partial decision rule with minimal length)
are studied. In Sect. 1.2.5, upper and lower bounds on minimal length of partial

decision rules based on an information about greedy algorithm work are investigated.
In Sect. 1.2.6, an upper bound on the length of partial decision rule constructed

by greedy algorithm is considered. In Sect. 1.2.7, decision rules for the most part of
binary decision tables are discussed from theoretical and experimental points of view.

1.2.1 Main Notions

We assume that T is a decision table with n rows labeled with nonnegative integers

(decisions) and m columns labeled with attributes (names of attributes) f1, . . . , fm.
This table is filled by nonnegative integers (values of attributes).

Let r = (b1, . . . , bm) be a row of T labeled with a decision d. By U(T, r) we denote

the set of rows from T which are different (in at least one column) from r and are
labeled with decisions different from d. We will say that an attribute fi separates a

row r′ ∈ U(T, r) from the row r if the rows r and r′ have different numbers at the
intersection with column fi. The pair (T, r) will be called a decision rule problem.

Let 0 ≤ α < 1. A decision rule

(fi1 = bi1) ∧ . . . ∧ (fit = bit) → d (1.8)

is called an α-decision rule for (T, r) if attributes fi1 , . . . , fit separate from r at least
(1 − α)|U(T, r)| rows from U(T, r) (such rules are also called partial decision rules).

The number t is called the length of the considered decision rule. If U(T, r) = ∅, then
for any fi1, . . . , fit ∈ {f1, . . . , fm} the rule (1.8) is an α-decision rule for (T, r). The

rule (1.8) with empty left-hand side (when t = 0) is also an α-decision rule for (T, r).
For example, 0.01-decision rule means that we should separate from r at least

99% of rows from U(T, r). Note that a 0-decision rule is an exact decision rule. By

Lmin(α) = Lmin(α, T, r) we denote the minimal length of α-decision rule for (T, r).
We now describe a greedy algorithm with threshold α which constructs an α-

decision rule for (T, r) (see Algorithm 2).
Let us denote by Lgreedy(α) = Lgreedy(α, T, r) the length of constructed α-decision

rule for (T, r).
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Algorithm 2: Greedy algorithm for partial decision rule construction
Input : Decision table T with conditional attributes f1, . . . , fm, row r = (b1, . . . , bm) of T labeled

with the decision d, and real number α, 0 ≤ α < 1.

Output: α-decision rule for (T, r).

Q←− ∅;

while attributes from Q separate from r less than (1− α)|U(T, r)| rows from U(T, r) do

select fi ∈ {f1, . . . , fm} with minimal index i such that fi separates from r the maximal number

of rows from U(T, r) unseparated by attributes from Q;

Q←− Q ∪ {fi};

end

return
∧

fi∈Q
(fi = bi)→ d;

1.2.2 Relationships Between Partial Covers and Partial Decision Rules

Let T be a decision table with m columns labeled with attributes f1, . . . , fm, r be a
row from T , and U(T, r) be a nonempty set.

We correspond a set cover problem (A(T, r), S(T, r)) to the considered decision rule
problem (T, r) in the following way: A(T, r) = U(T, r) and S(T, r) = {B1, . . . , Bm},
where B1 = U(T, r, f1), . . . , Bm = U(T, r, fm) and for i = 1, . . . , m the set U(T, r, fi)

coincides with the set of rows from U(T, r) separated by the attribute fi from the
row r.

Let during the construction of an α-decision rule for (T, r) the greedy algorithm
choose consequently attributes fj1 , . . . , fjt

. Set U(T, r, fj0) = ∅ and for i = 1, . . . , t

set δi = |U(T, r, fji
) \ (U(T, r, fj0)∪ . . .∪U(T, r, fji−1

))|. Let ∆(α, T, r) = (δ1, . . . , δt).
It is not difficult to prove the following statement.

Proposition 1.34. Let α be a real number such that 0 ≤ α < 1. Then |U(T, r)| =

|A(T, r)|, ∆(α, T, r) = ∆(α, A(T, r), S(T, r)), Lmin(α, T, r) = Cmin(α, A(T, r), S(T, r)),

and Lgreedy(α, T, r) = Cgreedy(α, A(T, r), S(T, r)).

Let (A, S) be a set cover problem, A = {a1, . . . , an} and S = {B1, . . . , Bm}.
We correspond a decision rule problem (T (A, S), r(A, S)) to the set cover problem

(A, S) in the following way. The table T (A, S) contains m columns labeled with
attributes f1, . . . , fm and n + 1 rows filled by numbers from {0, 1}. For i = 1, . . . , n

and j = 1, . . . , m, the number 1 stays at the intersection of i-th row and j-th column if
and only if ai ∈ Bj. The (n+1)-th row is filled by 0. The first n rows are labeled with

the decision 0. The last row is labeled with the decision 1. Let us denote by r(A, S)

the last row of table T (A, S). For i ∈ {1, . . . , n + 1}, we denote by ri the i-th row. It

is not difficult to see that U(T (A, S), r(A, S)) = {r1, . . . , rn}. Let i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}. One can show that the attribute fj separates the row rn+1 = r(A, S)

from the row ri if and only if ai ∈ Bj . It is not difficult to prove the following

statements.
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Proposition 1.35. Let α ∈ IR, 0 ≤ α < 1, and {i1, . . . , it} ⊆ {1, . . . , m}. Then

(fi1 = 0)∧ . . .∧ (fit = 0) → 1 is an α-decision rule for (T (A, S), r(A, S)) if and only

if {Bi1, . . . , Bit} is an α-cover for (A, S).

Proposition 1.36. Let α ∈ IR and 0 ≤ α < 1. Then |U(T (A, S), r(A, S))| = |A|,
Lmin(α, T (A, S), r(A, S)) = Cmin(α, A, S), Lgreedy(α, T (A, S), r(A, S))=Cgreedy(α, A, S)

and ∆(α, T (A, S), r(A, S)) = ∆(α, A, S).

Proposition 1.37. There exists a polynomial algorithm which for a given set cover

problem (A, S) constructs the decision rule problem (T (A, S), r(A, S)).

1.2.3 Precision of Greedy Algorithm

The following three statements are simple corollaries of results of Slavík (see Theorems

1.8–1.10). Let T be a decision table with m columns labeled with attributes f1, . . . , fm,
and r be a row of T .

Theorem 1.38. Let 0 ≤ α < 1 and d(1 − α)|U(T, r)|e ≥ 2. Then Lgreedy(α) <

Lmin(α)(ln d(1 − α)|U(T, r)|e − ln ln d(1 − α)|U(T, r)|e + 0.78).

Proof. Let us denote (A, S) = (A(T, r), S(T, r)). From Proposition 1.34 it follows

that |A| = |U(T, r)|. Therefore, d(1 − α)|A|e ≥ 2. Using Theorem 1.8 we obtain
Cgreedy(α, A, S) < Cmin(α, A, S)(ln d(1 − α)|A|e − ln ln d(1 − α)|A|e + 0.78).

Using Proposition 1.34 we conclude that Lgreedy(α) = Cgreedy(α, A, S) and Lmin(α) =

Cmin(α, A, S). Taking into account that |A| = |U(T, r)| we conclude that the state-

ment of the theorem holds. ut

Theorem 1.39. Let 0 ≤ α < 1. Then for any natural t ≥ 2 there exists a

decision rule problem (T, r) such that d(1 − α)|U(T, r)|e = t and Lgreedy(α) >

Lmin(α)(ln d(1 − α)|U(T, r)|e − ln ln d(1 − α)|U(T, r)|e − 0.31).

Proof. From Theorem 1.9 it follows that for any natural t ≥ 2 there exists a set cover

problem (A, S) such that d(1 − α)|A|e= t and Cgreedy(α,A,S)>Cmin(α,A,S)(ln d(1 − α)|A|e−
ln ln d(1 − α)|A|e − 0.31).

Let us consider the decision rule problem (T, r) = (T (A, S), r(A, S)). From Propo-
sition 1.36 it follows that |U(T, r)| = |A|, Cgreedy(α, A, S) = Lgreedy(α, T, r) and

Cmin(α, A, S) = Lmin(α, T, r). Hence, the statement of the theorem holds. ut

Theorem 1.40. Let 0 ≤ α < 1 and U(T, r) 6= ∅. Then Lgreedy(α) ≤ Lmin(α)(1 +

ln(maxj∈{1,...,m} |U(T, r, fj)|)).
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Proof. Let us consider the set cover problem (A, S) = (A(T, r), S(T, r)). The inequal-

ity Cgreedy(α, A, S) ≤ Cmin(α, A, S)(1 + ln(maxj∈{1,...,m} |U(T, r, fj)|)) follows from
Theorem 1.10.

Using Proposition 1.34 we conclude that Cgreedy(α,A,S)=Lgreedy(α) and Cmin(α,A,S)=

Lmin(α). Therefore, the statement of the theorem holds. ut

1.2.4 Polynomial Approximate Algorithms

Theorem 1.41. Let 0 ≤ α < 1. Then the problem of construction of α-decision rule

with minimal length is NP -hard.

Proof. From Theorem 1.13 it follows that the problem of construction of α-cover

with minimal cardinality is NP -hard. Using Propositions 1.35 and 1.37 we conclude
that there exists a polynomial-time reduction of the problem of construction of α-
cover with minimal cardinality to the problem of construction of α-decision rule with

minimal length. ut

Let us generalize Theorem 1.18 to the case of partial decision rules.

Theorem 1.42. Let α ∈ IR and 0 ≤ α < 1. If NP 6⊆ DTIME(nO(log log n)), then

for any ε, 0 < ε < 1, there is no polynomial algorithm that for a given decision rule

problem (T, r) with U(T, r) 6= ∅ constructs an α-decision rule for (T, r) which length

is at most (1 − ε)Lmin(α, T, r) ln |U(T, r)|.

Proof. We assume the contrary: let NP 6⊆ DTIME(nO(log log n)) and for some ε,

0 < ε < 1, a polynomial algorithm A exist that for a given decision rule problem
(T, r) with U(T, r) 6= ∅ constructs an α-decision rule for (T, r) which length is at
most (1 − ε)Lmin(α, T, r) ln |U(T, r)|.

Let (A, S) be an arbitrary set cover problem, A = {a1, . . . , an} and S =

{B1, . . . , Bm}. From Proposition 1.37 it follows that there exists a polynomial algo-

rithm which for a given set cover problem (A, S) constructs the decision rule problem
(T (A, S), r(A, S)). Let us apply this algorithm and construct the decision rule prob-

lem (T, r) = (T (A, S), r(A, S)). Let us apply to the decision rule problem (T, r) the
algorithm A. As a result we obtain an α-decision rule

(fi1 = 0) ∧ . . . ∧ (fit = 0) → 1

for (T, r) such that t ≤ (1 − ε)Lmin(α, T, r) ln |U(T, r)|. From Proposition 1.35
it follows that {Bi1 , . . . , Bit} is an α-cover for (A, S). Using Proposition 1.36 we
obtain |A| = |U(T, r)| and Lmin(α, T, r) = Cmin(α, A, S). Therefore, t ≤ (1 −
ε)Cmin(α, A, S) ln |A|.
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Thus, under the assumption NP 6⊆ DTIME(nO(log log n)), there exists a polyno-

mial algorithm that for a given set cover problem (A, S) constructs an α-cover for
(A, S) which cardinality is at most (1−ε)Cmin(α, A, S) ln |A|, but this fact contradicts
Theorem 1.18. ut

From Theorem 1.40 it follows that Lgreedy(α) ≤ Lmin(α)(1 + ln |U(T, r)|).
From this inequality and from Theorem 1.42 it follows that, under the assumption
NP 6⊆ DTIME(nO(log log n)), the greedy algorithm is close to the best polynomial

approximate algorithms for partial decision rule minimization.
Let us generalize Theorem 1.19 to the case of partial decision rules.

Theorem 1.43. Let α be a real number such that 0 ≤ α < 1. If P 6= NP , then there

exists % > 0 such that there is no polynomial algorithm that for a given decision rule

problem (T, r) with U(T, r) 6= ∅ constructs an α-decision rule for (T, r) which length

is at most %Lmin(α, T, r) ln |U(T, r)|.
Proof. We now show that in the capacity of such % we can choose % from Theo-
rem 1.19. Let us assume that the considered statement does not hold: let P 6= NP

and a polynomial algorithm A exist that for a given decision rule problem (T, r)

with U(T, r) 6= ∅ constructs an α-decision rule for (T, r) which length is at most

%Lmin(α, T, r) ln |U(T, r)|.
Let (A, S) be an arbitrary set cover problem, A = {a1, . . . , an} and S =

{B1, . . . , Bm}. From Proposition 1.37 it follows that there exists a polynomial algo-
rithm which for a given set cover problem (A, S) constructs the decision rule problem
(T (A, S), r(A, S)). Let us apply this algorithm and construct the decision rule prob-

lem (T, r) = (T (A, S), r(A, S)). Let us apply to the problem (T, r) the algorithm A.
As a result we obtain an α-decision rule

(fi1 = 0) ∧ . . . ∧ (fit = 0) → 1

for (T, r) such that t ≤ %Lmin(α, T, r) ln |U(T, r)|. From Proposition 1.35 it follows

that {Bi1 , . . . , Bit} is an α-cover for (A, S). Using Proposition 1.36 we obtain |A| =

|U(T, r)| and Lmin(α, T, r) = Cmin(α, A, S). Therefore, t ≤ %Cmin(α, A, S) ln |A|.
Thus, under the assumption P 6= NP , there exists a polynomial algorithm that for

a given set cover problem (A, S) constructs an α-cover for (A, S) which cardinality

is at most %Cmin(α, A, S) ln |A|, but this fact contradicts Theorem 1.19. ut

1.2.5 Bounds on Lmin(α) Based on Information About Greedy Algorithm

Work

In this subsection, we fix some information on the greedy algorithm work and find

the best upper and lower bounds on Lmin(α) depending on this information.
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Information on Greedy Algorithm Work

We assume that (T, r) is a decision rule problem, where T is a decision table with
m columns labeled with attributes f1, . . . , fm, U(T, r) 6= ∅, and α is a real number

such that 0 ≤ α < 1. Let us apply the greedy algorithm with threshold α to the
problem (T, r). Let during the construction of α-decision rule the greedy algorithm

choose consequently attributes fj1 , . . . , fjt
. Set U(T, r, fj0) = ∅ and for i = 1, . . . , t set

δi = |U(T, r, fji
) \ (U(T, r, fj0) ∪ . . . ∪ P (U(T, r, fji−1

))|. Let ∆(α, T, r) = (δ1, . . . , δt).
As information on the greedy algorithm work we will use the tuple ∆(α, T, r), and

numbers |U(T, r)| and α. Note that δ1 = max{|U(T, r, fi)| : i = 1, . . . , m} and
t = Lgreedy(α, T, r).

Let us denote by PDR the set of decision rule problems (T, r) with U(T, r) 6= ∅,
and DDR = {(α, |U(T, r)|, ∆(α, T, r)) : α ∈ IR, 0 ≤ α < 1, (T, r) ∈ PDR}.

Lemma 1.44. DDR = DSC.

Proof. Let α be a real number, 0 ≤ α < 1 and (T, r) ∈ PDR. By Proposi-
tion 1.34, (α, |U(T, r)|, ∆(α, T, r)) = (α, |A(T, r)|, ∆(α, A(T, r), S(T, r))). Therefore,

DDR ⊆ DSC .
Let α be a real number, 0 ≤ α < 1 and (A, S) ∈ PSC . By Proposition 1.36,

(α, |A|, ∆(α, A, S)) = (α, |U(T (A, S), r(A, S))|, ∆(α, T (A, S), r(A, S))). Therefore,
DSC ⊆ DDR. ut

Note that the set DSC was described in Lemma 1.20.

The Best Upper Bound on Lmin(α)

We define a function UDR : DDR → IN. Let (α, n, (δ1, . . . , δt)) ∈ DDR. Then

UDR(α, n, (δ1, . . . , δt)) = max{Lmin(α, T, r) : (T, r) ∈ PDR, |U(T, r)| = n, ∆(α, T, r) =

(δ1, . . . , δt)}. It is clear that

Lmin(α, T, r) ≤ UDR(α, |U(T, r)|, ∆(α, T, r))

is the best upper bound on Lmin(α) depending on α, |U(T, r)| and ∆(α, T, r).

Theorem 1.45. Let (α, n, (δ1, . . . , δt)) ∈ DDR. Then

UDR(α, n, (δ1, . . . , δt)) = t .

Proof. Let (T, r) be an arbitrary decision rule problem such that |U(T, r)| = n and
∆(α, T, r) = (δ1, . . . , δt). It is cleat that Lmin(α, T, r) ≤ Lgreedy(α, T, r) = t. Therefore,

UDR(α, n, (δ1, . . . , δt)) ≤ t.
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Let us show that UDR(α, n, (δ1, . . . , δt)) ≥ t. Using Lemma 1.44 we obtain

(α, n, (δ1, . . . , δt)) ∈ DSC . From here and from Theorem 1.21 it follows that there
exists a set cover problem (A, S) such that |A| = n, ∆(α, A, S) = (δ1, . . . , δt) and
Cmin(α, A, S) = t. Let us consider the decision rule problem (T, r) = (T (A, S), r(A, S)).

From Proposition 1.36 it follows that |U(T, r)| = n, ∆(α, T, r) = (δ1, . . . , δt) and
Lmin(α, T, r) = t. Therefore, UDR(α, n, (δ1, . . . , δt)) ≥ t. ut

Thus, Lmin(α, T, r) ≤ Lgreedy(α, T, r) is the best upper bound on Lmin(α) depend-
ing on α, |U(T, r)| and ∆(α, T, r).

The Best Lower Bound on Lmin(α)

We define a function LDR : DDR → IN. Let (α, n, (δ1, . . . , δt)) ∈ DDR. Then

LDR(α, n, (δ1, . . . , δt)) = min{Lmin(α, T, r) : (T, r) ∈ PDR, |U(T, r)| = n, ∆(α, T, r) =

(δ1, . . . , δt)}. It is clear that

Lmin(α, T, r) ≥ LDR(α, |U(T, r)|, ∆(α, T, r))

is the best lower bound on Lmin(α) depending on α, |U(T, r)| and ∆(α, T, r).

Let (α, n, (δ1, . . . , δt)) ∈ DDR. We now remind the definition of parameter l(α, n,

(δ1, . . . , δt)). Set δ0 = 0. Then

l(α, n, (δ1, . . . , δt)) = max

{⌈

d(1 − α)ne − (δ0 + . . . + δi)

δi+1

⌉

: i = 0, . . . , t − 1

}

.

Theorem 1.46. Let (α, n, (δ1, . . . , δt)) ∈ DDR. Then

LDR(α, n, (δ1, . . . , δt)) = l(α, n, (δ1, . . . , δt)) .

Proof. Let (T, r) be an arbitrary decision rule problem such that |U(T, r)| = n

and ∆(α, T, r) = (δ1, . . . , δt). We consider now the set cover problem (A, S) =

(A(T, r), S(T, r)). From Proposition 1.34 it follows that |A| = n and ∆(α, A, S) =

(δ1, . . . , δt). Using Theorem 1.22 we obtain Cmin(α, A, S) ≥ l(α, n, (δ1, . . . , δt)). By
Proposition 1.34, Cmin(α, A, S) = Lmin(α, T, r). Therefore, we have Lmin(α, T, r) ≥
l(α, n, (δ1, . . . , δt)) and LDR(α, n, (δ1, . . . , δt)) ≥ l(α, n, (δ1, . . . , δt)).

Let us show that LDR(α, n, (δ1, . . . , δt)) ≤ l(α, n, (δ1, . . . , δt)). By Lemma 1.44,

(α, n, (δ1, . . . , δt)) ∈ DSC . From here and from Theorem 1.22 it follows that there
exists a set cover problem (A, S) such that |A| = n, ∆(α, A, S) = (δ1, . . . , δt) and
Cmin(α, A, S) = l(α, n, (δ1, . . . , δt)). Let us consider the decision rule problem (T, r) =

(T (A, S), r(A, S)). From Proposition 1.36 it follows that |U(T, r)| = n, ∆(α, T, r) =

(δ1, . . . , δt) and Lmin(α, T, r) = l(α, n, (δ1, . . . , δt)). Therefore, LDR(α, n, (δ1, . . . , δt)) ≤
l(α, n, (δ1, . . . , δt)). ut

Thus, Lmin(α, T, r) ≥ l(α, |U(T, r)|, ∆(α, T, r)) is the best lower bound on Lmin(α)

depending on α, |U(T, r)| and ∆(α, T, r).
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Properties of the Best Lower Bound on Lmin(α)

We assume that (T, r) is a decision rule problem from PDR, and α ∈ IR, 0 ≤ α < 1.
Let

lDR(α) = lDR(α, T, r) = l(α, |U(T, r)|, ∆(α, T, r)).

Lemma 1.47. Let α1, α2 ∈ IR and 0 ≤ α1 < α2 < 1. Then lDR(α1) ≥ lDR(α2).

Proof. Let ∆(α1, T, r) = (δ1, . . . , δt1) and ∆(α2, T, r) = (δ1, . . . , δt2). It is clear that

t1 ≥ t2. Set δ0 = 0. Let j ∈ {0, . . . , t2 − 1} and
⌈

d|U(T, r)|(1 − α2)e − (δ0 + . . . + δj)

δj+1

⌉

= lDR(α2) .

It is clear that lDR(α1) ≥ d(d|U(T, r)|(1 − α1)e − (δ0 + . . . + δj))/δj+1e ≥ lDR(α2).

ut

Corollary 1.48. lDR(0) = max{lDR(α) : 0 ≤ α < 1}.

The value lDR(α) can be used for obtaining upper bounds on the length of partial
decision rules constructed by the greedy algorithm.

Theorem 1.49. Let α and β be real numbers such that 0 < β ≤ α < 1. Then

Lgreedy(α) < lDR(α − β) ln ((1 − α + β)/β) + 1.

Proof. Let us denote (A, S) = (A(T, r), S(T, r)). From Theorem 1.25 it follows that
Cgreedy(α, A, S) < lSC(α−β, A, S) ln ((1 − α + β)/β)+ 1. Using Proposition 1.34 one
can show that lDR(α − β) = lDR(α − β, T, r) = lSC(α − β, A, S). From Proposition

1.34 it follows that Lgreedy(α) = Lgreedy(α, T, r) = Cgreedy(α, A, S). Therefore, the
statement of the theorem holds. ut

Corollary 1.50. Let α ∈ IR, 0 < α < 1. Then Lgreedy(α) < lDR(0) ln (1/α) + 1.

If lDR(0) is a small number, then we have a good upper bound on Lgreedy(α). If

lDR(0) is a big number, then we have a big lower bound on Lmin(0) and on Lmin(α)

for some α.

1.2.6 Upper Bound on Lgreedy(α)

We assume that (T, r) is a decision rule problem from PDR. In this subsection, we

obtain an upper bound on Lgreedy(α) = Lgreedy(α, T, r), which does not depend on
|U(T, r)|, and show that, in some sense, this bound is unimprovable.
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Theorem 1.51. Let α and β be real numbers such that 0 < β ≤ α < 1. Then

Lgreedy(α) < Lmin(α − β) ln ((1 − α + β)/β) + 1.

Proof. By Theorem 1.49, Lgreedy(α) < lDR(α − β) ln ((1 − α + β)/β) + 1, and by
Theorem 1.46, lDR(α − β) ≤ Lmin(α − β). ut

Let us show that obtained bound is, in some sense, unimprovable.

Theorem 1.52. There is no real δ < 1 such that for any decision rule problem

(T, r) ∈ PDR and for any real α and β, 0 < β ≤ α < 1, the following inequality

holds: Lgreedy(α) ≤ δ (Lmin(α − β) ln ((1 − α + β)/β) + 1).

Proof. We assume the contrary: let such δ exist. We now consider an arbitrary set
cover problem (A, S) and arbitrary real α and β such that 0 < β ≤ α < 1. Set

(T, r) = (T (A, S), r(A, S)). Then

Lgreedy(α, T, r) ≤ δ

(

Lmin(α − β, T, r) ln

(

1 − α + β

β

)

+ 1

)

.

By Proposition 1.36, Lgreedy(α, T, r) = Cgreedy(α, A, S) and Lmin(α − β, T, r) =

Cmin(α−β, A, S). Therefore, there exists real δ < 1 such that for any set cover prob-
lem (A, S) and for any real α and β, 0 < β ≤ α < 1, the inequality
Cgreedy(α, A, S) ≤ δ (Cmin(α − β, A, S) ln ((1 − α + β)/β) + 1) holds, which contra-

dicts Theorem 1.29. ut

1.2.7 Decision Rules for the Most Part of Binary Decision Tables

In this subsection, decision rules for the most part of binary decision tables are dis-
cussed from theoretical and experimental points of view. In particular, we obtain some

theoretical and experimental confirmations of the following informal 0.5-hypothesis
for decision rules: for the most part of decision tables for each row, under the con-

struction of partial decision rule, during each step the greedy algorithm chooses an
attribute which separates from the considered row r at least one-half of unseparated

rows that are different from r and have other decisions.

Tests and Local Tests for the Most Part of Binary Information Systems

A binary information system I is a table with n rows (corresponding to objects) and
m columns labeled with attributes f1, . . . , fm. This table is filled by numbers from
{0, 1} (values of attributes). For j = 1, . . . , n, we denote by rj the j-th row of table

I.
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A subset {fi1 , . . . , fik} of attributes is a test for the information system I if these

attributes separate any two rows rj and rl, where j, l ∈ {1, . . . , n} and j 6= l.
Adding an arbitrary decision attribute to the considered information system I we

obtain a decision table T . For j = 1, . . . , n, let rj = (bj
1, . . . , b

j
m) and dj be the decision

attached to rj. If {fi1, . . . , fik} is a test for the information system I, then for any
j ∈ {1, . . . , n} the rule (fi1 = bj

i1) ∧ . . . ∧ (fik = bj
ik

) → dj is a 0-decision rule for

(T, rj).
Let m ≥ d2 log2 ne + t, where t is a natural number. Let i1, . . . , id2 log2 ne+t be

pairwise different numbers from {1, . . . , m}. We now prove that the fraction of infor-
mation systems, for which {fi1, . . . , fid2 log2 ne+t

} is a test, is at least 1 − 1/2t+1.

Theorem 1.53. Let us consider binary information systems with n rows and m

columns labeled with attributes f1, . . . , fm. Let m ≥ d2 log2 ne + t, where t is a nat-

ural number, and i1, . . . , id2 log2 ne+t be different numbers from {1, . . . , m}. Then the

fraction of information systems, for which {fi1 , . . . , fid2 log2 ne+t
} is a test, is at least

1 − 1/2t+1.

Proof. Let k = d2 log2 ne + t, j, l ∈ {1, . . . , n} and j 6= l. The number of information
systems, for which j-th and l-th rows are equal at the intersection with columns

fi1 , . . . , fik , is equal to 2mn−k. The number of pairs j, l ∈ {1, . . . , n} such that j 6= l is
at most n2/2. Therefore, the number of information systems, for which {fi1 , . . . , fik}
is not a test, is at most (n2/2)2mn−k = 2mn−k+2 log2 n−1 ≤ 2mn−t−1. Thus, the fraction

of information systems, for which {fi1 , . . . , fik} is a test, is at least

2mn − 2mn−t−1

2mn
= 1 − 1

2t+1
.

ut

We now fix a set D of decision attributes. From the considered result it follows,

for example, that for 99% of binary decision tables with n rows, m ≥ d2 log2 ne + 6

conditional attributes and decision attribute from D for each row there exists an

exact decision rule which length is equal to d2 log2 ne + 6.
It is possible to improve this bound if we consider decision rules not for all rows,

but for one fixed row only.
Let j ∈ {1, . . . , n}. A subset {fi1 , . . . , fik} of attributes will be called a j-th local

test for the information system I if these attributes separate from the row rj any row

rl, where l ∈ {1, . . . , n} and l 6= j.
Adding an arbitrary decision attribute to the considered information system I

we obtain a decision table T . Let rj = (b1, . . . , bm) and d be the decision attached
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to rj . If {fi1 , . . . , fik} is a j-th local test for the information system I, then (fi1 =

bi1) ∧ . . . ∧ (fik = bik) → d is a 0-decision rule for (T, rj).
Let us fix a set D of decision attributes. If we prove the existence of good j-th local

tests for the most part of binary information systems with n rows and m columns,

then it means the existence of good decision rules for j-th row for the most part of
binary decision tables with n rows, m conditional attributes and decision attributes

from D.

Theorem 1.54. Let us consider binary information systems with n rows and m

columns labeled with attributes f1, . . . , fm. Let m ≥ dlog2 ne + t, where t is a nat-

ural number, j ∈ {1, . . . , n} and i1, . . . , idlog2 ne+t be pairwise different numbers from

{1, . . . , m}. Then the fraction of information systems, for which {fi1 , . . . , fidlog2 ne+t
}

is a j-th local test, is at least 1 − 1/2t.

Proof. Let k = dlog2 ne+ t, l ∈ {1, . . . , n} and l 6= j. The number of information sys-
tems, for which j-th and l-th rows are equal at the intersection with columns i1, . . . , ik,
is 2mn−k. Therefore, the number of information systems, for which {fi1 , . . . , fik} is

not a j-th local test, is at most n2mn−k = 2mn−k+log2 n ≤ 2mn−t. Thus, the frac-
tion of information systems, for which {fi1, . . . , fik} is a j-th local test, is at least

(2mn − 2mn−t)/2mn = 1 − 1/2t. ut

Let us fix a set D of decision attributes and a number j ∈ {1, . . . , n}. From
obtained result it follows that for 99% of binary decision tables with n rows, m ≥
dlog2 ne + 7 conditional attributes and the decision attribute from D for j-th row
there exists an exact decision rule which length is equal to dlog2 ne + 7.

Partial Decision Rules Constructed by Greedy Algorithm for the Most

Part of Binary Decision Tables

Now we study the behavior of greedy algorithm for the most part of binary decision

tables, under some assumption on relationships between the number of rows and the
number of columns in tables.

Let I be a binary information system with n rows and m columns labeled with
attributes f1, . . . , fm. For j = 1, . . . , n, we denote by rj the j-th row of I. The

information system I will be called strongly saturated if, for any row rj = (b1, . . . , bm)

of I, for any k ∈ {1, . . . , n − 1} and for any k rows with numbers different from j,

there exists a column fi which has at least k/2 numbers ¬bi at the intersection with
considered k rows.

First, we evaluate the number of strongly saturated binary information systems.

After that, we study the work of greedy algorithm on a decision table obtained from
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a strongly saturated binary information system by adding a decision attribute. It is

clear that the 0.5-hypothesis for decision rules holds for every such table.

Theorem 1.55. Let us consider binary information systems with n rows and m ≥
n + log2 n columns labeled with attributes f1, . . . , fm. Then the fraction of strongly

saturated information systems is at least 1 − 1/2m−n−log2 n+1.

Proof. Let us fix a number j ∈ {1, . . . , n}, a tuple b̄ = (b1, . . . , bm) ∈ {0, 1}m, a

number k ∈ {1, . . . , n − 1} and k rows with numbers different from j. We now
evaluate the number of information systems in which rj = b̄ and, for i = 1, . . . , m,
the column fi has less than k/2 numbers ¬bi at the intersection with considered k

rows. Such information systems will be called (j, b̄)-unsaturated in the considered k

rows.

From Lemma 1.32 it follows that the number of tuples from {0, 1}k, which have
less than k/2 numbers ¬bi, is at most 2k−1. Therefore, the number of information

systems, which are (j, b̄)-unsaturated in the considered k rows, is at most 2mn−2m.
There are n variants for the choice of j, at most 2n−1 variants for the choice of k ∈

{1, . . . , n−1} and k rows with numbers different from j, and 2m variants for the choice
of tuple b̄. Therefore, the number of information systems, which are not strongly
saturated, is at most n2n−12m2mn−2m = 2mn−2m+log2 n+n−1+m = 2mn+log2 n+n−m−1,

and the fraction of strongly saturated information systems is at least

2mn − 2mn+log2 n+n−m−1

2mn
= 1 − 1

2m−n−log2 n+1
.

ut

For example, if m ≥ n+log2 n+6, then at least 99% of binary information systems
are strongly saturated.

Let us consider the work of greedy algorithm on an arbitrary decision table T

obtained from a strongly saturated binary information system. Let r be an arbitrary

row of table T . For i = 1, 2, . . ., after the step number i at most |U(T, r)|/2i rows
from U(T, R) are unseparated from r. It is not difficult to show that Lgreedy(α) ≤
dlog2(1/α)e for any real α, 0 < α < 1. One can prove that Lgreedy(0) ≤ log2 |U(T, r)|+
1. It is easy to check that lDR(0) ≤ 2.

Results of Experiments

The first group of experiments is connected with the consideration of binary deci-
sion tables T containing n ∈ {10, 50, 100, 1000, 3000, 5000} rows, m ∈ {10, 40, 100}
conditional attributes and one decision attribute with values from the set {1, . . . , c},
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c ∈ {2, 10, 100}. For each triple of values (n, m, c), we generated randomly a decision

table such that each element of this table is equal to b, b ∈ {0, 1}, with probability
1/2, and each decision is equal to d, d ∈ {1, . . . , c}, with probability 1/c. For this
table, we choose randomly 10 rows r. The results of experiments are represented in

Tables 1.4–1.7.
In Table 1.4 the average percentage of rows from U(T, r) separated from r at i-th

step of greedy algorithm, i = 1, . . . , 10, is presented for the case, where m = 40 and
c = 10. For example, 53.10 means that, on the average, 53.10% of rows remaining

unseparated before i-th step are separated at i-th step.

Table 1.4. Average percentage of rows separated at i-th step of greedy algorithm (m = 40 and c = 10)

Number Number of step i

of rows n 1 2 3 4 5 6 7 8 9 10

10 85.79 100.00

50 65.99 74.71 94.67 100.00

100 61.90 67.42 79.38 100.00

1000 54.05 55.05 56.54 56.56 64.01 76.50 100.00

3000 52.04 52.50 53.77 55.52 57.06 61.51 71.01 82.94 100.00

5000 51.57 52.09 53.10 54.31 56.28 59.01 64.85 74.46 92.07 100.00

In Table 1.5 for each α ∈ {0.1, 0.01, 0.001, 0.0} the average length of α-decision

rules constructed by the greedy algorithm is presented for decision tables with 10

conditional attributes.

Table 1.5. Average length of α-decision rules for decision tables with 10 conditional attributes

α

0.1 0.01 0.001 0.0

Number Number of different decisions c

of rows n 2 10 100 2 10 100 2 10 100 2 10 100

10 1.4 2.0 2.2 1.4 2.0 2.2 1.4 2.0 2.2 1.4 2.0 2.2

50 2.5 2.8 3.0 3.3 4.2 4.1 3.3 4.2 4.1 3.3 4.2 4.1

100 2.8 3.0 3.0 4.4 5.1 5.0 4.4 5.1 5.0 4.4 5.1 5.0

1000 3.2 3.5 3.9 5.8 6.1 6.2 7.8 8.4 8.7 7.8 8.4 8.7

3000 3.9 4.0 4.0 6.2 6.4 6.5 8.2 8.6 8.7 8.8 9.3 9.5

5000 4.0 4.0 4.0 6.4 6.8 6.8 8.6 8.9 9.1 9.0 9.9 9.9

In Table 1.6 for each α ∈ {0.1, 0.01, 0.001, 0.0} the average length of α-decision
rules constructed by the greedy algorithm is presented for decision tables with 40

conditional attributes.
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Table 1.6. Average length of α-decision rules for decision tables with 40 conditional attributes

α

0.1 0.01 0.001 0.0

Number Number of different decisions c

of rows n 2 10 100 2 10 100 2 10 100 2 10 100

10 1.3 2.0 2.0 1.3 2.0 2.0 1.3 2.0 2.0 1.3 2.0 2.0

50 2.0 2.1 2.5 2.6 3.0 3.3 2.6 3.0 3.3 2.6 3.0 3.3

100 2.1 2.9 2.9 3.3 4.2 4.0 3.3 4.2 4.0 3.3 4.2 4.0

1000 3.0 3.0 3.1 5.0 5.8 5.8 6.1 7.0 7.0 6.1 7.0 7.0

3000 3.1 4.0 3.9 6.0 6.0 6.0 7.4 8.0 7.9 7.7 8.5 8.7

5000 3.9 4.0 4.0 6.0 6.2 6.1 8.0 8.1 8.7 8.5 9.1 9.3

In Table 1.7 for each α ∈ {0.1, 0.01, 0.001, 0.0} the average length of α-decision

rules constructed by the greedy algorithm is presented for decision tables with 100

conditional attributes.

Table 1.7. Average length of α-decision rules for decision tables with 100 conditional attributes

α

0.1 0.01 0.001 0.0

Number Number of different decisions c

of rows n 2 10 100 2 10 100 2 10 100 2 10 100

10 1.1 2.0 2.0 1.1 2.3 2.0 1.1 2.3 2.0 1.1 2.3 2.0

50 2.0 2.0 2.1 2.5 3.0 3.0 2.5 3.0 3.0 2.5 3.0 3.0

100 2.0 2.5 2.9 3.0 3.9 4.0 3.0 3.9 4.0 3.0 3.9 4.0

1000 3.0 3.0 3.0 5.0 5.1 5.3 6.0 6.4 6.8 6.0 6.4 6.8

3000 3.0 3.5 3.7 6.0 6.0 6.0 7.0 7.8 7.8 7.1 8.2 7.9

5000 3.4 4.0 4.0 6.0 6.0 6.0 7.6 8.0 8.0 8.0 8.9 8.7

The obtained results show that for the most part of the considered decision rule
problems (not only for the case, where m ≥ n + log2 n) during each step the greedy
algorithm chooses an attribute which separates at least one-half of unseparated rows.

It must be also noted that with increase of step number the percentage of rows,
separated at this step, grows for the most part of the considered decision rule prob-

lems.
The second group of experiments is connected with the comparison of quality of

greedy algorithm (Algorithm 2) and the following its modification: for a given decision
table T , row r of T , and real α, 0 ≤ α < 1, we construct an α-decision rule for T and

r using the greedy algorithm, and after that, by removing from this α-decision rule
some conditions, we obtain an irreducible α-decision rule for T . Irreducible means
that the considered rule is an α-decision rule for T and r, but if we remove from the
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left-hand side of this rule an arbitrary condition, then we obtain a rule which is not

an α-decision rule for T and r.
We generate randomly 10000 binary decision tables with binary decision attributes

containing 40 rows and 10 conditional attributes. For each α ∈ {0.00, 0.02, 0.04, . . . , 0.30},
we find the number of tables for which the greedy algorithm for the first row con-
structs an α-decision rule with minimal length. This number is contained in the

column of Table 1.8 labeled with “Opt”.
We find the number of tables T for which the modification of greedy algorithm

constructs for the first row an irreducible α-decision rule which length is less than
the length of α-decision rule constructed by the greedy algorithm. This number is
contained in the column of Table 1.8 labeled with “Impr”.

Also we find the number of tables T for which for the first row the modification of
greedy algorithm constructs an irreducible α-decision rule with minimal length which

is less than the length of α-decision rule constructed by the greedy algorithm. This
number is contained in the column of Table 1.8 labeled with “Opt+”.

Table 1.8. Comparison of the greedy algorithm and its modification

α Opt Impr Opt+

0.00 8456 387 373

0.02 8456 387 373

0.04 8530 353 342

0.06 9017 201 200

0.08 9089 187 186

0.10 9164 181 181

0.12 9323 156 156

0.14 9500 111 111

0.16 9731 68 68

0.18 9849 45 45

0.20 9954 10 10

0.22 9973 5 5

0.24 9994 0 0

0.26 9998 0 0

0.28 9998 0 0

0.30 10000 0 0

For small values of α, the improvement connected with the use of the modification
of greedy algorithm is noticeable. We use this modification in Chap. 4 under the

construction of classifiers based on partial decision rules.
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1.3 Conclusions

The chapter is devoted (mainly) to the theoretical and experimental analysis of greedy

algorithms for construction of partial covers and decision rules.
The obtained results show that, under some natural assumptions on the class

NP , these algorithms are close to the best polynomial approximate algorithms for

the minimization of partial covers and rules. Based on an information received during
greedy algorithm work it is possible to obtain lower and upper bounds on the minimal

complexity of partial covers and rules. Experimental and some theoretical results show
that, for the most part of randomly generated set cover problems and binary decision

tables, greedy algorithms construct simple partial covers and rules with relatively
high accuracy. In particular, these results confirm the 0.5-hypothesis for covers and

decision rules.



2

Partial Covers and Decision Rules with Weights

In this chapter, we study the case, where each subset, used for covering, has its own
weight, and we should minimize the total weight of subsets in partial cover. The same

situation is with decision rules: each conditional attribute has its own weight, and
we should minimize the total weight of attributes in decision rule. If weight of each
attribute characterizes time complexity of attribute value computation, then we try

to minimize total time complexity of computation of attributes from partial decision
rule. If weight characterizes a risk of attribute value computation (as in medical or

technical diagnosis), then we try to minimize total risk, etc.
In rough set theory various problems can be represented as set cover problems

with weights:

• problem of construction of a reduct [55] or partial reduct with minimal total weight
of attributes for an information system;

• problem of construction of a decision reduct [55] or partial decision reduct with
minimal total weight of attributes for a decision table;

• problem of construction of a decision rule or partial decision rule with minimal
total weight of attributes for a row of a decision table (note that this problem is

closely connected with the problem of construction of a local reduct [55] or partial
local reduct with minimal total weight of attributes);

• problem of construction of a subsystem of a given system of decision rules which

“covers" the same set of rows and has minimal total weight of rules (in the capacity
of a rule weight we can consider its length).

So the study of covers and partial covers with weights is of some interest for rough
set theory and related theories such as test theory and LAD. In this chapter, we list
some known results on the set cover problem with weight which can be useful in

applications, and obtain certain new results.
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From results obtained in [61, 63] it follows that the problem of construction of par-

tial cover with minimal weight is NP -hard. Therefore, we should consider polynomial
approximate algorithms for minimization of weight of partial covers.

In [58] a greedy algorithm with weights for partial cover construction was investi-

gated. This algorithm is a generalization of well known greedy algorithm with weights
for exact cover construction [8].

Using results from Chap. 1 (based on results from [11, 53] and technique created
in [61, 63]) on precision of polynomial approximate algorithms for construction of

partial cover with minimal cardinality and results from [58] on precision of greedy
algorithm with weights we show that, under some natural assumptions on the class
NP , the greedy algorithm with weights is close to the best polynomial approximate

algorithms for construction of partial cover with minimal weight. However, we can
try to improve results of the work of greedy algorithm with weights for some part of

set cover problems with weight.
We generalize greedy algorithm with weights [58], and consider greedy algorithm

with two thresholds. The first threshold gives the exactness of constructed partial
cover, and the second one is an interior parameter of the considered algorithm. We

prove that for the most part of set cover problems there exists a weight function and
values of thresholds such that the weight of partial cover constructed by the greedy
algorithm with two thresholds is less than the weight of partial cover constructed by

usual greedy algorithm with weights.
We describe two polynomial algorithms which always construct partial covers that

are not worse than the one constructed by usual greedy algorithm with weights, and
for the most part of set cover problems there exists a weight function and a value of

the first threshold such that the weight of partial covers constructed by the considered
two algorithms is less than the weight of partial cover constructed by usual greedy
algorithm with weights.

Information on greedy algorithm work can be used for obtaining lower bounds on
minimal cardinality of partial covers (see Chap. 1). We fix some kind of information

about greedy algorithm work and find unimprovable lower bound on minimal weight
of partial cover depending on this information. Obtained results show that this bound

is not trivial and can be useful for investigation of set cover problems.
There exist bounds on precision of greedy algorithm without weights for partial

cover construction which do not depend on the cardinality of covered set [7, 26, 27, 31].
We obtain similar bound for the case of weight.

The most part of results obtained for partial covers is generalized to the case

of partial decision rules for decision tables which, in general case, are inconsistent
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(a decision table is inconsistent if it has equal rows with different decisions). In

particular, we show that:

• Under some natural assumptions on the class NP , greedy algorithms with weights
are close to the best polynomial approximate algorithms for minimization of total

weight of attributes in partial decision rules.
• Based on an information receiving during greedy algorithm work it is possible to

obtain nontrivial lower bounds on minimal total weight of attributes in partial
decision rules.

• There exist polynomial time modifications of greedy algorithms which for a part

of decision tables give better results than usual greedy algorithms.

This chapter is, in some sense, an extension of Chap. 1 to the case of weights

which are not equal to 1. However, problems considered in this chapter (and proofs of
results) are more complicated than the ones considered in Chap. 1. Bounds obtained
in this chapter are sometimes weaker than the corresponding bounds from Chap. 1.

We should note also that even if all weights are equal to 1, then results of the work
of greedy algorithms considered in this chapter can be different from the results of

the work of greedy algorithms considered in Chap. 1. For example, for the case of
decision rules the number of chosen attributes is the same, but the last attributes

can differ.
This chapter is based on papers [32, 33, 34, 35].
The chapter consists of three sections. In Sect. 2.1, partial covers are studied. In

Sect. 2.2, partial decision rules are considered. Section 2.3 contains short conclusions.

2.1 Partial Covers with Weights

This section consists of eight subsections. In Sect. 2.1.1, main notions are considered.

In Sect. 2.1.2, some known results are listed. In Sect. 2.1.3, polynomial approximate
algorithms for minimization of partial cover weight are studied. In Sect. 2.1.4, a
comparison of usual greedy algorithm and greedy algorithm with two thresholds is

given. Two modifications of greedy algorithm are considered in Sect. 2.1.5. Section
2.1.6 is devoted to the consideration of a lower bound on the minimal weight of

partial cover depending on some information about the work of greedy algorithm
with two thresholds. In Sect. 2.1.7, two bounds on precision of greedy algorithm with

two thresholds are considered that do not depend on the cardinality of covered set.
In Sect. 2.1.8, some experimental results are discussed.
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2.1.1 Main Notions

We repeat here some definitions from Chap. 1 and consider generalizations of other

definitions to the case of arbitrary natural weights.
Let A = {a1, . . . , an} be a nonempty finite set. Elements of A are enumerated

by numbers 1, . . . , n (in fact, we fix a linear order on A). Let S = {Bi}i∈{1,...,m} =

{B1, . . . , Bm} be a family of subsets of A such that B1 ∪ . . . ∪ Bm = A. We will

assume that S can contain equal subsets of A. The pair (A, S) will be called a set

cover problem. Let w be a weight function which corresponds to each Bi ∈ S a natural
number w(Bi). The triple (A, S, w) will be called a set cover problem with weights.

Note that, in fact, the weight function w is given on the set of indexes {1, . . . , m}.
But, for simplicity, we are writing w(Bi) instead of w(i).

Let I be a subset of {1, . . . , m}. The family P = {Bi}i∈I will be called a subfamily

of S. The number |P | = |I| will be called the cardinality of P . Let P = {Bi}i∈I and

Q = {Bi}i∈J be subfamilies of S. The notation P ⊆ Q will mean that I ⊆ J . Let us
denote P ∪ Q = {Bi}i∈I∪J , P ∩ Q = {Bi}i∈I∩J , and P \ Q = {Bi}i∈I\J .

A subfamily Q = {Bi1 , . . . , Bit} of the family S will be called a partial cover for

(A, S). Let α be a real number such that 0 ≤ α < 1. The subfamily Q will be called an
α-cover for (A, S) if |Bi1 ∪ . . .∪Bit | ≥ (1−α)|A|. For example, 0.01-cover means that

we should cover at least 99% of elements from A. Note that a 0-cover is usual (exact)
cover. The number w(Q) =

∑t
j=1 w(Bij) will be called the weight of the partial cover

Q. Let us denote by Cmin(α) = Cmin(α, A, S, w) the minimal weight of α-cover for
(A, S).

Let α and γ be real numbers such that 0 ≤ γ ≤ α < 1. A greedy algorithm with

two thresholds α and γ is presented on the next page (see Algorithm 3).
Let us denote by Cγ

greedy(α) = Cγ
greedy(α, A, S, w) the weight of α-cover constructed

by the considered algorithm for the set cover problem with weights (A, S, w).
Note that the greedy algorithm with two thresholds α and γ = α (greedy algorithm

with equal thresholds) coincides with the greedy algorithm with weights considered
in [58].

2.1.2 Some Known Results

In this subsection, we assume that the weight function has values from the set of
positive real numbers. For natural m, we denote H(m) = 1 + . . . + 1/m. It is known

that
lnm ≤ H(m) ≤ ln m + 1 .

Let us consider some results for the case of exact covers, where α = 0. In this case

γ = 0. The first results belong to Chvátal.
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Algorithm 3: Greedy algorithm with two thresholds α and γ for partial cover

construction
Input : Set cover problem with weights (A,S, w), where S = {B1, . . . , Bm}, and real numbers α

and γ such that 0 ≤ γ ≤ α < 1.

Output: α-cover for (A,S).

Q←− ∅;

D←− ∅;

M ←− d|A|(1− α)e;

N ←− d|A|(1− γ)e;

while |D| < M do

select Bi ∈ S with minimal index i such that Bi \D 6= ∅ and the value

w(Bi)

min{|Bi \D|, N − |D|}

is minimal;

Q←− Q ∪ {Bi};

D ←− D ∪Bi;

end

return Q;

Theorem 2.1. (Chvátal [8]) For any set cover problem with weights (A, S, w), the

inequality C0
greedy(0) ≤ Cmin(0)H(|A|) holds.

Theorem 2.2. (Chvátal [8]) For any set cover problem with weights (A, S, w), the

inequality C0
greedy(0) ≤ Cmin(0)H (maxBi∈S |Bi|) holds.

Chvátal proved in [8] that the bounds from Theorems 2.1 and 2.2 are almost
unimprovable.

We now consider some results for the case, where α ≥ 0 and γ = α. The first
upper bound on Cα

greedy(α) was obtained by Kearns.

Theorem 2.3. (Kearns [18]) For any set cover problem with weights (A, S, w) and

any α, 0 ≤ α < 1, the inequality Cα
greedy(α) ≤ Cmin(α)(2H(|A|) + 3) holds.

This bound was improved by Slavík.

Theorem 2.4. (Slavík [58]) For any set cover problem with weights (A, S, w) and any

α, 0 ≤ α < 1, the inequality Cα
greedy(α) ≤ Cmin(α)H (d(1 − α)|A|e) holds.

Theorem 2.5. (Slavík [58])) For any set cover problem with weights (A, S, w) and

any α, 0 ≤ α < 1, the inequality Cα
greedy(α) ≤ Cmin(α)H (maxBi∈S |Bi|) holds.

Slavík proved in [58] that the bounds from Theorems 2.4 and 2.5 are unimprovable.
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2.1.3 Polynomial Approximate Algorithms

In this subsection, we consider three theorems which follow immediately from Theo-
rems 1.13, 1.18 and 1.19.

Let 0 ≤ α < 1. We consider the following problem: for a given set cover problem

with weights (A, S, w) it is required to find an α-cover for (A, S) with minimal weight.

Theorem 2.6. Let 0 ≤ α < 1. Then the problem of construction of α-cover with

minimal weight is NP -hard.

From this theorem it follows that we should consider polynomial approximate

algorithms for minimization of α-cover weight.

Theorem 2.7. Let α ∈ IR and 0 ≤ α < 1. If NP 6⊆ DTIME(nO(log log n)), then

for any ε, 0 < ε < 1, there is no polynomial algorithm that for a given set cover

problem with weights (A, S, w) constructs an α-cover for (A, S) which weight is at

most (1 − ε)Cmin(α, A, S, w) ln |A|.

Theorem 2.8. Let α be a real number such that 0 ≤ α < 1. If P 6= NP , then there

exists δ > 0 such that there is no polynomial algorithm that for a given set cover

problem with weights (A, S, w) constructs an α-cover for (A, S) which weight is at

most δCmin(α, A, S, w) ln |A|.

From Theorem 2.4 it follows that Cα
greedy(α) ≤ Cmin(α)(1 + ln |A|). From this

inequality and from Theorem 2.7 it follows that, under the assumption NP 6⊆
DTIME(nO(log log n)), the greedy algorithm with two thresholds α and γ = α (in
fact, the greedy algorithm with weights from [58]) is close to the best polynomial ap-
proximate algorithms for minimization of partial cover weight. From the considered

inequality and from Theorem 2.8 it follows that, under the assumption P 6= NP , the
greedy algorithm with two thresholds α and γ = α is not far from the best polynomial

approximate algorithms for minimization of partial cover weight.
However, we can try to improve the results of the work of greedy algorithm with

two thresholds α and γ = α for some part of set cover problems with weights.

2.1.4 Comparison of Usual Greedy Algorithm and Greedy Algorithm

with Two Thresholds

The following example shows that if for greedy algorithm with two thresholds α and

γ we will use γ such that γ < α, we can obtain sometimes better results than in the
case γ = α.
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Example 2.9. Let us consider a set cover problem (A, S, w) such that A = {1, 2, 3, 4,
5, 6}, S = {B1, B2}, B1 = {1}, B2 = {2, 3, 4, 5, 6}, w(B1) = 1 and w(B2) = 4. Set
α = 0.5. It means that we should cover at least M = d(1 − α)|A|e = 3 elements from
A. If γ = α = 0.5, then the result of the work of greedy algorithm with thresholds

α and γ is the 0.5-cover {B1, B2} which weight is equal to 5. If γ = 0 < α, then the
result of the work of greedy algorithm with thresholds α and γ is the 0.5-cover {B2}
which weight is equal to 4.

In this subsection, we show that, under some assumptions on |A| and |S|, for the
most part of set cover problems (A, S) there exists a weight function w and real

numbers α, γ such that 0 ≤ γ < α < 1 and Cγ
greedy(α, A, S, w) < Cα

greedy(α, A, S, w).
First, we consider criterion of existence of such w, α and γ (see Theorem 2.10). The
first part of the proof of this criterion is based on a construction similar to considered

in Example 2.9.
Let A be a finite nonempty set and S = {B1, . . . , Bm} be a family of subsets of A.

We will say that the family S is 1-uniform if there exists a natural number k such
that |Bi| = k or |Bi| = k + 1 for any nonempty subset Bi from S. We will say that

S is strongly 1-uniform if S is 1-uniform and for any subsets Bl1 , . . . , Blt from S the
family {B1 \ U, . . . , Bm \ U} is 1-uniform, where U = Bl1 ∪ . . . ∪ Blt .

Theorem 2.10. Let (A, S) be a set cover problem. Then the following two statements

are equivalent:

1. The family S is not strongly 1-uniform.

2. There exists a weight function w and real numbers α and γ such that 0 ≤ γ <

α < 1 and Cγ
greedy(α, A, S, w) < Cα

greedy(α, A, S, w).

Proof. Let S = {B1, . . . , Bm}, and the family S be not strongly 1-uniform. Let us
choose minimal number of subsets Bl1, . . . , Blt from the family S (it is possible that
t = 0) such that the family {B1 \ U, . . . , Bm \ U} is not 1-uniform, where U =

Bl1∪ . . .∪Blt (if t = 0, then U = ∅). Since {B1\U, . . . , Bm\U} is not 1-uniform, there
exist two subsets Bi and Bj from S such that |Bi \U | > 0 and |Bj \U | ≥ |Bi \U |+2.

Let us choose real α and γ such that M = d|A|(1 − α)e = |U | + |Bi \ U | + 1 and
N = d|A|(1 − γ)e = |U | + |Bi \ U | + 2. It is clear that 0 ≤ γ < α < 1. Let us define

a weight function w as follows: w(Bl1) = . . . = w(Blt) = 1, w(Bi) = |A| × 2|Bi \ U |,
w(Bj) = |A|(2|Bi \ U | + 3) and w(Br) = |A|(3|Bi \ U | + 6) for any Br from S such

that r /∈ {i, j, l1, . . . , lt}.
We now consider the work of greedy algorithm with two thresholds α and γ = α.

One can show that during the first t steps the greedy algorithm will choose subsets

Bl1 , . . . , Blt (may be in an another order). It is clear that |U | < M . Therefore, the
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greedy algorithm should make the step number t + 1. During this step the greedy

algorithm will choose a subset Bk from S with minimal number k for which Bk\U 6= ∅
and the value

p(k) =
w(Bk)

min{|Bk \ U |, M − |U |} =
w(Bk)

min{|Bk \ U |, |Bi \ U | + 1}
is minimal.

It is clear that p(i) = 2|A|, p(j) = (2 + 1/(|Bi \ U | + 1))|A| and p(k) > 3|A|
for any subset Bk from S such that Bk \ U 6= ∅ and k /∈ {i, j, l1, . . . , lt}. Therefore,
during the step number t + 1 the greedy algorithm will choose the subset Bi. Since

|U |+ |Bi \U | = M −1, the greedy algorithm will make the step number t+2 and will
choose a subset from S which is different from Bl1 , . . . , Blt , Bi. As a result we obtain
Cα

greedy(α, A, S, w) ≥ t + |A| × 2|Bi \ U | + |A|(2|Bi \ U | + 3).

We now consider the work of greedy algorithm with two thresholds α and γ.
One can show that during the first t steps the greedy algorithm will choose subsets

Bl1 , . . . , Blt (may be in an another order). It is clear that |U | < M . Therefore, the
greedy algorithm should make the step number t + 1. During this step the greedy

algorithm will choose a subset Bk from S with minimal number k for which Bk\U 6= ∅
and the value

q(k) =
w(Bk)

min{|Bk \ U |, N − |U |} =
w(Bk)

min{|Bk \ U |, |Bi \ U | + 2}
is minimal.

It is clear that q(i) = 2|A|, q(j) = (2 − 1/(|Bi \ U | + 2))|A| and q(k) ≥ 3|A|
for any subset Bk from S such that Bk \ U 6= ∅ and k /∈ {i, j, l1, . . . , lt}. Therefore,
during the step number t + 1 the greedy algorithm will choose the subset Bj. Since

|U | + |Bj \ U | > M , the α-cover constructed by greedy algorithm will be equal to
{Bl1 , . . . , Blt , Bj}. As a result we obtain Cγ

greedy(α, A, S, w) = t + |A|(2|Bi \ U | + 3).
Since Cα

greedy(α, A, S, w) ≥ t + |A| × 2|Bi \ U | + |A|(2|Bi \ U | + 3) and |Bi \ U | > 0,

we conclude that Cα
greedy(α, A, S, w) > Cγ

greedy(α, A, S, w).
Let the family S be strongly 1-uniform. We consider arbitrary weight function

w for S and real numbers α and γ such that 0 ≤ γ < α < 1. Let us show that
Cγ

greedy(α, A, S, w) ≥ Cα
greedy(α, A, S, w). Let us denote M = d|A|(1 − α)e and N =

d|A|(1 − γ)e. If M = N , then Cγ
greedy(α, A, S, w) = Cα

greedy(α, A, S, w). Let N > M .
We now apply the greedy algorithm with thresholds α and γ = α to the set cover

problem with weights (A, S, w). Let during the construction of α-cover this algorithm
choose sequentially subsets Bg1

, . . . , Bgt
. Let us apply now the greedy algorithm with

thresholds α and γ to the set cover problem with weights (A, S, w). If during the

construction of α-cover this algorithm chooses sequentially subsets Bg1
, . . . , Bgt

, then
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Cγ
greedy(α, A, S, w) = Cα

greedy(α, A, S, w). Let there exist a nonnegative integer r, 0 ≤
r ≤ t− 1, such that during the first r steps the considered algorithm chooses subsets
Bg1

, . . . , Bgr
, but at the step number r + 1 the algorithm chooses a subset Bk such

that k 6= gr+1. Let us denote Bg0
= ∅, D = Bg0

∪ . . . ∪ Bgr
and J = {i : i ∈

{1, . . . , m}, Bi \ D 6= ∅}. It is clear that gr+1, k ∈ J . For any i ∈ J , we denote

p(i) =
w(Bi)

min{|Bi \ D|, M − |D|} , q(i) =
w(Bi)

min{|Bi \ D|, N − |D|} .

Since k 6= gr+1, we conclude that there exists i ∈ J such that p(i) 6= q(i). Therefore,

|Bi\D| > M−|D|. Since S is strongly 1-uniform family, we have |Bj\D| ≥ M−|D| for
any j ∈ J . From here it follows, in particular, that r+1 = t, and {Bg1

, . . . , Bgt−1
, Bk}

is an α-cover for (A, S).

It is clear that p(gt) ≤ p(k). Since |Bk \D| ≥ M −|D| and |Bgt
\D| ≥ M −|D|, we

have p(k) = w(Bk)/(M−|D|), p(gt) = w(Bgt
)/(M−|D|). Therefore, w(Bgt

) ≤ w(Bk).

Taking into account that Cγ
greedy(α, A, S, w) = w(Bg1

)+ . . .+w(Bgt−1
)+w(Bk) and

Cα
greedy(α, A, S, w) = w(Bg1

)+ . . .+w(Bgt−1
)+w(Bgt

) we obtain Cγ
greedy(α, A, S, w) ≥

Cα
greedy(α, A, S, w). ut
Let us show that, under some assumptions on |A| and |S|, the most part of set

cover problems (A, S) is not 1-uniform and, therefore, is not strongly 1-uniform.
There is a one-to-one correspondence between set cover problems and tables filled

by numbers from {0, 1} and having no rows filled by 0 only. Let A = {a1, . . . , an} and
S = {B1, . . . , Bm}. Then the problem (A, S) corresponds to the table with n rows

and m columns which for i = 1, . . . , n and j = 1, . . . , m has 1 at the intersection
of i-th row and j-th column if and only if ai ∈ Bj . Remind that a table filled by

numbers from {0, 1} is called SC-table if this table has no rows filled by 0 only.

Lemma 2.11. Let n ∈ IN, n ≥ 4 and k ∈ {0, . . . , n}. Then Ck
n ≤ Cbn/2c

n < 2n/
√

n.

Proof. It is well known (see, for example, [75], p. 178) that Ck
n ≤ Cbn/2c

n . Let n be

even and n ≥ 4. It is known (see [12], p. 278) that

Cbn/2c
n ≤ 2n

√

3n
2

+ 1
<

2n

√
n

.

Let n be odd and n ≥ 5. Using well known equality Cbn/2c
n = C

bn/2c
n−1 + C

bn/2c−1
n−1

and the fact, that C
b(n−1)/2c
n−1 ≥ Ck

n−1 for any k ∈ {0, . . . , n − 1}, we obtain Cbn/2c
n ≤

2C
b(n−1)/2c
n−1 . Thus,

Cbn/2c
n ≤ 2n

√

3(n−1)
2

+ 1
<

2n

√

3(n−1)
3

+ 1
=

2n

√
n

.

Therefore, for any n ≥ 4 the inequality Cbn/2c
n < 2n/

√
n holds. ut
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Theorem 2.12. Let us consider set cover problems (A, S) such that A = {a1, . . . ,

an} and S = {B1, . . . , Bm}. Let n ≥ 4 and m ≥ log2 n + 1. Then the fraction of set

cover problems which are not 1-uniform is at least

1 − 9m/2+1

nm/2−1
.

Proof. The considered fraction is at least (q − p)/q, where q is the number of SC-

tables with n rows and m columns, and p is the number of tables with n rows and m

columns filled by 0 and 1 for each of which there exists k ∈ {1, . . . , n − 1} such that

the number of units in each column belongs to the set {0, k, k + 1}.
From Lemma 1.30 it follows that q ≥ 2mn − 2mn−m+log2 n. It is clear that p ≤

∑n−1
k=1(C

k
n + Ck+1

n + 1)m. From Lemma 2.11 it follows that Cbn/2c
n ≥ Ck

n for any k ∈
{1, . . . , n}. Therefore, p ≤ (n − 1)

(

3Cbn/2c
n

)m
. Using Lemma 2.11 we conclude that

3Cbn/2c
n 2n/

√

n/9 for any n ≥ 4. Therefore,

p <
(n − 1)2mn

(

n
9

)m/2
and

q − p

q
= 1 − p

q
> 1 − (n − 1)2mn

(

n
9

)m/2
(2mn − 2mn−m+log2 n)

.

Taking into account that m ≥ log2 n + 1 we obtain

q − p

q
> 1 − 2(n − 1)

(

n
9

)m/2
> 1 − 9m/2+1

nm/2−1
.

ut

So if n is large enough and m ≥ log2 n+1, then the most part of set cover problems
(A, S) with |A| = n and |S| = m is not 1-uniform.

For example, the fraction of set cover problems (A, S) with |A| = 81 and |S| = 20,
which are not 1-uniform, is at least 1 − 1/97 = 1 − 1/4782969.

2.1.5 Two Modifications of Greedy Algorithm

Results obtained in the previous subsection show that the greedy algorithm with two

thresholds is of some interest. In this subsection, we consider two polynomial mod-
ifications of greedy algorithm which allow us to use advantages of greedy algorithm

with two thresholds.
Let (A, S, w) be a set cover problem with weights and α be a real number such

that 0 ≤ α < 1.

1. Of course, it is impossible to consider effectively all γ such that 0 ≤ γ ≤ α. Instead

of this, we can consider all natural N such that M ≤ N ≤ |A|, where M =
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d|A|(1 − α)e (see Algorithm 3). For each N ∈ {M, . . . , |A|}, we apply Algorithm

3 with parameters M and N to the set cover problem with weights (A, S, w) and
after that choose an α-cover with minimal weight among constructed α-covers.

2. There exists also an another way to construct an α-cover which is not worse than

the one obtained under consideration of all N such that M ≤ N ≤ |A|. Let us
apply greedy algorithm with thresholds α and γ = α (see Algorithm 3) to the

set cover problem with weights (A, S, w). Let the algorithm choose sequentially
subsets Bg1

, . . . , Bgt
. For each i ∈ {0, . . . , t− 1}, we find (if it is possible) a subset

Bli from S with minimal weight w(Bli) such that |Bg1
∪ . . .∪Bgi

∪Bli | ≥ M , and
form an α-cover {Bg1

, . . . , Bgi
, Bli} (if i = 0, then it will be the family {Bl0}).

After that, among constructed α-covers {Bg1
, . . . , Bgt

}, ..., {Bg1
, . . . , Bgi

, Bli}, ...

we choose an α-cover with minimal weight. From Proposition 2.13 it follows that
the constructed α-cover is not worse than the one constructed under consideration

of all γ, 0 ≤ γ ≤ α, or (which is the same) all N , M ≤ N ≤ |A|.

Proposition 2.13. Let (A, S, w) be a set cover problem with weights and α, γ be real

numbers such that 0 ≤ γ < α < 1. Let the greedy algorithm with two thresholds α

and α, which is applied to (A, S, w), choose sequentially subsets Bg1
, . . . , Bgt

. Let the

greedy algorithm with two thresholds α and γ, which is applied to (A, S, w), choose

sequentially subsets Bl1 , . . . , Blk . Then either k = t and (l1, . . . , lk) = (g1, . . . , gt) or

k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and lk 6= gk.

Proof. Let S = {B1, . . . , Bm}. Let us denote M = d|A|(1 − α)e and N = d|A|(1 − γ)e.
Let (l1, . . . , lk) 6= (g1, . . . , gt). Since {Bg1

, . . . , Bgt−1
} is not an α-cover for (A, S), it

is impossible that k < t and (l1, . . . , lk) = (g1, . . . , gk). Since {Bg1
, . . . , Bgt

} is an α-

cover for (A, S), it is impossible that k > t and (l1, . . . , lt) = (g1, . . . , gt). Therefore,
there exists i ∈ {0, . . . , t − 1} such that during the first i steps algorithm with

thresholds α and α and algorithm with thresholds α and γ choose the same subsets
from S, but during the step number i + 1 the algorithm with thresholds α and γ

chooses a subset Bli+1
such that li+1 6= gi+1.

Let us denote Bg0
= ∅, D = Bg0

∪. . .∪Bgi
and J = {j : j ∈ {1, . . . , m}, Bj\D 6= ∅}.

It is clear that gi+1, li+1 ∈ J . For any j ∈ J , let

p(j) =
w(Bj)

min{|Bj \ D|, M − |D|} and q(j) =
w(Bj)

min{|Bj \ D|, N − |D|} .

Since N ≥ M , we have p(j) ≥ q(j) for any j ∈ J . We now consider two cases.
Let gi+1 < li+1. In this case we have p(gi+1) ≤ p(li+1) and q(gi+1) > q(li+1). Using

inequality p(gi+1) ≥ q(gi+1) we obtain p(gi+1) > q(li+1) and p(li+1) > q(li+1). From

the last inequality it follows that |Bli+1
\ D| > M − |D|.
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Let gi+1 > li+1. In this case we have p(gi+1) < p(li+1) and q(gi+1) ≥ q(li+1). Using

inequality p(gi+1) ≥ q(gi+1) we obtain p(gi+1) ≥ q(li+1) and p(li+1) > q(li+1). From
the last inequality it follows that |Bli+1

\ D| > M − |D|.
So in any case we have |Bli+1

\D| > M − |D|. From this inequality it follows that

after the step number i + 1 the algorithm with thresholds α and γ should finish the
work. Thus, k = i + 1, k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and lk 6= gk. ut

2.1.6 Lower Bound on Cmin(α)

In this subsection, we fix some information about the work of greedy algorithm with

two thresholds and find the best lower bound on the value Cmin(α) depending on this
information.

Let (A, S, w) be a set cover problem with weights and α, γ be real numbers such
that 0 ≤ γ ≤ α < 1. Let us apply the greedy algorithm with thresholds α and γ to
the set cover problem with weights (A, S, w). Let during the construction of α-cover

the greedy algorithm choose sequentially subsets Bg1
, . . . , Bgt

.
Let us denote Bg0

= ∅ and δ0 = 0. For i = 1, . . . , t, we denote δi = |Bgi
\ (Bg0

∪
. . . ∪ Bgi−1

)| and wi = w(Bgi
).

As information on the greedy algorithm work we will use numbers MC =

MC(α, γ, A, S, w) = d|A|(1 − α)e and NC = NC(α, γ, A, S, w) = d|A|(1 − γ)e, and
tuples ∆C = ∆C(α, γ, A, S, w) = (δ1, . . . , δt), WC = WC(α, γ, A, S, w) = (w1, . . . , wt).

For i = 0, . . . , t − 1, we denote

%i =

⌈

wi+1(MC − (δ0 + . . . + δi))

min{δi+1, NC − (δ0 + . . . + δi)}

⌉

.

Let us define parameter %C(α, γ) = %C(α, γ, A, S, w) as follows:

%C(α, γ) = max {%i : i = 0, . . . , t − 1} .

We will prove that %C(α, γ) is the best lower bound on Cmin(α) depending on

MC , NC , ∆C and WC . This lower bound is based on a generalization of the following
simple reasoning: if we should cover M elements, and the maximal cardinality of a

subset from S is δ, then we should use at least dM/δe subsets.

Theorem 2.14. For any set cover problem with weights (A, S, w) and any real num-

bers α, γ, 0 ≤ γ ≤ α < 1, the inequality Cmin(α, A, S, w) ≥ %C(α, γ, A, S, w) holds,

and there exists a set cover problem with weights (A′, S ′, w′) such that

MC(α, γ, A′, S ′, w′) = MC(α, γ, A, S, w) ,

NC(α, γ, A′, S ′, w′) = NC(α, γ, A, S, w) ,
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∆C(α, γ, A′, S ′, w′) = ∆C(α, γ, A, S, w) ,

WC(α, γ, A′, S ′, w′) = WC(α, γ, A, S, w) ,

%C(α, γ, A′, S ′, w′) = %C(α, γ, A, S, w) ,

Cmin(α, A′, S ′, w′) = %C(α, γ, A′, S ′, w′) .

Proof. Let (A, S, w) be a set cover problem with weights, S = {B1, . . . , Bm}, and α, γ

be real numbers such that 0 ≤ γ ≤ α < 1. Let us denote M = MC(α, γ, A, S, w) =

d|A|(1 − α)e and N = NC(α, γ, A, S, w) = d|A|(1 − γ)e. Let {Bl1 , . . . , Blk} be an
optimal α-cover for (A, S, w), i.e., w(Bl1)+ . . .+w(Blk) = Cmin(α, A, S, w) = Cmin(α)

and |Bl1 ∪ . . . ∪ Blk | ≥ M .
We now apply the greedy algorithm with thresholds α and γ to (A, S, w). Let

during the construction of α-cover the greedy algorithm choose sequentially subsets
Bg1

, . . . , Bgt
. Set Bg0

= ∅.
Let i ∈ {0, . . . , t−1}. Let us denote D = Bg0

∪. . .∪Bgi
. It is clear that after i steps

of greedy algorithm work in the set Bl1 ∪ . . . ∪ Blk at least |Bl1 ∪ . . . ∪ Blk | − |Bg0
∪

. . .∪Bgi
| ≥ M −|D| > 0 elements remained uncovered. After i-th step, p1 = |Bl1 \D|

elements remained uncovered in the set Bl1 , ..., and pk = |Blk \D| elements remained
uncovered in the set Blk . We know that p1 + . . . + pk ≥ M − |D| > 0. Let, for

simplicity, p1 > 0, . . . , pr > 0, pr+1 = . . . = pk = 0. For j = 1, . . . , r, we denote
qj = min{pj, N − |D|}. It is clear that N − |D| ≥ M − |D|. Therefore, q1 + . . . + qr ≥
M − |D|. Let us consider numbers w(Bl1)/q1, . . . , w(Blr)/qr. Let us show that at
least one of these numbers is at most β = (w(Bl1) + . . . + w(Blr))/(q1 + . . . + qr). We
assume the contrary. Then w(Bl1)+ . . .+w(Blr) = w(Bl1)q1/q1 + . . .+w(Blr)qr/qr >

(q1 + . . . + qr)β = w(Bl1) + . . . + w(Blr), which is impossible.
We know that q1 + . . . + qr ≥ M − |D| and w(Bl1) + . . . + w(Blr) ≤ Cmin(α).

Therefore, β ≤ Cmin(α)/(M−|D|), and there exists j ∈ {1, . . . , k} such that Blj \D 6=
∅ and w(Blj)/ min{|Blj \ D|, N − |D|} ≤ β. Hence,

w(Bgi+1
)

min{|Bgi+1
\ D|, N − |D|} ≤ β ≤ Cmin(α)

M − |D|

and Cmin(α) ≥ w(Bgi+1
)(M − |D|)/ min{|Bgi+1

\ D|, N − |D|}.
Taking into account that Cmin(α) is a natural number we obtain Cmin(α) ≥

⌈

w(Bgi+1
)(M − |D|)/ min{|Bgi+1

\ D|, N − |D|}
⌉

= %i. Since the last inequality holds
for any i ∈ {0, . . . , t−1} and %C(α, γ) = %C(α, γ, A, S, w) = max {%i : i = 0, . . . , t − 1},
we conclude that Cmin(α) ≥ %C(α, γ).

Let us show that this bound is unimprovable depending on MC , NC , ∆C and
WC . Let us consider a set cover problem with weights (A′, S ′, w′), where A′ = A,

S ′ = {B1, . . . , Bm, Bm+1}, |Bm+1| = M , Bg1
∪ . . . ∪ Bgt−1

⊆ Bm+1 ⊆ Bg1
∪
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. . . ∪ Bgt
, w′(B1) = w(B1), . . . , w

′(Bm) = w(Bm) and w′(Bm+1) = %C(α, γ). It is

clear that MC(α, γ, A′, S ′, w′) = MC(α, γ, A, S, w) = M and NC(α, γ, A′, S ′, w′) =

NC(α, γ, A, S, w) = N . We show ∆C(α, γ, A′, S ′, w′) = ∆C(α, γ, A, S, w) and
WC(α, γ, A′, S ′, w′) = WC(α, γ, A, S, w).

Let us show by induction on i ∈ {1, . . . , t} that for the set cover problem with
weights (A′, S ′, w′) at the step number i the greedy algorithm with two thresholds α

and γ will choose the subset Bgi
. Let us consider the first step. Set D = ∅. It is clear

that w′(Bm+1)/ min{|Bm+1 \D|, N −|D|} = %C(α, γ)/(M −|D|). From the definition

of %C(α, γ) it follows that

w′(Bg1
)

min{|Bg1
\ D|, N − |D|} =

w(Bg1
)

min{|Bg1
\ D|, N − |D|} ≤ %C(α, γ)

M − |D| .

Using this fact and the inequality g1 < m + 1 it is not difficult to prove that at the

first step the greedy algorithm will choose the subset Bg1
.

Let i ∈ {1, . . . , t − 1}. Let us assume that the greedy algorithm made i steps for

(A′, S ′, w′) and chose subsets Bg1
, . . . , Bgi

. Let us show that at the step i+1 the subset
Bgi+1

will be chosen. Let us denote D = Bg1
∪ . . .∪Bgi

. Since Bg1
∪ . . .∪Bgi

⊆ Bm+1

and |Bm+1| = M , we have |Bm+1 \D| = M −|D|. Therefore, w′(Bm+1)/ min{|Bm+1 \
D|, N − |D|} = %C(α, γ)/(M − |D|). From the definition of the parameter %C(α, γ) it
follows that

w′(Bgi+1
)

min{|Bgi+1
\ D|, N − |D|} =

w(Bgi+1
)

min{|Bgi+1
\ D|, N − |D|} ≤ %C(α, γ)

M − |D| .

Using this fact and the inequality gi+1 < m + 1 it is not difficult to prove that at the

step number i + 1 the greedy algorithm will choose the subset Bgi+1
.

Thus, ∆C(α, γ, A′, S ′, w′)=∆C(α, γ, A, S, w) and WC(α, γ, A′, S ′, w′)=WC(α,γ,A,S,w).

Hence, %C(α, γ, A′, S ′, w′) = %C(α, γ, A, S, w) = %C(α, γ). From been proven it fol-
lows that Cmin(α, A′, S ′, w′) ≥ %C(α, γ, A′, S ′, w′). It is clear that {Bm+1} is an α-

cover for (A′, S ′) and the weight of {Bm+1} is equal to %C(α, γ, A′, S ′, w′). Hence,
Cmin(α, A′, S ′, w′) = %C(α, γ, A′, S ′, w′). ut

Let us consider a property of the parameter %C(α, γ) which is important for prac-

tical use of the bound from Theorem 2.14.

Proposition 2.15. Let (A, S, w) be a set cover problem with weights and α, γ be real

numbers such that 0 ≤ γ ≤ α < 1. Then %C(α, α, A, S, w) ≥ %C(α, γ, A, S, w).

Proof. Let S = {B1, . . . , Bm}, M = d|A|(1 − α)e, N = d|A|(1 − γ)e, and %C(α, α) =

%C(α, α, A, S, w), %C(α, γ) = %C(α, γ, A, S, w).
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Let us apply the greedy algorithm with thresholds α and α to (A, S, w). Let during

the construction of α-cover this algorithm choose sequentially subsets Bg1
, . . . , Bgt

.
Let us denote Bg0

= ∅. For j = 0, . . . , t − 1, we denote Dj = Bg0
∪ . . . ∪ Bgj

and

%C(α, α, j) =

⌈

w(Bgj+1
)(M − |Dj|)

min{|Bgj+1
\ Dj |, M − |Dj |}

⌉

.

Then %C(α, α) = max{%C(α, α, j) : j = 0, . . . , t − 1}.
We now apply the greedy algorithm with thresholds α and γ to (A, S, w). Let

during the construction of α-cover this algorithm choose sequentially subsets Bl1 , . . . ,

Blk . From Proposition 2.13 it follows that either k = t and (l1, . . . , lk) = (g1, . . . , gt)

or k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and lk 6= gk. Let us consider these two cases

separately. Let k = t and (l1, . . . , lk) = (g1, . . . , gt). For j = 0, . . . , t − 1, we denote

%C(α, γ, j) =

⌈

w(Bgj+1
)(M − |Dj|)

min{|Bgj+1
\ Dj|, N − |Dj|}

⌉

.

Then %C(α, γ) = max{%C(α, γ, j) : j = 0, . . . , t − 1}. Since N ≥ M , we have

%C(α, γ, j) ≤ %C(α, α, j) for j = 0, . . . , t − 1. Hence, %C(α, γ) ≤ %C(α, α). Let k ≤ t,
(l1, . . . , lk−1) = (g1, . . . , gk−1) and lk 6= gk. Let us denote

%C(α, γ, k − 1) =

⌈

w(Blk)(M − |Dk−1|)
min{|Blk \ Dk−1|, N − |Dk−1|}

⌉

and, for j = 0, . . . , k − 2,

%C(α, γ, j) =

⌈

w(Bgj+1
)(M − |Dj|)

min{|Bgj+1
\ Dj|, N − |Dj|}

⌉

.

Then %C(α, γ) = max{%C(α, γ, j) : j = 0, . . . , k − 1}. Since N ≥ M , we have

%C(α, γ, j) ≤ %C(α, α, j) for j = 0, . . . , k − 2. It is clear that

w(Blk)

min{|Blk \ Dk−1|, N − |Dk−1|}
≤ w(Bgk

)

min{|Bgk
\ Dk−1|, N − |Dk−1|}

≤ w(Bgk
)

min{|Bgk
\ Dk−1|, M − |Dk−1|}

.

Thus, %C(α, γ, k − 1) ≤ %C(α, α, k − 1), %C(α, γ) ≤ %C(α, α). ut

2.1.7 Upper Bounds on C
γ

greedy(α)

In this subsection, we study some properties of parameter %C(α, γ) and obtain two
upper bounds on the value Cγ

greedy(α) which do not depend directly on cardinality of

the set A and cardinalities of subsets Bi from S.
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Theorem 2.16. Let (A, S, w) be a set cover problem with weights and α, γ be real

numbers such that 0 ≤ γ < α < 1. Then

Cγ
greedy(α, A, S, w) < %C(γ, γ, A, S, w)

(

ln

(

1 − γ

α − γ

)

+ 1

)

.

Proof. Let S = {B1, . . . , Bm}. Let us denote M = d|A|(1 − α)e and N = d|A|(1 − γ)e.
We now apply the greedy algorithm with thresholds γ and γ to (A, S, w). Let

during the construction of γ-cover the greedy algorithm choose sequentially subsets
Bg1

, . . . , Bgt
. Let us denote Bg0

= ∅, for i = 0, . . . , t − 1 denote Di = Bg0
∪ . . . ∪ Bgi

,

and denote % = %C(γ, γ, A, S, w). Immediately from the definition of the parameter %

it follows that for i = 0, . . . , t − 1,

w(Bgi+1
)

min{|Bgi+1
\ Di|, N − |Di|}

≤ %

N − |Di|
. (2.1)

Note that min{|Bgi+1
\ Di|, N − |Di|} = |Bgi+1

\ Di| for i = 0, . . . , t − 2, since
{Bg0

, . . . , Bgi+1
} is not a γ-cover for (A, S). Therefore, for i = 0, . . . , t − 2 we have

w(Bgi+1
)/|Bgi+1

\ Di| ≤ %/(N − |Di|) and (N − |Di|)/% ≤ |Bgi+1
\ Di|/w(Bgi+1

).
Thus, for i = 1, . . . , t − 1, during the step number i the greedy algorithm covers at

least (N − |Di−1|)/% elements on each unit of weight. From (2.1) it follows that for
i = 0, . . . , t − 1,

w(Bgi+1
) ≤ % min{|Bgi+1

\ Di|, N − |Di|}
N − |Di|

≤ % . (2.2)

Let us assume that % = 1. Using (2.2) we obtain w(Bg1
) = 1. From this equality

and (2.1) it follows that |Bg1
| ≥ N . Therefore, {Bg1

} is an α-cover for (A, S), and

Cγ
greedy(α) = 1. It is clear that ln ((1 − γ)/(α − γ)) + 1 > 1. Therefore, the statement

of the theorem holds if % = 1.

We assume now that % ≥ 2. Let |Bg1
| ≥ M . Then {Bg1

} is an α-cover for (A, S).
Using (2.2) we obtain Cγ

greedy(α) ≤ %. Since ln ((1 − γ)/(α − γ))+1 > 1, we conclude
that the statement of the theorem holds if |Bg1

| ≥ M . Let |Bg1
| < M . Then there

exists q ∈ {1, . . . , t− 1} such that |Bg1
∪ . . .∪Bgq

| < M and |Bg1
∪ . . .∪Bgq+1

| ≥ M .
Taking into account that for i = 1, . . . , q during the step number i the greedy

algorithm covers at least (N − |Di−1|)/% elements on each unit of weight we obtain
N − |Bg1

∪ . . .∪Bgq
| ≤ N (1 − 1/%)w(Bg1

)+...+w(Bgq ). Let us denote k = w(Bg1
) + . . . +

w(Bgq
). Then N −N (1 − 1/%)k ≤ |Bg1

∪ . . .∪Bgq
| ≤ M − 1. Therefore, |A|(1− γ)−

|A|(1−γ) (1 − 1/%)k < |A|(1−α), 1−γ−1+α < (1−γ) ((% − 1)/%)k, (%/(% − 1))k <

(1− γ)/(α− γ), (1 + 1/(% − 1))k < (1− γ)/(α− γ), and k/% < ln ((1 − γ)/(α − γ)).
To obtain the last inequality we use known inequality ln (1 + 1/r) > 1/(r + 1) which
holds for any natural r. It is clear that Cγ

greedy(α) = k + w(Bq+1). Using (2.2) we

conclude that w(Bq+1) ≤ %. Therefore, Cγ
greedy(α) < % ln ((1 − γ)/(α − γ)) + %. ut



2.1 Partial Covers with Weights 56

Corollary 2.17. Let ε be a real number, and 0 < ε < 1. Then for any α such that

ε ≤ α < 1 the following inequalities hold:

%C(α, α) ≤ Cmin(α) ≤ Cα−ε
greedy(α) < %C(α − ε, α − ε)

(

ln
1

ε
+ 1

)

.

For example, if ε = 0.01 and 0.01 ≤ α < 1, then %C(α, α) ≤ Cmin(α) ≤
Cα−0.01

greedy (α) < 5.61%C(α − 0.01, α − 0.01), and if ε = 0.1 and 0.1 ≤ α < 1, then

%C(α, α) ≤ Cmin(α) ≤ Cα−0.1
greedy(α) < 3.31%C(α − 0.1, α − 0.1).

The obtained results show that the lower bound Cmin(α) ≥ %C(α, α) is nontrivial.

Theorem 2.18. Let (A, S, w) be a set cover problem with weights and α, γ be real

numbers such that 0 ≤ γ < α < 1. Then

Cγ
greedy(α, A, S, w) < Cmin(γ, A, S, w)

(

ln

(

1 − γ

α − γ

)

+ 1

)

.

Proof. Using Theorem 2.16 we obtain Cγ
greedy(α, A, S, w) < %C(γ, γ, A, S, w) ×

(ln ((1 − γ)/(α − γ)) + 1). The inequality %C(γ, γ, A, S, w) ≤ Cmin(γ, A, S, w) follows

from Theorem 2.14. ut

Corollary 2.19. C0.3
greedy(0.5)< 2.26Cmin(0.3), C0.1

greedy(0.2)< 3.20Cmin(0.1), C0.001
greedy(0.01)<

5.71Cmin(0.001), C0
greedy(0.001) < 7.91Cmin(0).

Corollary 2.20. Let 0 < α < 1. Then C0
greedy(α) < Cmin(0) (ln(1/α) + 1).

Corollary 2.21. Let ε be a real number, and 0 < ε < 1. Then for any α such that

ε ≤ α < 1 the inequalities Cmin(α) ≤ Cα−ε
greedy(α) < Cmin(α − ε) (ln(1/ε) + 1) hold.

2.1.8 Results of Experiments for α-Covers

All experiments can be divided into three groups.

The First Group of Experiments

The first group of experiments is connected with study of quality of greedy algorithm
with equal thresholds (where γ = α or, which is the same, N = M), and comparison

of quality of greedy algorithm with equal thresholds and the first modification of
greedy algorithm (where for each N ∈ {M, . . . , |A|} we apply greedy algorithm with

parameters M and N to set cover problem with weights, and after that choose an
α-cover with minimal weight among constructed α-covers).

We generate randomly 1000 set cover problems with weights (A, S, w) such that

|A| = 40, |S| = 10 and 1 ≤ w(Bi) ≤ 1000 for each Bi ∈ S.
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For each α ∈ {0.0, 0.1, . . . , 0.9}, we find the number of problems (A, S, w) for

which greedy algorithm with equal thresholds constructs an α-cover with minimal
weight (optimal α-cover), i.e., Cα

greedy(α, A, S, w) = Cmin(α, A, S, w). This number is
contained in the row of Table 2.1 labeled with “Opt”.

We find the number of problems (A, S, w) for which the first modification of greedy
algorithm constructs an α-cover which weight is less than the weight of α-cover con-

structed by greedy algorithm with equal thresholds, i.e., there exists γ such that
0 ≤ γ < α and Cγ

greedy(α, A, S, w) < Cα
greedy(α, A, S, w). This number is contained in

the row of Table 2.1 labeled with “Impr”.
Also we find the number of problems (A, S, w) for which the first modification of

greedy algorithm constructs an optimal α-cover which weight is less than the weight

of α-cover constructed by greedy algorithm with equal thresholds, i.e., there exists γ

such that 0 ≤ γ < α and Cγ
greedy(α, A, S, w) = Cmin(α, A, S, w) < Cα

greedy(α, A, S, w).

This number is contained in the row of Table 2.1 labeled with “Opt+”.

Table 2.1. Results of the first group of experiments with α-covers

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Opt 330 623 674 858 814 711 939 995 1000 1000

Impr 0 53 42 37 13 29 13 2 0 0

Opt+ 0 20 27 32 9 28 12 0 0 0

The obtained results show that the percentage of problems for which greedy al-
gorithm with equal thresholds finds an optimal α-cover grows almost monotonically

(with local minimum near to 0.4–0.5) from 33% up to 100%. The percentage of prob-
lems for which the first modification of greedy algorithm can improve the result of the

work of greedy algorithm with equal thresholds is less than 6%. However, sometimes
(for example, if α = 0.3 or α = 0.6) the considered improvement is noticeable.

The Second Group of Experiments

The second group of experiments is connected with comparison of quality of greedy

algorithm with equal thresholds and the first modification of greedy algorithm.
We make 25 experiments (row “Nr” in Table 2.2 contains the number of experi-

ment). Each experiment includes the work with three randomly generated families of

set cover problems with weights (A, S, w) (1000 problems in each family) such that
|A| = n, |S| = m and w has values from the set {1, . . . , v}.

If the column “n” contains one number, for example “40”, it means that |A| = 40.
If this row contains two numbers, for example “30–120”, it means that for each of
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1000 problems we choose the number n randomly from the set {30, . . . , 120}. The

same situation is for the column “m”.
If the column “α” contains one number, for example “0.1”, it means that α = 0.1.

If this column contains two numbers, for example “0.2–0.4”, it means that we choose

randomly the value of α such that 0.2 ≤ α ≤ 0.4.
For each of the considered set cover problems with weights (A, S, w) and number α,

we apply greedy algorithm with equal thresholds and the first modification of greedy
algorithm. Column “#i”, i = 1, 2, 3, contains the number of problems (A, S, w) from

the family number i for each of which the weight of α-cover, constructed by the first
modification of greedy algorithm, is less than the weight of α-cover constructed by
greedy algorithm with equal thresholds. In other words, in column “#i” we have the

number of problems (A, S, w) from the family number i such that there exists γ for

Table 2.2. Results of the second group of experiments with α-covers

Nr n m v α #1 #2 #3 avg

1 1–100 1–100 1–10 0–1 1 1 4 2.0

2 1–100 1–100 1–100 0–1 10 13 14 12.33

3 1–100 1–100 1–1000 0–1 15 8 22 15.0

4 1–100 1–100 1–1000 0–0.2 27 23 39 29.66

5 1–100 1–100 1–1000 0.2–0.4 31 27 19 25.66

6 1–100 1–100 1–1000 0.4–0.6 16 14 22 17.33

7 1–100 1–100 1–1000 0.6–0.8 4 7 6 5.66

8 1–100 1–100 1–1000 0.8–1 0 1 0 0.33

9 100 1–30 1–1000 0–0.2 32 26 39 32.33

10 100 30–60 1–1000 0–0.2 40 36 33 36.33

11 100 60–90 1–1000 0–0.2 43 43 53 46.33

12 100 90–120 1–1000 0–0.2 43 45 33 40.33

13 1–30 30 1–1000 0–0.2 21 14 14 16.33

14 30–60 30 1–1000 0–0.2 47 43 40 43.33

15 60–90 30 1–1000 0–0.2 40 40 52 44.0

16 90–120 30 1–1000 0–0.2 32 47 33 37.33

17 40 10 1–1000 0.1 60 57 59 58.66

18 40 10 1–1000 0.2 43 38 37 39.33

19 40 10 1–1000 0.3 29 31 35 31.66

20 40 10 1–1000 0.4 4 13 13 10.0

21 40 10 1–1000 0.5 17 29 21 22.33

22 40 10 1–1000 0.6 10 15 13 12.66

23 40 10 1–1000 0.7 3 1 1 1.66

24 40 10 1–1000 0.8 0 0 0 0.0

25 40 10 1–1000 0.9 0 0 0 0.0
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which 0 ≤ γ < α and Cγ
greedy(α, A, S, w) < Cα

greedy(α, A, S, w). The column “avg”

contains the number (#1 + #2 + #3)/3.
In experiments 1–3 we consider the case, where the parameter v increases. In

experiments 4–8 the parameter α increases. In experiments 9–12 the parameter m

increases. In experiments 13–16 the parameter n increases. In experiments 17–25
the parameter α increases. The results of experiments show that the value of #i

can change from 0 to 60. It means that the percentage of problems, for which the
first modification of greedy algorithm is better than the greedy algorithm with equal

thresholds, can change from 0% to 6%.

The Third Group of Experiments

The third group of experiments is connected with investigation of quality of lower
bound Cmin(α) ≥ %C(α, α).

We choose natural n, m, v and real α, 0 ≤ α < 1. For each chosen tuple (n, m, v, α),
we generate randomly 30 set cover problems with weight (A, S, w) such that |A| = n,
|S| = m and w has values from the set {1, ..., v}. After that, we find values of

Cα
greedy(α, A, S, w) and %C(α, α, A, S, w) for each of generated 30 problems. Note that

%C(α, α, A, S, w) ≤ Cmin(α, A, S, w) ≤ Cα
greedy(α, A, S, w) .

Finally, we find mean values of Cα
greedy(α, A, S, w) and %C(α, α, A, S, w) for generated

30 problems.

Results of experiments can be found in Figs. 2.1 and 2.2. In these figures mean
values of %C(α, α, A, S, w) are called “average lower bound” and mean values of

Cα
greedy(α, A, S, w) are called “average upper bound”.
In Fig. 2.1 (top) one can see the case, where n ∈ {1000, 2000, . . . , 5000}, m = 30,

v = 1000 and α = 0.01.
In Fig. 2.1 (bottom) one can see the case, where n = 1000, m ∈ {10, 20, . . . , 100},

v = 1000 and α = 0.01.

In Fig. 2.2 (top) one can see the case, where n=1000, m=30, v∈{100, 200, . . . ,1000}
and α = 0.01.

In Fig. 2.2 (bottom) one can see the case, where n = 1000, m = 30, v = 1000 and
α ∈ {0.0, 0.1, . . . , 0.9}.

Results of experiments show that the considered lower bound is nontrivial and can
be useful in investigations.
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Fig. 2.1. Results of the third group of experiments with α-covers (n and m are changing)
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Fig. 2.2. Results of the third group of experiments with α-covers (v and α are changing)
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2.2 Partial Decision Rules with Weights

This section consists of seven subsections. In Sect. 2.2.1, main notions are considered.

In Sect. 2.2.2, some relationships between partial covers and partial decision rules are
discussed. In Sect. 2.2.3, two bounds on precision of greedy algorithm with thresholds
α and γ = α are considered. In Sect. 2.2.4, polynomial approximate algorithms for

partial decision rule weight minimization are studied. Two modifications of greedy
algorithm are considered in Sect. 2.2.5. Section 2.2.6 is devoted to consideration

of some bounds on minimal weight of partial decision rules and weight of decision
rules constructed by greedy algorithm with thresholds α and γ. In Sect. 2.2.7, some

experimental results are discussed.

2.2.1 Main Notions

We repeat here some definitions from Chap. 1 and consider generalizations of other
definitions to the case of arbitrary natural weights.

Let T be a table with n rows labeled with nonnegative integers (decisions) and m

columns labeled with attributes (names of attributes) f1, . . . , fm. This table is filled
by nonnegative integers (values of attributes). The table T is called a decision table.

Let w be a weight function for T which corresponds to each attribute fi a natural
number w(fi). Let r = (b1, . . . , bm) be a row of T labeled with a decision d.

Let us denote by U(T, r) the set of rows from T which are different from r and
are labeled with decisions different from d. We will say that an attribute fi separates

rows r and r′ ∈ U(T, r) if rows r and r′ have different numbers at the intersection
with the column fi. For i = 1, . . . , m, we denote by U(T, r, fi) the set of rows from

U(T, r) which attribute fi separates from the row r.
Let α be a real number such that 0 ≤ α < 1. A decision rule

(fi1 = bi1) ∧ . . . ∧ (fit = bit) → d (2.3)

is called an α-decision rule for T and r if attributes fi1 , . . . , fit separate from r at

least (1−α)|U(T, r)| rows from U(T, r). The number
∑t

j=1 w(fij) is called the weight

of the considered decision rule.
If U(T, r) = ∅, then for any fi1 , . . . , fit ∈ {f1, . . . , fm} the rule (2.3) is an α-

decision rule for T and r. Also, the rule (2.3) with empty left-hand side (where t = 0)
is an α-decision rule for T and r. The weight of this rule is equal to 0.

For example, 0.01-decision rule means that we should separate from r at least
99% of rows from U(T, r). Note that 0-rule is usual (exact) rule. Let us denote by

Lmin(α) = Lmin(α, T, r, w) the minimal weight of α-decision rule for T and r.
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Let α, γ be real numbers such that 0 ≤ γ ≤ α < 1. We now describe a greedy

algorithm with thresholds α and γ which constructs an α-decision rule for given T , r

and weight function w (see Algorithm 4).

Algorithm 4: Greedy algorithm with two thresholds α and γ for partial decision
rule construction

Input : Decision table T with conditional attributes f1, . . . , fm, row r = (b1, . . . , bm) of T labeled

with the decision d, weight function w : {f1, . . . , fm} → IN, and real numbers α and γ such

that 0 ≤ γ ≤ α < 1.

Output: α-decision rule for (T, r).

Q←− ∅;

D←− ∅;

M ←− d|U(T, r)|(1− α)e;

N ←− d|U(T, r)|(1− γ)e;

while |D| < M do

select fi ∈ {f1, . . . , fm} with minimal index i such that U(T, r, fi) \D 6= ∅ and the value

w(fi)

min{|U(T, r, fi) \D|, N − |D|}

is minimal;

Q←− Q ∪ {fi};

D ←− D ∪ U(T, r, fi);

end

return
∧

fi∈Q
(fi = bi)→ d;

Let us denote by Lγ
greedy(α) = Lγ

greedy(α, T, r, w) the weight of α-decision rule
constructed by the considered algorithm for given table T , row r and weight function
w.

2.2.2 Relationships Between Partial Covers and Partial Decision Rules

Let (A, S, w) be a set cover problem with weights and α, γ be real numbers such
that 0 ≤ γ ≤ α < 1. We now apply the greedy algorithm with thresholds α and
γ to (A, S, w). Let during the construction of α-cover the greedy algorithm choose

sequentially subsets Bj1 , . . . , Bjt
from the family S. We denote OC(α, γ, A, S, w) =

(j1, . . . , jt).

Let T be a decision table with m columns labeled with attributes f1, . . . , fm, r be
a row from T , and w be a weight function for T . Let U(T, r) be a nonempty set.

We correspond a set cover problem with weights (A(T, r), S(T, r), uw) to the con-
sidered decision table T , row r and weight function w in the following way: A(T, r) =

U(T, r), S(T, r)={B1(T, r), . . . ,Bm(T, r)}, where B1(T, r)=U(T, r, f1), . . . ,Bm(T, r)=

U(T, r, fm), and
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uw(B1(T, r)) = w(f1), . . . , uw(Bm(T, r)) = w(fm) .

Let α, γ be real numbers such that 0 ≤ γ ≤ α < 1. We now apply the greedy algo-
rithm with thresholds α and γ to decision table T , row r and weight function w. Let
during the construction of α-decision rule the greedy algorithm choose sequentially

attributes fj1 , . . . , fjt
. We denote OL(α, γ, T, r, w) = (j1, . . . , jt).

Set U(T, r, fj0) = ∅. For i = 1, . . . , t, we denote wi = w(fji
) and

δi = |U(T, r, fji
) \ (U(T, r, fj0) ∪ . . . ∪ U(T, r, fji−1

))| .

Set ML(α, γ, T, r, w) = d|U(T, r)|(1 − α)e, NL(α, γ, T, r, w) = d|U(T, r)|(1 − γ)e,
∆L(α, γ, T, r, w) = (δ1, . . . , δt) and WL(α, γ, T, r, w) = (w1, . . . , wt).

It is not difficult to prove the following statement.

Proposition 2.22. Let T be a decision table with m columns labeled with attributes

f1, . . . , fm, r be a row of T , U(T, r) 6= ∅, w be a weight function for T , and α, γ be

real numbers such that 0 ≤ γ ≤ α < 1. Then

|U(T, r)| = |A(T, r)| ,

|U(T, r, fi)| = |Bi(T, r)|, i = 1, . . . , m ,

OL(α, γ, T, r, w) = OC(α, γ, A(T, r), S(T, r), uw) ,

ML(α, γ, T, r, w) = MC(α, γ, A(T, r), S(T, r), uw) ,

NL(α, γ, T, r, w) = NC(α, γ, A(T, r), S(T, r), uw) ,

∆L(α, γ, T, r, w) = ∆C(α, γ, A(T, r), S(T, r), uw) ,

WL(α, γ, T, r, w) = WC(α, γ, A(T, r), S(T, r), uw) ,

Lmin(α, T, r, w) = Cmin(α, A(T, r), S(T, r), uw) ,

Lγ
greedy(α, T, r, w) = Cγ

greedy(α, A(T, r), S(T, r), uw) .

Let (A, S, w) be a set cover problem with weights, where A = {a1, . . . , an} and

S = {B1, . . . , Bm}. We correspond a decision table T (A, S), row r(A, S) of T (A, S)

and a weight function vw for T (A, S) to the set cover problem with weights (A, S, w)

in the following way. The table T (A, S) contains m columns labeled with attributes
f1, . . . , fm and n + 1 rows filled by numbers from {0, 1}. For i = 1, . . . , n and j =

1, . . . , m, at the intersection of i-th row and j-th column the number 1 stays if and
only if ai ∈ Bj. The row number n+1 is filled by 0. The first n rows are labeled with

the decision 0. The last row is labeled with the decision 1. We denote by r(A, S) the
last row of T (A, S). Let vw(f1) = w(B1), . . . , vw(fm) = w(Bm).

For i = {1, . . . , n + 1}, we denote by ri the i-th row. It is not difficult to see that

U(T (A, S), r(A, S)) = {r1, . . . , rn}. Let i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. One can
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show that the attribute fj separates the row rn+1 = r(A, S) from the row ri if and

only if ai ∈ Bj.
It is not difficult to prove the following statement.

Proposition 2.23. Let (A, S, w) be a set cover problem with weights and α, γ be real

numbers such that 0 ≤ γ ≤ α < 1. Then

|U(T (A, S), r(A, S))| = |A| ,

OL(α, γ, T (A, S), r(A, S), vw) = OC(α, γ, A, S, w) ,

ML(α, γ, T (A, S), r(A, S), vw) = MC(α, γ, A, S, w) ,

NL(α, γ, T (A, S), r(A, S), vw) = NC(α, γ, A, S, w) ,

∆L(α, γ, T (A, S), r(A, S), vw) = ∆C(α, γ, A, S, w) ,

WL(α, γ, T (A, S), r(A, S), vw) = WC(α, γ, A, S, w) ,

Lmin(α, T (A, S), r(A, S), vw) = Cmin(α, A, S, w) ,

Lγ
greedy(α, T (A, S), r(A, S), vw) = Cγ

greedy(α, A, S, w) .

2.2.3 Precision of Greedy Algorithm with Equal Thresholds

The following two statements are simple corollaries of results of Slavík (see Theorems

2.4 and 2.5) and Proposition 2.22.

Theorem 2.24. Let T be a decision table, r be a row of T , U(T, r) 6= ∅, w be a weight

function for T , and α be a real number such that 0 ≤ α < 1. Then Lα
greedy(α) ≤

Lmin(α)H (d(1 − α)|U(T, r)|e).

Theorem 2.25. Let T be a decision table with m columns labeled with attributes

f1, . . . , fm, r be a row of T , U(T, r) 6= ∅, w be a weight function for T , α ∈ IR,

0 ≤ α < 1. Then Lα
greedy(α) ≤ Lmin(α)H

(

maxi∈{1,...,m} |U(T, r, fi)|
)

.

2.2.4 Polynomial Approximate Algorithms

In this subsection, we consider three theorems which follow immediately from Theo-
rems 1.41–1.43.

Let 0 ≤ α < 1. We now consider the following problem: for a given decision table

T , row r of T and weight function w for T it is required to find an α-decision rule
for T and r with minimal weight.

Theorem 2.26. Let 0 ≤ α < 1. Then the problem of construction of α-decision rule

with minimal weight is NP -hard.
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So we should consider polynomial approximate algorithms for minimization of

α-decision rule weight.

Theorem 2.27. Let α ∈ IR and 0 ≤ α < 1. If NP 6⊆ DTIME(nO(log log n)), then for

any ε, 0 < ε < 1, there is no polynomial algorithm that for a given decision table T ,

row r of T with U(T, r) 6= ∅ and weight function w for T constructs an α-decision

rule for T and r which weight is at most (1 − ε)Lmin(α, T, r, w) ln |U(T, r)|.

Theorem 2.28. Let α be a real number such that 0 ≤ α < 1. If P 6= NP , then there

exists δ > 0 such that there is no polynomial algorithm that for a given decision table

T , row r of T with U(T, r) 6= ∅ and weight function w for T constructs an α-decision

rule for T and r which weight is at most δLmin(α, T, r, w) ln |U(T, r)|.

From Theorem 2.24 it follows that Lα
greedy(α) ≤ Lmin(α)(1 + ln |U(T, r)|). From

this inequality and from Theorem 2.27 it follows that, under the assumption NP 6⊆
DTIME(nO(log log n)), the greedy algorithm with two thresholds α and γ = α is close

to the best polynomial approximate algorithms for minimization of partial decision
rule weight. From the considered inequality and from Theorem 2.28 it follows that,

under the assumption P 6= NP , the greedy algorithm with two thresholds α and
γ = α is not far from the best polynomial approximate algorithms for minimization

of partial decision rule weight.
However, we can try to improve the results of the work of greedy algorithm with

two thresholds α and γ = α for some part of decision tables.

2.2.5 Two Modifications of Greedy Algorithm

First, we consider binary diagnostic decision tables and prove that, under some as-
sumptions on the number of attributes and rows, for the most part of tables for each
row there exists a weight function w and numbers α, γ such that the weight of α-

decision rule constructed by the greedy algorithm with thresholds α and γ is less than
the weight of α-decision rule constructed by the greedy algorithm with thresholds α

and α.
Binary means that the table is filled by numbers from the set {0, 1} (all attributes

have values from {0, 1}). Diagnostic means that rows of the table are labeled with
pairwise different numbers (decisions). Let T be a binary diagnostic decision table
with m columns labeled with attributes f1, . . . , fm and with n rows. We will assume

that rows of T with numbers 1, . . . , n are labeled with decisions 1, . . . , n respectively.
Therefore, the number of considered tables is equal to 2mn. A decision table will be

called simple if it has no equal rows.
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Theorem 2.29. Let us consider binary diagnostic decision tables with m columns

labeled with attributes f1, . . . , fm and n ≥ 5 rows labeled with decisions 1, . . . , n.

The fraction of decision tables T , for each of which for each row r of T there exists a

weight function w and numbers α, γ such that 0 ≤ γ < α < 1 and Lγ
greedy(α, T, r, w) <

Lα
greedy(α, T, r, w), is at least

1 − n3m

(n − 1)m/2−1
− n2

2m
.

Proof. Let T be a decision table and r be a row of T with number s ∈ {1, . . . , n}.
We will say that a decision table T is 1-uniform relatively r if there exists natural

p such that, for any attribute fi of T , if |U(T, r, fi)| > 0, then |U(T, r, fi)| ∈ {p, p+1}.
Using reasoning similar to the proof of Theorem 2.10 one can show that if T is not
1-uniform relatively r, then there exists a weight function w and numbers α, γ such

that 0 ≤ γ < α < 1 and Lγ
greedy(α, T, r, w) < Lα

greedy(α, T, r, w).
We evaluate the number of decision tables which are not 1-uniform relatively each

row. Let (δ1, . . . , δm) ∈ {0, 1}m. First, we evaluate the number of simple decision
tables for which r = (δ1, . . . , δm) and which are 1-uniform relatively r. Let us consider

such a decision table T . It is clear that there exists p ∈ {1, . . . , n − 2} such that for
i = 1, . . . , m the column fi contains exactly 0 or p, or p + 1 numbers ¬δi. Therefore,
the number of considered decision tables is at most

∑n−2
p=1

(

Cp
n−1 + Cp+1

n−1 + 1
)m

. Using

Lemma 2.11 we conclude that this number is at most

(n − 2)
(

3C
b(n−1)/2c
n−1

)m
< (n − 1)

(

3 × 2n−1

√
n − 1

)m

=
2mn−m3m

(n − 1)m/2−1
.

There are 2m variants for the choice of the tuple (δ1, . . . , δm) and n variants for the
choice of the number s of row r. Therefore, the number of simple decision tables,

which are 1-uniform relatively at least one row, is at most

n2m 2mn−m3m

(n − 1)m/2−1
=

n2mn3m

(n − 1)m/2−1
.

The number of tables, which are not simple, is at most n22mn−m. Hence, the number
of tables, which are not 1-uniform for each row, is at least

2mn − n2mn3m

(n − 1)m/2−1
− n22mn−m .

Thus, the fraction, considered in the statement of the theorem, is at least

1 − n3m

(n − 1)m/2−1
− n2

2m
.

ut
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So if m ≥ 6 and n, 2m/n2 are large enough, then for the most part of binary

diagnostic decision tables for each row there exists a weight function w and numbers
α, γ such that the weight of α-decision rule constructed by the greedy algorithm with
thresholds α and γ is less than the weight of α-decision rule constructed by the greedy

algorithm with thresholds α and α.
The obtained results show that the greedy algorithm with two thresholds α and γ

is of some interest. Now we consider two polynomial modifications of greedy algorithm
which allow us to use advantages of the greedy algorithm with two thresholds α and

γ.
Let T be a decision table with m columns labeled with attributes f1, . . . , fm,

r = (b1, . . . , bm) be a row of T labeled with decision d, U(T, r) 6= ∅, w be a weight

function for T and α be a real number such that 0 ≤ α < 1.

1. It is impossible to consider effectively all γ such that 0 ≤ γ ≤ α. Instead of

this, we can consider all natural N such that M ≤ N ≤ |U(T, r)|, where M =

d|U(T, r)|(1 − α)e (see Algorithm 4). For each N ∈ {M, . . . , |U(T, r)|}, we apply
Algorithm 4 with parameters M and N to T , r and w, and after that choose an

α-decision rule with minimal weight among constructed α-decision rules.
2. There exists also an another way to construct an α-decision rule which is not worse

than the one obtained under consideration of all N such that M ≤ N ≤ |U(T, r)|.
We now apply Algorithm 4 with thresholds α and γ = α to T , r and w. Let the

algorithm choose sequentially attributes fj1 , . . . , fjt
. For each i ∈ {0, . . . , t − 1},

we find (if it is possible) an attribute fli of T with minimal weight w(fli) such

that the rule (fj1 = bj1) ∧ . . . ∧ (fji
= bji

) ∧ (fli = bli) → d is an α-decision
rule for T and r (if i = 0, then it will be the rule (fl0 = bl0) → d). After
that, among constructed α-decision rules (fj1 = bj1) ∧ . . . ∧ (fjt

= bjt
) → d, ...,

(fj1 = bj1)∧ . . .∧ (fji
= bji

)∧ (fli = bli) → d, ... we choose an α-decision rule with
minimal weight. From Proposition 2.30 it follows that the constructed α-decision

rule is not worse than the one constructed under consideration of all γ, 0 ≤ γ ≤ α,
or (which is the same) all N , M ≤ N ≤ |U(T, r)|.
Using Propositions 2.13 and 2.22 one can prove the following statement.

Proposition 2.30. Let T be a decision table, r be a row of T , U(T, r) 6= ∅, w be a

weight function for T and α, γ be real numbers such that 0 ≤ γ < α < 1. Let the

greedy algorithm with two thresholds α and α, which is applied to T , r and w, choose

sequentially attributes fg1
, . . . , fgt

. Let the greedy algorithm with two thresholds α and

γ, which is applied to T , r and w, choose sequentially attributes fl1 , . . . , flk . Then

either k = t and (l1, . . . , lk) = (g1, . . . , gt) or k ≤ t, (l1, . . . , lk−1) = (g1, . . . , gk−1) and

lk 6= gk.
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2.2.6 Bounds on Lmin(α) and L
γ

greedy(α)

First, we fix some information about the work of greedy algorithm with two thresholds

and find the best lower bound on the value Lmin(α) depending on this information.
Let T be a decision table, r be a row of T such that U(T, r) 6= ∅, w be a weight

function for T , and α, γ be real numbers such that 0 ≤ γ ≤ α < 1. We now apply

the greedy algorithm with thresholds α and γ to the decision table T , row r and the
weight function w. Let during the construction of α-decision rule the greedy algorithm

choose sequentially attributes fg1
, . . . , fgt

.
Let us denote U(T, r, fg0

) = ∅ and δ0 = 0. For i = 1, . . . , t, we denote δi =

|U(T, r, fgi
) \ (U(T, r, fg0

) ∪ . . . ∪ U(T, r, fgi−1
))| and wi = w(fgi

). As information on
the greedy algorithm work we will use numbers

ML = ML(α, γ, T, r, w) = d|U(T, r)|(1 − α)e ,

NL = NL(α, γ, T, r, w) = d|U(T, r)|(1 − γ)e

and tuples

∆L = ∆L(α, γ, T, r, w) = (δ1, . . . , δt) ,

WL = WL(α, γ, T, r, w) = (w1, . . . , wt) .

For i = 0, . . . , t − 1, we denote

%i =

⌈

wi+1(ML − (δ0 + . . . + δi))

min{δi+1, NL − (δ0 + . . . + δi)}

⌉

.

Let us define parameter %L(α, γ) = %L(α, γ, T, r, w) as follows:

%L(α, γ) = max {%i : i = 0, . . . , t − 1} .

We will show that %L(α, γ) is the best lower bound on Lmin(α) depending on ML,
NL, ∆L and WL. Next statement follows from Theorem 2.14 and Propositions 2.22

and 2.23.

Theorem 2.31. For any decision table T , any row r of T with U(T, r) 6= ∅, any

weight function w for T , and any real numbers α, γ, 0 ≤ γ ≤ α < 1, the inequality

Lmin(α, T, r, w) ≥ %L(α, γ, T, r, w) holds, and there exists a decision table T ′, a row r′

of T ′ and a weight function w′ for T ′ such that

ML(α, γ, T ′, r′, w′) = ML(α, γ, T, r, w), NL(α, γ, T ′, r′, w′) = NL(α, γ, T, r, w),

∆L(α, γ, T ′, r′, w′) = ∆L(α, γ, T, r, w), WL(α, γ, T ′, r′, w′) = WL(α, γ, T, r, w),

%L(α, γ, T ′, r′, w′) = %L(α, γ, T, r, w), Lmin(α, T ′, r′, w′) = %L(α, γ, T ′, r′, w′).
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Let us consider a property of the parameter %L(α, γ) which is important for prac-

tical use of the bound from Theorem 2.31. Next statement follows from Propositions
2.15 and 2.22.

Proposition 2.32. Let T be a decision table, r be a row of T with U(T, r) 6= ∅, w

be a weight function for T , and α, γ be real numbers such that 0 ≤ γ ≤ α < 1. Then

%L(α, α, T, r, w) ≥ %L(α, γ, T, r, w).

We now study some properties of parameter %L(α, γ) and obtain two upper bounds
on the value Lγ

greedy(α) which do not depend directly on cardinality of the set U(T, r)

and cardinalities of subsets U(T, r, fi).
Next statement follows from Theorem 2.16 and Proposition 2.22.

Theorem 2.33. Let T be a decision table, r be a row of T with U(T, r) 6= ∅, w be

a weight function for T , α, γ ∈ IR and 0 ≤ γ < α < 1. Then Lγ
greedy(α, T, r, w) <

%L(γ, γ, T, r, w) (ln ((1 − γ)/(α − γ)) + 1).

Corollary 2.34. Let ε ∈ IR and 0 < ε < 1. Then for any α, ε ≤ α < 1, the

inequalities %L(α, α) ≤ Lmin(α) ≤ Lα−ε
greedy(α) < %L(α − ε, α − ε) (ln(1/ε) + 1) hold.

For example, ln(1/0.01)+ 1 < 5.61 and ln(1/0.1)+ 1 < 3.31. The obtained results
show that the lower bound Lmin(α) ≥ %L(α, α) is nontrivial.

Next statement follows from Theorem 2.18 and Proposition 2.22.

Theorem 2.35. Let T be a decision table, r be a row of T with U(T, r) 6= ∅, w be

a weight function for T , α, γ ∈ IR and 0 ≤ γ < α < 1. Then Lγ
greedy(α, T, r, w) <

Lmin(γ, T, r, w) (ln ((1 − γ)/(α − γ)) + 1).

Corollary 2.36. L0.3
greedy(0.5)<2.26Lmin(0.3), L0.1

greedy(0.2)<3.20Lmin(0.1), L0.001
greedy(0.01)<

5.71Lmin(0.001), L0
greedy(0.001) < 7.91Lmin(0).

Corollary 2.37. Let 0 < α < 1. Then L0
greedy(α) < Lmin(0) (ln(1/α) + 1).

Corollary 2.38. Let ε be a real number, and 0 < ε < 1. Then for any α such that

ε ≤ α < 1 the inequalities Lmin(α) ≤ Lα−ε
greedy(α) < Lmin(α − ε) (ln(1/ε) + 1) hold.

2.2.7 Results of Experiments for α-Decision Rules

In this subsection, we will consider only binary decision tables T with binary decision

attributes.
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The First Group of Experiments

The first group of experiments is connected with study of quality of greedy algorithm
with equal thresholds (where γ = α or, which is the same, N = M), and comparison
of quality of greedy algorithm with equal thresholds and the first modification of

greedy algorithm (where for each N ∈ {M, . . . , |U(T, r)|} we apply greedy algorithm
with parameters M and N to decision table, row and weight function and after that

choose an α-decision rule with minimal weight among constructed α-decision rules).
We generate randomly 1000 decision tables T , rows r and weight functions w such

that T contains 40 rows and 10 conditional attributes f1, . . . , f10, r is the first row of
T , and 1 ≤ w(fi) ≤ 1000 for i = 1, . . . , 10.

For each α ∈ {0.1, . . . , 0.9}, we find the number of triples (T, r, w) for which greedy
algorithm with equal thresholds constructs an α-decision rule with minimal weight
(an optimal α-decision rule), i.e., Lα

greedy(α, T, r, w) = Lmin(α, T, r, w). This number

is contained in the row of Table 2.3 labeled with “Opt”.
We find the number of triples (T, r, w) for which the first modification of greedy

algorithm constructs an α-decision rule which weight is less than the weight of α-
decision rule constructed by greedy algorithm with equal thresholds, i.e., there exists

γ such that 0 ≤ γ < α and Lγ
greedy(α, T, r, w) < Lα

greedy(α, T, r, w). This number is
contained in the row of Table 2.3 labeled with “Impr”.

Also we find the number of triples (T, r, w) for which the first modification of

greedy algorithm constructs an optimal α-decision rule which weight is less than
the weight of α-decision rule constructed by greedy algorithm with equal thresholds,

i.e., there exists γ such that 0 ≤ γ < α and Lγ
greedy(α, T, r, w) = Lmin(α, T, r, w) <

Lα
greedy(α, T, r, w). This number is contained in the row of Table 2.3 labeled with

“Opt+”.

Table 2.3. Results of the first group of experiments with α-decision rules

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Opt 434 559 672 800 751 733 866 966 998 1000

Impr 0 31 51 36 22 27 30 17 1 0

Opt+ 0 16 35 28 17 26 25 13 1 0

The obtained results show that the percentage of triples (T, r, w), for which the
greedy algorithm with equal thresholds finds an optimal α-decision rule, grows almost

monotonically (with local minimum near to 0.4–0.5) from 43.4% up to 100%. The
percentage of problems, for which the first modification of greedy algorithm can
improve the result of the work of greedy algorithm with equal thresholds, is less than
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6%. However, sometimes (for example, if α = 0.3, α = 0.6 or α = 0.7) the considered

improvement is noticeable.

The Second Group of Experiments

The second group of experiments is connected with comparison of quality of greedy
algorithm with equal thresholds and the first modification of greedy algorithm.

We make 25 experiments (row “Nr” in Table 2.4 contains the number of experi-

ment). Each experiment includes the work with three randomly generated families
of triples (T, r, w) (1000 triples in each family) such that T contains n rows and m

conditional attributes, r is the first row of T , and w has values from the set {1, . . . , v}.

Table 2.4. Results of the second group of experiments with α-decision rules

Nr n m v α #1 #2 #3 avg

1 1–100 1–100 1–10 0–1 4 2 4 3.33

2 1–100 1–100 1–100 0–1 7 14 13 11.33

3 1–100 1–100 1–1000 0–1 19 13 15 15.67

4 1–100 1–100 1–1000 0–0.2 20 39 22 27.00

5 1–100 1–100 1–1000 0.2–0.4 28 29 28 28.33

6 1–100 1–100 1–1000 0.4–0.6 22 23 34 26.33

7 1–100 1–100 1–1000 0.6–0.8 7 6 4 5.67

8 1–100 1–100 1–1000 0.8–1 0 1 0 0.33

9 100 1–30 1–1000 0–0.2 35 38 28 33.67

10 100 30–60 1–1000 0–0.2 47 43 31 40.33

11 100 60–90 1–1000 0–0.2 45 51 36 44.00

12 100 90–120 1–1000 0–0.2 37 40 55 44.00

13 1–30 30 1–1000 0–0.2 11 8 9 9.33

14 30–60 30 1–1000 0–0.2 20 22 35 25.67

15 60–90 30 1–1000 0–0.2 30 33 34 32.33

16 90–120 30 1–1000 0–0.2 40 48 38 42.00

17 40 10 1–1000 0.1 31 39 34 34.67

18 40 10 1–1000 0.2 37 39 47 41.00

19 40 10 1–1000 0.3 35 30 37 34.00

20 40 10 1–1000 0.4 27 20 27 24.67

21 40 10 1–1000 0.5 32 32 36 33.33

22 40 10 1–1000 0.6 28 26 24 26.00

23 40 10 1–1000 0.7 10 12 10 10.67

24 40 10 1–1000 0.8 0 2 0 0.67

25 40 10 1–1000 0.9 0 0 0 0.0

If the column “n” contains one number, for example “40”, it means that n = 40.

If this row contains two numbers, for example “30–120”, it means that for each of
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1000 triples we choose the number n randomly from the set {30, . . . , 120}. The same

situation is for the column “m”.
If the column “α” contains one number, for example “0.1”, it means that α = 0.1.

If this column contains two numbers, for example “0.2–0.4”, it means that we choose

randomly the value of α such that 0.2 ≤ α ≤ 0.4.
For each of the considered triples (T, r, w) and number α, we apply greedy algo-

rithm with equal thresholds and the first modification of greedy algorithm. Column
“#i”, i = 1, 2, 3, contains the number of triples (T, r, w) from the family number i for

each of which the weight of α-decision rule, constructed by the first modification of
greedy algorithm, is less than the weight of α-decision rule constructed by the greedy
algorithm with equal thresholds. In other words, in column “#i” we have the num-

ber of triples (T, r, w) from the family number i such that there exists γ for which
0 ≤ γ < α and Lγ

greedy(α, T, r, w) < Lα
greedy(α, T, r, w). The column “avg” contains the

number (#1 + #2 + #3)/3.
In experiments 1–3 we consider the case, where the parameter v increases. In

experiments 4–8 the parameter α increases. In experiments 9–12 the parameter m

increases. In experiments 13–16 the parameter n increases. In experiments 17–25

the parameter α increases. The results of experiments show that the value of #i

can change from 0 to 55. It means that the percentage of triples, for which the
first modification of greedy algorithm is better than the greedy algorithm with equal

thresholds, can change from 0% to 5.5%.

The Third Group of Experiments

The third group of experiments is connected with investigation of quality of lower
bound Lmin(α) ≥ %L(α, α).

We choose natural n, m, v and real α, 0 ≤ α < 1. For each chosen tuple (n, m, v, α),
we generate randomly 30 triples (T, r, w) such that T contains n rows and m condi-

tional attributes, r is the first row of T , and w has values from the set {1, ..., v}. After
that, we find values of Lα

greedy(α, T, r, w) and %L(α, α, T, r, w) for each of generated 30

triples. Note that %L(α, α, T, r, w) ≤ Lmin(α, T, r, w) ≤ Lα
greedy(α, T, r, w). Finally, for

generated 30 triples we find mean values of Lα
greedy(α, T, r, w) and %L(α, α, T, r, w).

Results of experiments can be found in Figs. 2.3 and 2.4. In these figures mean

values of %L(α, α, T, r, w) are called “average lower bound” and mean values of
Lα

greedy(α, T, r, w) are called “average upper bound”.

In Fig. 2.3 (top) one can see the case, where n ∈ {1000, 2000, . . . , 5000}, m = 30,
v = 1000 and α = 0.01.
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Fig. 2.3. Results of the third group of experiments with rules (n and m are changing)

In Fig. 2.3 (bottom) one can see the case, where n = 1000, m ∈ {10, 20, . . . , 100},
v = 1000 and α = 0.01.

In Fig. 2.4 (top) one can see the case, where n=1000, m=30, v∈{100, 200, . . . ,1000}
and α = 0.01.

In Fig. 2.4 (bottom) one can see the case, where n = 1000, m = 30, v = 1000 and

α ∈ {0.0, 0.1, . . . , 0.9}.
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Fig. 2.4. Results of the third group of experiments with rules (v and α are changing)

Results of experiments show that the considered lower bound is nontrivial and can

be useful in investigations.
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2.3 Conclusions

The chapter is devoted (mainly) to theoretical and experimental analysis of greedy

algorithms with weights for partial cover and decision rule construction.
Theoretical and experimental results show that the lower bounds on minimal

weight of partial covers and decision rules, based on an information about greedy

algorithm work, are nontrivial and can be used in practice.
Based on greedy algorithm with two thresholds we create new polynomial approx-

imate algorithms for minimization of weights of partial covers and decision rules.
Results of massive experiments with randomly generated set cover problems and

binary decision tables show that these new algorithms can be useful in applications.



3

Construction of All Irreducible Partial Decision

Rules

In this chapter, we study problem of construction of all irreducible partial decision
rules. Efficient solution of this problem would allow (i) to find the best partial rules;

(ii) to evaluate the importance of attributes; (iii) to create ensembles of classifiers;
(iv) to evaluate changes after adding new objects into a decision table.

We consider binary decision tables with m conditional attributes, in which the

number of rows is equal to bmαc, where α is a positive real number, and partial
decision rules that can leave unseparated from a given row at most 5

⌈

(log2 m)β
⌉

different rows with different decisions, where β is a real number such that β ≥ 1.
We show that for almost all such tables for any row with minor decision (minor

decision is a decision which is attached to at most one-half of rows of decision table)
the length of each irreducible partial decision rule is not far from α log2 m and the

number of irreducible partial decision rules is not far from mα log2 m.
Based on these results, we prove that there is no algorithm which for almost all

decision tables for each row with minor decision constructs the set of irreducible par-

tial decision rules and has for these tables polynomial time complexity depending on
the length of input. However, there exists an algorithm which for almost all decision

tables for each row with minor decision constructs the set of irreducible partial de-
cision rules and has for these tables polynomial time complexity depending on the

length of input and the length of output.
This chapter is based on paper [37].
The chapter contains two sections. Section 3.1 contains description of the set

TABD(m, n) of decision tables which is used in Sect. 3.2. In Sect. 3.2, results for
irreducible t-decision rules are discussed. Section 3.3 contains short conclusions.
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3.1 Set TABD(m, n) of Decision Tables

A binary information system is a table with n rows (objects) and m columns labeled

with attributes (names of attributes) f1, . . . , fm. This table is filled by numbers from
the set {0, 1} (values of attributes). The number of binary information systems with
n rows and m columns is equal to 2mn.

If for i = 1, . . . , n we attach to i-th row of a binary information system a nat-
ural number di (a decision), we obtain a binary decision table. In this decision ta-

ble attributes f1, . . . , fm are called conditional attributes. The tuple (d1, . . . , dn) is
called a decision attribute. A decision attribute (d1, . . . , dn) is called degenerate if

d1 = . . . = dn. Let D be a finite set of non-degenerate decision attributes. Then the
cardinality of the set TABD(m, n) of binary decision tables with n rows, m columns

and decision attributes from D is equal to |D|2mn.
Let us consider two examples of sets D of non-degenerate decision attributes:

the set {1, 2}n \ {(1, . . . , 1), (2, . . . , 2)} of binary decision attributes, and the set of

decision attributes {1, . . . , n}n\{(1, . . . , 1), . . . , (n, . . . , n)} which allow us to simulate
an arbitrary non-degenerate decision attribute for a decision table with n rows. Later

we will assume that a finite set D = D(n) of non-degenerate decision attributes is
fixed for any n.

Let P be a property of decision tables and let PD(m, n) be the number of decision
tables from TABD(m, n) for which P holds. The number PD(m, n)/(|D|2mn) is called
the fraction of decision tables from TABD(m, n) for which the property P holds.

Let α be a positive real number. We consider also decision tables from the set
TABD(m, bmαc). We say that the property P holds for almost all decision tables

from TABD(m, bmαc) if the fraction PD(m, bmαc) / (|D|2mbmαc) of decision tables
from TABD(m, bmαc), for which the property P holds, tends to 1 as m tends to

infinity.

3.2 Irreducible t-Decision Rules

This section consists of four subsections. In Sect. 3.2.1, bounds on the length of
irreducible t-decision rules are obtained. In Sect. 3.2.2, bounds on the number of irre-

ducible t-decision rules are considered. In Sect. 3.2.3, algorithms for construction of
all irreducible t-decision rules are studied. In Sect. 3.2.4, results of some experiments

with irreducible t-decision rules are discussed.
Let T be a decision table from TABD(m, n) with n rows, m conditional attributes

f1, . . . , fm and decision attribute (d1, . . . , dn). Let r = (b1, . . . , bm) be the row of T
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with the number i. This row is labeled with the decision di. We will say that di is a

minor decision, and r is a row with minor decision if

|{j : j ∈ {1, . . . , n}, dj = di}| ≤
n

2
.

We denote by U(T, r) the set of rows from T which are different from r and are
labeled with decisions different from di. We will say that an attribute fj separates

rows r and r′ ∈ U(T, r) if rows r and r′ have different numbers at the intersection

with the column fj.
Let t be a natural number. A decision rule

(fj1 = bj1) ∧ . . . ∧ (fjp
= bjp

) ⇒ di

is called a t-decision rule for T and r if attributes fj1 , . . . , fjp
separate from r at

least |U(T, r)| − t rows from the set U(T, r). In this case we will say that attributes
fj1, . . . , fjp

generate a t-decision rule for T and r. Later we will consider only rules

(fj1 = bj1)∧ . . .∧ (fjp
= bjp

) ⇒ di for which j1 < . . . < jp. The number p is called the
length of the rule.

If we remove some conditions fjs
= bjs

, s ∈ {1, . . . , p}, from the considered rule
we obtain its subrule. A subrule of some rule is called proper if it is not equal to the

initial rule. A t-decision rule for T and r is called irreducible if each proper subrule
of this rule is not a t-decision rule for T and r.

3.2.1 Length of Irreducible t-Decision Rules

In this subsection, we consider lower and upper bounds on the length of irreducible
t-decision rules for decision tables from TABD(m, n) and rows with minor decisions,

where t = 5
⌈

(log2 m)β
⌉

and β is a real number such that β ≥ 1. Under some assump-
tions on m and n, we evaluate the fraction of decision tables for which the considered

bounds hold for any irreducible t-decision rule for any row with minor decision.

Theorem 3.1. Let m, n be natural numbers, t = 5
⌈

(log2 m)β
⌉

, where β is a real

number such that β ≥ 1, and κ = 2 dlog2 ne. Then the fraction of decision tables from

TABD(m, n), for which for any row any κ attributes generate a t-decision rule, is at

least 1 − 1/2dlog2 medlog2 ne.

Proof. Let us consider a decision table T obtained from a binary information sys-
tem by adding a decision attribute from D. Let i0 ∈ {1, . . . , n}, and let conditional

attributes fl1 , . . . , flκ do not form a t-decision rule for T and the row with number
i0. Then there exist pairwise different numbers j1, . . . , jt+1 ∈ {1, . . . , n} \ {i0} such
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that rows with numbers j1, . . . , jt+1 coincide with the row with number i0 at the

intersection with columns fl1 , . . . , flκ.
We now fix a number i0 ∈ {1, . . . , n}, t + 1 pairwise different numbers j1, . . . ,

jt+1 ∈ {1, . . . , n}\{i0} and κ conditional attributes fl1 , . . . , flκ. The number of binary

information systems such that rows with numbers j1, . . . , jt+1 coincide with the row
with number i0 at the intersection with columns fl1 , . . . , flκ is at most 2mn−κ(t+1).

There are at most mκ variants for the choice of κ columns. There are at most nt+2

variants for the choice of numbers i0, j1, . . . , jt+1. Therefore, the number of decision

tables T , in each of which there exists a row r and κ conditional attributes that do not
generate a t-decision rule for T and r, is at most |D| 2mn+κ log2 m+(t+2) log2 n−κ(t+1) ≤
|D| 2mn−dlog2 medlog2 ne. Then the fraction of decision tables, for which for any row any

κ conditional attributes generate a t-decision rule, is at least

|D| 2mn − |D| 2mn−dlog2 medlog2 ne

|D| 2mn
= 1 − 1

2dlog2 medlog2 ne
.

ut

Theorem 3.2. Let m, n ∈ IN, m ≥ 2 log2 n+c, where c ∈ IN, c ≥ 2, t = 5
⌈

(log2 m)β
⌉

,

where β ∈ IR, β ≥ 1, dn/2e > t,

% =
⌊

log2

(⌈

n

2

⌉

− t
)

− 3 − log2

⌈

(log2 m)β
⌉

− log2 dlog2 ne
⌋

and % > 0. Then the fraction of decision tables from TABD(m, n), for which for each

row with minor decision any % condition attributes do not generate a t-decision rule,

is at least 1 − 1/2min(c,dlog2 nedlog2 me)−1.

Proof. A binary information system will be called strongly separable if for any i, j ∈
{1, . . . , n} such that i 6= j rows with numbers i and j are different. The number
of binary information systems, for which rows with numbers i and j are equal, is
equal to 2mn−m. There are at most n2 variants for the choice of i and j. Therefore,

the number of binary information systems, which are not strongly separable, is at
most n22mn−m = 2mn+2 log2 n−m. Thus, the number of strongly separable information

systems is at least 2mn − 2mn+2 log2 n−m.
Let d̄ = (d1, . . . , dn) ∈ D, T be a decision table obtained from a strongly separable

information system I by adding the decision attribute d̄, i0 ∈ {1, . . . , n} and di0 be
a minor decision. Then there are p = dn/2e pairwise different numbers l1, . . . , lp ∈
{1, . . . , n} such that di0 6= dls for s = 1, . . . , p. Let fi1 , . . . , fi% generate a t-decision
rule for T and row with the number i0. Then among rows with numbers l1, . . . , lp at
least p − t rows are different from the row with number i0 at the intersection with

columns fi1 , . . . , fi%.
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We now fix t numbers lj1, . . . , ljt
from {l1, . . . , lp}. Let us evaluate the number

of information systems I such that for any s ∈ {l1, . . . , lp} \ {lj1, . . . , ljt
} rows with

numbers i0 and ls are different at the intersection with columns fi1 , . . . , fi% . It is not
difficult to see that the number of such information systems is equal to

2mn−%(p−t)(2% − 1)p−t = 2mn
(

2% − 1

2%

)p−t

= 2mn
(

2% − 1

2%

)2%(p−t)/2%

.

Using well known inequality ((u − 1)/u)u ≤ 1/e, which holds for any natural u,
we obtain

2mn
(

2% − 1

2%

)2%(p−t)/2%

≤ 2mn−(p−t)/2%

.

There are at most m% variants for the choice of % attributes. There are at most

nt variants for the choice of t numbers lj1, . . . , ljt
. Therefore, the number of strongly

separable information systems I, for which adding the decision attribute d̄ can lead
to obtaining a decision table that have a t-decision rule with % attributes for the

row with the number i0, is at most m%nt2mn−(p−t)/2%

= 2mn+% log2 m+t log2 n−(p−t)/2%

.
There are at most n variants for the choice of the number i0. Thus, the number of

information systems I, for which adding the decision attribute d̄ can lead to obtaining
a decision table that have a t-decision rule with % attributes for some row with minor

decision, is at most 2mn+% log2 m+(t+1) log2 n−(p−t)/2%

+2mn+2 log2 n−m, where 2mn+2 log2 n−m

is an upper bound on the number of information systems which are not strongly
separable.

It is clear that and % log2 m+(t+1) log2 n ≤ 7 dlog2 ne
⌈

(log2 m)β
⌉

and (p−t)/2% ≥
(p − t)8 dlog2 ne

⌈

(log2 m)β
⌉

/(p − t) = 8 dlog2 ne
⌈

(log2 m)β
⌉

. We now obtain

2mn+% log2 m+(t+1) log2 n−(p−t)/2% ≤ 2mn−dlog2 ned(log2 m)βe ≤ 2mn−dlog2 nedlog2 me. Since m ≥
2 log2 n + c, we have 2mn+2 log2 n−m ≤ 2mn−c. From here it follows that
2mn+% log2 m+(t+1) log2 n−(p−t)/2%

+ 2mn+2 log2 n−m ≤ 2mn−min(c,dlog2 nedlog2 me)+1.

Thus, the fraction of decision tables, for which any % conditional attributes do not

generate a t-decision rule for any row with minor decision, is at least

|D|2mn − |D|2mn−min(c,dlog2 nedlog2 me)+1

|D|2mn
= 1 − 1

2min(c,dlog2 nedlog2 me)−1
.

ut

Corollary 3.3. Let m, n ∈ IN, m ≥ 2 log2 n + c, where c ∈ IN, c ≥ 2, t =

5
⌈

(log2 m)β
⌉

, where β ∈ IR and β ≥ 1, dn/2e > t, κ = 2 dlog2 ne,

% =
⌊

log2

(⌈

n

2

⌉

− t
)

− 3 − log2

⌈

(log2 m)β
⌉

− log2 dlog2 ne
⌋
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and % > 0. Then the fraction of decision tables from TABD(m, n), for which for

each row with minor decision any κ conditional attributes generate a t-decision

rule, and any % condition attributes do not generate a t-decision rule, is at least

1 − 1/2dlog2 medlog2 ne − 1/2min(c,dlog2 nedlog2 me)−1.

Corollary 3.4. Let m, n ∈ IN, m ≥ 2 log2 n + c, where c ∈ IN, c ≥ 2, t =

5
⌈

(log2 m)β
⌉

, where β ∈ IR and β ≥ 1, dn/2e > t, κ = 2 dlog2 ne,

% =
⌊

log2

(⌈

n

2

⌉

− t
)

− 3 − log2

⌈

(log2 m)β
⌉

− log2 dlog2 ne
⌋

and % > 0. Then the fraction of decision tables from TABD(m, n), for which for each

row with minor decision the length of any irreducible t-decision rule is at most κ and

at least % + 1, is at least 1 − 1/2dlog2 medlog2 ne − 1/2min(c,dlog2 nedlog2 me)−1.

3.2.2 Number of Irreducible t-Decision Rules

Let T be a decision table and r be a row of T with minor decision. We denote by

R(T, r, t) the number of irreducible t-decision rules for T and r. In this subsection, we
consider decision tables from the set TABD(m, bmαc), where α ∈ IR and α > 0. We

study irreducible t-decision rules, where t = 5
⌈

(log2 m)β
⌉

and β is a real number such
that β ≥ 1. We present lower and upper bounds on the value R(T, r, t) for almost all
decision tables T ∈ TABD(m, bmαc) and for each row r of T with minor decision.

Theorem 3.5. Let m ∈ IN, α ∈ IR, α > 0, t = 5
⌈

(log2 m)β
⌉

, where β is a real

number such that β ≥ 1, and κ = 2 dlog2 bmαce. Then for almost all decision tables T

from TABD(m, bmαc) for any row r with minor decision any κ conditional attributes

generate a t-decision rule, and m(α/4) log2 m ≤ R(T, r, t) ≤ m3α log2 m.

Proof. Let n = bmαc. We now prove that for large enough m the fraction of decision
tables T from TABD(m, bmαc), for which for any row r with minor decision any

κ conditional attributes generate a t-decision rule, and m(α/4) log2 m ≤ R(T, r, t) ≤
m3α log2 m, is at least 1 − 1/2dlog2 medlog2 ne−2.

Let % =
⌊

log2 (dn/2e − t) − 3 − log2

⌈

(log2 m)β
⌉

− log2 dlog2 ne
⌋

. From Corollary

3.3 it follows that for large enough m the fraction of decision tables, for which for
any row with minor decision any κ conditional attributes generate a t-decision rule,

and any % conditional attributes do not generate a t-decision rule, is at least

1 − 1

2dlog2 medlog2 ne
− 1

2dlog2 nedlog2 me−1
≥ 1 − 1

2dlog2 medlog2 ne−2
.

Let us consider an arbitrary decision table T and an arbitrary row r of T with

minor decision for which any κ conditional attributes generate a t-decision rule, and
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any % conditional attributes do not generate a t-decision rule. We now show that

m(α/4) log2 m ≤ R(T, r, t) ≤ m3α log2 m for large enough m.
It is clear that each t-decision rule has an irreducible t-decision rule as a subrule.

Let Q be an irreducible t-decision rule. We now evaluate the number of t-decision

rules of the length κ which have Q as a subrule. Let the length of Q is equal to p. One
can show that % + 1 ≤ p ≤ κ. There are Cκ−p

m−p ways to obtain a t-decision rule of the

length κ from Q by adding conditional attributes from {f1, . . . , fm}. It it clear that
Cκ−p

m−p ≤ Cκ−p
m . If κ < m/2, then Cκ−p

m ≤ Cκ−%
m . Thus, for large enough m the number

of t-decision rules of the length κ, which have Q as a subrule, is at most Cκ−%
m .

The number of t-decision rules of the length κ is equal to Cκ
m. Hence,

R(T, r, t) ≥ Cκ
m

Cκ−%
m

=
(m − κ + 1) . . . (m − κ + %)

(κ − % + 1) . . . κ
≥
(

m − κ

κ

)%

.

For large enough m,

m − κ

κ
=

m − 2 dlog2 bmαce
2 dlog2 bmαce ≥ m1/2 .

Therefore, R(T, r, t) ≥ m%/2. It is clear that for large enough m the inequality % ≥
(1/2)α log2 m holds. Thus, for large enough m, R(T, r, t) ≥ m(α/4) log2 m.

It is clear that the length of each irreducible t-decision rule is at most κ.

Therefore, R(T, r, t) ≤ mκ. One can show that for large enough m the inequality
mκ ≤ m3α log2 m holds. Thus, R(T, r, t) ≤ m3α log2 m for large enough m. It is clear that

1 − 1/2dlog2 medlog2bm
αce−2 tends to 1 as m tends to infinity. Therefore, the statement

of the theorem holds. ut

3.2.3 Algorithms for Construction of All Irreducible t-Decision Rules

We study irreducible t-decision rules for decision tables from TABD(m, bmαc), where
α is a positive real number, t = 5

⌈

(log2 m)β
⌉

, β is a real number, and β ≥ 1. For
a given decision table T and row r of T with minor decision, it is required to find

all irreducible t-decision rules for T and r. For large enough m, the length of input
for this problem is at least m bmαc and at most m bmαc + (bmαc + 1) dlog2 bmαce ≤
m1+α + m2α ≤ m2(1+α). The length of output for this problem is at least R(T, r, t)

and at most mR(T, r, t).

Let κ = 2 dlog2 bmαce. From Theorem 3.5 it follows that for almost all decision
tables T from TABD(m, bmαc) for any row r with minor decision any κ conditional

attributes generate a t-decision rule and m(α/4) log2 m ≤ R(T, r, t) ≤ m3α log2 m .
Thus, there is no algorithm which for almost all decision tables from TABD(m, bmαc)

for each row with minor decision constructs the set of irreducible t-decision rules and

has for these tables polynomial time complexity depending on the length of input.
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Let us consider an algorithm which finds all nonempty subsets of the set {f1, . . . ,fm}
with at most κ attributes, and for each such subset recognizes if attributes from this
subset generate an irreducible t-decision rule or not. It is clear that this recognition
problem can be solved (for one subset) in polynomial time depending on the length

of input.
From Theorem 3.5 it follows that for almost all decision tables from TABD(m, bmαc)

for any row with minor decision this algorithm finds all irreducible t-decision rules.
The considered algorithm works with at most mκ subsets of {f1, . . . , fm}. One can

show that mκ ≤ m3α log2 m for large enough m. Using Theorem 3.5 we conclude that
for almost all decision tables T from TABD(m, bmαc) for any row r of T with minor
decision mκ ≤ R(T, r, t)12.

Thus, there exists an algorithm which for almost all decision tables from TABD(m,

bmαc) constructs for any row with minor decision the set of irreducible t-decision rules

and has for these tables polynomial time complexity depending on the length of input
and the length of output.

3.2.4 Results of Experiments

We generate randomly 1000 binary decision tables T with 40 rows, 10 conditional

attributes and binary decision attribute. As row r we choose the first row of T . For
each table T , we find the minimal length of irreducible 5-decision rule for T and

r, the maximal length of irreducible 5-decision rule for T and r and the number of
irreducible 5-decision rules for T and r. Results of experiments are represented in
Figs. 3.1–3.3.

These results illustrate the situation, where irreducible t-decision rules have rela-
tively small length, and the number of irreducible t-decision rules is relatively small.

The consideration of another values of t can lead to different results.
In Fig. 3.1 for each i ∈ {1, 2} one can see the number of tables for which the

minimal length of irreducible 5-decision rule is equal to i. For each i ∈ {0, 3, 4, . . . , 10},
the considered number is equal to 0.

In Fig. 3.2 for each i ∈ {1, 2, 3, 4} one can see the number of tables for
which the maximal length of irreducible 5-decision rule is equal to i. For each
i ∈ {0, 5, 6, . . . , 10}, the considered number is equal to 0.

One can show that the number of irreducible 5-decision rules for the considered
tables and rows is at most 252. In Fig. 3.3 for each i ∈ {0, 1, . . . , 90} one can see the

number of tables for which the number of irreducible 5-decision rules is equal to i.
For each i ∈ {91, 92, . . . , 252}, the considered number is equal to 0.
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3.3 Conclusions

In the chapter, we show that, under some assumptions, there is no algorithm which for
almost all decision tables for each row with minor decision constructs all irreducible

t-decision rules and has for these tables polynomial time complexity depending on
the length of input, but there exists an algorithm which for almost all decision tables

for each row with minor decision constructs all irreducible t-decision rules and has
for these tables polynomial time complexity depending on the total length of input

and output.
The obtained results is a step towards the design of algorithms for construction of

the set of all irreducible partial decision rules.



4

Experiments with Real-Life Decision Tables

This chapter is devoted to consideration of results of experiments with decision tables
from UCI Repository of Machine Learning Databases [41]. The aim of the first group

of experiments is to verify 0.5-hypothesis for real-life decision tables. We made ex-
periments with 23 decision tables. Results of 20 experiments confirm 0.5-hypothesis
for decision rules: under the construction of partial decision rule, during each step

the greedy algorithm chooses an attribute which separates from r at least one-half of
unseparated rows that are different from r and have other decisions.

The aim of the second group of experiments is the comparison of accuracy of
classifiers based on exact and partial decision rules. The considered approach to

construction of classifiers is the following: for a given decision table and each row
we construct a (partial) decision rule using greedy algorithm. By removing some

attributes from this (partial) decision rule we obtain an irreducible (partial) decision
rule. The obtained system of rules jointly with simple procedure of voting can be
considered as a classifier.

We made experiments with 21 decision tables using test-and-train method. In
11 cases, we found partial decision rules for which the accuracy of the constructed

classifiers is better than the accuracy of classifiers based on exact decision rules.
We made also experiments with 17 decision tables using cross-validation method. In

9 cases, we found partial decision rules for which the accuracy of the constructed
classifiers is better than the accuracy of classifiers based on exact decision rules.

The results of experiments obtained for classifiers based on partial decision rules

are comparable with the results of experiments for some classifiers from RSES [54].
This chapter is based on papers [81, 82].

The chapter consists of three sections. In Sect. 4.1, 0.5-hypothesis is considered for
decision rules. In Sect. 4.2, classifiers are considered based on partial decision rules.

Section 4.3 contains short conclusions.
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4.1 0.5-Hypothesis for Decision Rules

Results of experiments with randomly generated decision tables and some theoretical

results (see Chap. 1) confirm the following 0.5-hypothesis for decision rules: for the
most part of decision tables for each row r, under the construction of partial decision
rule, during each step the greedy algorithm chooses an attribute which separates

from r at least one-half of unseparated rows that are different from r and have other
decisions. It is not difficult to show that in such cases Lgreedy(α) ≤ dlog2(1/α)e for

α > 0, and lDR(α) ≤ 2 for any α. In particular, Lgreedy(0.1) ≤ 4, Lgreedy(0.01) ≤ 7,
and Lgreedy(0.001) ≤ 10. So using greedy algorithm it is possible to construct short

partial decision rules with relatively high accuracy.
To verify this hypothesis for real-life decision tables we made additional ex-

periments with the following 23 decision tables from [41]: “balance-scale", “bal-
loons (adult+stretch)", “car", “flags", “hayes-roth.test", “krkopt", “kr-vs-kp", “monks-
1.test", “monks-1.train", “monks-2.test", “monks-2.train", “monks-3.test", “monks-

3.train", “lenses", “letter-recognition", “lymphography", “poker-hand-training.true",
“nursery", “soybean-small", “spect_all", “shuttle-landing-control", “tic-tac-toe", and

“zoo".
We apply to each of the considered tables and to each row of these tables the

greedy algorithm with α = 0. The main result of these experiments is the following:
with the exception of the tables “kr-vs-kp", “spect_all" and “nursery" for each row r,
under the construction of partial decision rule, during each step the greedy algorithm

chooses an attribute which separates from r at least one-half of unseparated rows that
are different from r and have other decisions. It means that not only for randomly

generated, but also for real-life decision tables it is possible to construct short partial
decision rules with relatively high accuracy using greedy algorithm.

Table 4.1 presents the average percentage of rows from U(T, r), unseparated from
the row r during the first i − 1 steps, which are separated from the row r at i-th

step of the greedy algorithm, i = 1, . . . , 11, under partial decision rule construction
with parameter α = 0. The column “Decision table” contains the name of decision
table, the column “n” contains the number of rows in the table, and the column “m”

contains the number of conditional attributes.
From the results presented in Table 4.1 it follows that the average percentage

of rows separated at i-th step of greedy algorithm during partial decision rule con-
struction is at least 50%. However, for “nursery", “spect_all" and “kr-vs-kp" we can

find rows for which during some steps the greedy algorithm chooses attributes that
separate less than 50% of unseparated rows.
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Table 4.1. Average percentage of rows separated at i-th step of the greedy algorithm during partial decision

rule construction

Number of step i

Decision table n m 1 2 3 4 5 6 7 8 9 10 11

soybean-small 47 35 100

balloons 20 4 86.7 100

monks-3.test 432 6 90.6 100

shuttle-landing 15 6 99.5 100

hayes-roth.test 28 4 88.2 97.5 100

monks-1.test 432 6 83.3 77.8 100

balance-scale 625 4 89.5 91.5 96.1 100

flags 194 26 96.7 97.9 95.9 100

lenses 24 4 84.5 61.5 91.7 100

lymphography 148 18 91.7 95.5 98.4 100

monks-1.train 124 6 84.6 81.6 94.9 100

monks-3.train 122 6 89.0 95.6 93.7 100

zoo 101 16 96.7 95.6 90.7 100

poker-hand 25010 10 92.6 93.9 95.8 99.8 100

tic-tac-toe 958 9 79.1 79.1 87.7 94.1 100

car 1728 6 90.6 81.6 80.2 85.0 85.7 100

krkopt 28056 6 89.8 88.7 88.6 89.7 92.2 100

letter-recognition 20000 16 97.3 96.5 97.8 99.2 99.6 100

monks-2.test 432 6 75.2 70.2 75.1 77.1 67.4 100

monks-2.train 169 6 76.0 76.8 86.0 87.1 92.6 100

nursery 12960 8 89.1 84.0 88.2 88.5 93.0 89.6 91.6 100

spect_all 267 22 86.9 81.0 75.8 68.6 53.1 52.1 50.0 51.8 88.0 100

kr-vs-kp 3196 36 91.0 86.0 89.1 91.8 87.0 85.7 86.7 83.7 76.7 75.0 100

Table 4.2 presents minimum, average and maximum length of α-decision rules
constructed by the greedy algorithm for α ∈ {0.0, 0.001, 0.01, 0.1}.

Table 4.2 gives us some information about maximum, minimum and average length
of partial decision rules constructed by the greedy algorithm. For example, for the

table “kr-vs-kp", which contains 36 conditional attributes, the maximum length of
exact decision rule is equal to 11. Results presented in Table 4.2 show that the
greedy algorithm constructs relatively short partial decision rules with relatively high

accuracy.
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Table 4.2. Minimum, average and maximum length of partial decision rules constructed by the greedy

algorithm

α

Decision table 0.0 0.001 0.01 0.1

min avg max min avg max min avg max min avg max

balance-scale 3.0 3.2 4.0 3.0 3.2 4.0 2.0 2.3 3.0 1.0 1.5 2.0

balloons(adult+stretch) 1.0 1.4 2.0 1.0 1.4 2.0 1.0 1.4 2.0 1.0 1.4 2.0

car 1.0 2.5 6.0 1.0 2.4 6.0 1.0 2.0 4.0 1.0 1.4 2.0

flags 1.0 2.0 4.0 1.0 2.0 4.0 1.0 1.7 3.0 1.0 1.1 2.0

hayes-roth.test 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 1.7 2.0

krkopt 3.0 5.2 6.0 2.0 3.8 4.0 2.0 2.7 3.0 1.0 1.6 2.0

kr-vs-kp 1.0 3.0 11.0 1.0 2.8 10.0 1.0 2.3 6.0 1.0 1.5 3.0

lenses 1.0 2.1 4.0 1.0 2.1 4.0 1.0 2.1 4.0 1.0 1.9 3.0

letter-recognition 1.0 3.0 6.0 1.0 2.3 4.0 1.0 1.7 3.0 1.0 1.0 2.0

lymphography 1.0 2.1 4.0 1.0 2.1 4.0 1.0 2.1 4.0 1.0 1.5 2.0

monks-1.test 1.0 2.3 3.0 1.0 2.3 3.0 1.0 2.3 3.0 1.0 1.8 2.0

monks-1.train 1.0 2.3 4.0 1.0 2.3 3.0 1.0 2.3 4.0 1.0 1.8 3.0

monks-2.test 3.0 4.9 6.0 3.0 4.9 6.0 3.0 4.1 5.0 2.0 2.0 2.0

monks-2.train 3.0 3.7 6.0 3.0 3.7 6.0 3.0 3.4 6.0 2.0 2.0 3.0

monks-3.test 1.0 1.8 2.0 1.0 1.8 2.0 1.0 1.8 2.0 1.0 1.5 2.0

monks-3.train 2.0 2.3 4.0 2.0 2.3 4.0 2.0 2.3 4.0 1.0 1.5 2.0

nursery 1.0 3.3 8.0 1.0 2.9 6.0 1.0 2.4 4.0 1.0 1.7 2.0

poker-hand-training-true 3.0 3.9 5.0 3.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0

shuttle-landing-control 1.0 1.1 2.0 1.0 1.1 2.0 1.0 1.1 2.0 1.0 1.0 1.0

soybean-small 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

spect_all 1.0 3.2 10.0 1.0 3.2 10.0 1.0 2.9 10.0 1.0 1.6 7.0

tic-tac-toe 3.0 3.8 5.0 3.0 3.8 5.0 3.0 3.1 4.0 2.0 2.0 3.0

zoo 1.0 1.5 4.0 1.0 1.5 4.0 1.0 1.5 4.0 1.0 1.1 2.0
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Fig. 4.1. Lower and upper bounds on minimal length of α-decision rules for “kr-vs-kp" and “lenses"

Figure 4.1 presents lower (lDR(α), Theorem 1.46) and upper (Lgreedy(α), Theorem
1.45) bounds on minimal length of α-decision rules for decision tables “kr-vs-kp" and

“lenses". In the case of “kr-vs-kp", we consider maximum values of lower and upper
bounds among all rows. In the case of “lenses", we consider average values of lower

and upper bounds for all rows.

4.2 Classifiers Based on Partial Decision Rules

In this section, we compare accuracies of classifiers based on exact and partial decision
rules, and some classifiers from RSES [54].
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We consider the following problem of classification (prediction): for a given decision

table T and a new object v given by values of conditional attributes from T for v it
is required to generate a decision corresponding to v.

We now describe classifiers based on partial decision rules.

For every row r of the decision table T and given α, 0 ≤ α < 1, we construct an
α-decision rule for T and r by Algorithm 2. After that, by removing some conditions

from this α-decision rule we obtain an irreducible α-decision rule for T and r. From
the constructed set of irreducible α-decision rules we remove repeating rules. We
denote the obtained set by Rul(T, α). For each rule from Rul(T, α), we compute the

support of this rule which is the number of rows from T such that (i) the left-hand
side of the rule is true for the considered row; (ii) the decision attached to the row is

equal to the decision from the right-hand side of the rule.
The set Rul(T, α) can be considered as a classifier which for a given new object

v creates a decision for this object using only values of conditional attributes for v.
For each possible decision d, we compute the sum Md(v) of supports of rules from
Rul(T, α) such that (i) the left-hand side of the considered rule is true for v, and (ii)

the right-hand side of the rule is equal to d. If Md(v) > 0 for at least one decision
d, then we choose a decision d for which Md(v) has maximal value. Otherwise, we

choose some fixed decision d0.

To evaluate the accuracy of classifiers, we can use either train-and-test method
or k-fold-cross-validation method. In the first case, we split the initial decision table

into training and testing tables, construct a classifier using training table, and apply
this classifier to rows from the testing table as to new objects. The accuracy of

classification is the number of rows (objects) from the testing table, which are properly
classified, divided by the number of rows in the testing table. In the second case, we

split the initial decision table into k tables, and k times apply train-and-test method
using each of k tables as the testing table. As a result, we obtain k accuracies of

classification. The mean of these accuracies is considered as the “final” accuracy of
classification.

We study decision tables from [41]. We remove from the table “flags" attributes

“area", “population" and “name of the country", and consider “landmass" as the
decision attribute. From the table “zoo" we remove the attribute “animal name".

We make experiments with 21 decision tables using train-and-test method. We
randomly split decision tables in proportion 70% for training table and 30% for

testing table. For “hayes-roth", “monks1", “monks2", “monks3" and “spect", we use
existing training and testing tables.
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For each table (with the exception of “kr-vs-kp" and “letter-recognition") we

choose minimal α ∈ {0.000, 0.001, 0.002, . . . , 0.300} for which the accuracy of con-
structed classifier is maximal. This value of α is denoted by αopt. For “kr-vs-kp"
and “letter-recognition", we choose minimal α ∈ {0.00, 0.01, 0.02, . . . , 0.50} for

which the accuracy of constructed classifier is maximal. This value of α is denoted
by αopt. The results of experiments can be found in Table 4.3 (“balloons (a+s)”

means “balloons (adult+stretch)”, and “balloons (y-s+a-s)” means “balloons (yellow-
small+adult-stretch)”). The use of partial decision rules (α-decision rules with α > 0)

leads to improvement of accuracy of classification for 11 decision tables.

Table 4.3. Accuracy of classifiers based on partial decision rules (train-and-test)

Decision table Accuracy for Accuracy for αopt

α = 0 α = αopt

balance 0.658 0.866 0.133

balloons (a+s) 1.000 1.000 0.000

balloons (y-s+a-s) 0.600 0.800 0.286

car 0.890 0.909 0.005

flags 0.627 0.678 0.019

hayes-roth 0.893 0.893 0.000

krkopt 0.386 0.433 0.001

kr-vs-kp 0.734 0.956 0.01

lenses 0.500 0.500 0.000

letter-recognition 0.221 0.221 0.00

lymphography 0.733 0.822 0.217

monks1 0.949 0.949 0.000

monks2 0.762 0.762 0.000

monks3 0.931 0.963 0.050

nursery 0.974 0.974 0.000

shuttle-landing 0.600 0.800 0.200

soybean-small 1.000 1.000 0.000

spect 0.818 0.840 0.075

spect_all 0.877 0.889 0.025

tic-tac-toe 0.931 0.931 0.000

zoo 0.968 0.968 0.000

We make also experiments with 17 decision tables using 10-fold-cross-validation
method. For each table we choose minimal α ∈ {0.000, 0.001, 0.002, . . . , 0.300} for

which the accuracy of constructed classifier is maximal. This value of α is denoted
by αopt. Results of experiments can be found in Table 4.4. The use of partial decision

rules (α-decision rules with α > 0) leads to improvement of accuracy of classification
for 9 decision tables.
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Table 4.4. Accuracy of classifiers based on partial decision rules (cross-validation)

Decision table Accuracy for Accuracy for αopt

α = 0 α = αopt

balance 0.723 0.891 0.150

balloons (a+s) 1.000 1.000 0.000

balloons (y-s+a-s) 0.750 0.750 0.000

car 0.873 0.905 0.004

flags 0.608 0.613 0.007

hayes-roth 0.790 0.797 0.014

lenses 0.583 0.617 0.278

lymphography 0.778 0.805 0.040

monks1 1.000 1.000 0.000

monks2 0.565 0.671 0.290

monks3 1.000 1.000 0.000

shuttle-landing 0.450 0.450 0.000

soybean-small 0.980 0.980 0.000

spect 0.915 0.920 0.134

spect_all 0.851 0.862 0.029

tic-tac-toe 0.959 0.959 0.000

zoo 0.951 0.951 0.000

We compare accuracies of classifiers based on partial decision rules (really, a modifi-
cation of these classifiers) and accuracies of some classifiers constructed by algorithms

from RSES.
We make experiments with 21 tables from [41], presented in Table 4.3, using train-

and-test method. Let T be one of these tables. As it was described earlier, we split

this table into two subtables: training table Ttrain and testing table Ttest. For the table
Ttrain, we construct seven sets of decision rules: Rul(0) = Rul(Ttrain, 0), Rul(αopt) =

Rul(Ttrain, αopt), where αopt is taken from Table 4.3, Lem2(1), Lem2(0.9), constructed
by the “lem2 algorithm” from RSES for Ttrain with “cover parameter” equals to 1

and 0.9 respectively, Cov(1), Cov(0.9), constructed by the “covering algorithm” from
RSES for Ttrain with “cover parameter” equals to 1 and 0.9 respectively, and Gen,
constructed by the “genetic algorithm” from RSES for Ttrain with “number of reducts”

equals to 10 and “normal speed”.
The system RSES works with these sets of rules as with classifiers using “standard

voting” which assigns to each rule the weight that is equal to the support of this rule:
the number of rows from Ttrain such that (i) the left-hand side of the rule is true for

the considered row; (ii) the decision attached to the row is equal to the decision from
the right-hand side of the rule. RSES applies these classifiers to rows of the table Ttest

as to new objects.
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Table 4.5. Comparison of accuracy of classifiers

Decision table Rul(0) Rul(αopt) Lem2(1) Lem2(0.9) Cov(1) Cov(0.9) Gen

balance 0.626 0.856 0.428 0.369 0.000 0.428 0.749

balloons (a+s) 1.000 1.000 0.833 0.833 0.500 0.500 1.000

balloons (y-s+a-s) 1.000 1.000 0.400 0.400 0.400 0.400 0.800

car 0.892 0.911 0.839 0.728 0.538 0.538 0.911

flags 0.475 0.526 0.305 0.305 0.102 0.102 0.627

hayes-roth 0.822 0.822 0.500 0.321 0.036 0.036 0.786

krkopt 0.379 0.404 0.128 0.121 0.000 0.314 0.444

kr-vs-kp 0.988 0.988 0.881 0.781 0.209 0.209 0.964

lenses 0.625 0.625 0.375 0.375 0.375 0.375 1.000

letter-recognition 0.702 0.719 0.589 0.571 0.035 0.317

lymphography 0.800 0.889 0.512 0.489 0.111 0.111 0.867

monks1 0.949 0.949 0.743 0.632 0.250 0.250 0.866

monks2 0.715 0.715 0.620 0.563 0.000 0.291 0.736

monks3 0.921 0.954 0.694 0.660 0.000 0.768 0.944

nursery 0.961 0.961 0.908 0.836 0.344 0.344

shuttle-landing 0.400 0.400 0.600 0.600 0.400 0.400 0.600

soybean-small 1.000 1.000 1.000 1.000 1.000 1.000 1.000

spect 0.743 0.781 0.252 0.235 0.246 0.246 0.759

spect_all 0.716 0.741 0.370 0.296 0.210 0.210 0.765

tic-tac-toe 0.885 0.885 0.917 0.806 0.000 0.264 0.962

zoo 0.968 0.968 0.935 0.935 0.613 0.613 1.000

Accuracies of the considered seven classifiers are represented in Table 4.5. The re-
sults obtained for classifiers based on partial rules (columns “Rul(0)” and “Rul(αopt)”)
are comparable with the results obtained for classifiers from RSES (columns “Lem2(1)”,

“Lem2(0.9)”, “Cov(1)”, “Cov(0.9)”, and “Gen”).

4.3 Conclusions

In the chapter, the greedy algorithm for construction of partial decision rules is
considered. Results of experiments show that for real-life decision tables the use

of this algorithm allows us to obtain short partial decision rules with relatively high
accuracy. These results confirm 0.5-hypothesis for decision rules.

Results of experiments with real-life decision tables show that classifiers based on
partial decision rules are often better than the classifier based on exact decision rules.



5

Universal Attribute Reduction Problem

The attribute reduction problem (it is required to find a reduct with minimal or close
to minimal cardinality) is one of the main problems of rough set theory [45, 47, 48,

49, 56, 70] and related theories such as test theory [6, 10, 65, 73, 76, 77] and LAD
[1, 9]. There are different variants of the notion of reduct: reducts for information
systems [45], usual decision and local reducts for decision tables [45, 55], decision

and local reducts which are based on the generalized decision [55], etc. Interesting
discussion of various kinds of reducts can be found in [47].

In this chapter, we consider an “universal” definition of reduct which covers at
least part of possible variants. We use an approach considered in test theory [73].

Let T be a decision table and P be a subset of pairs of different (discernible) rows
(objects) of T . Then a reduct for T relative to P is a minimal (relative to inclusion)

subset of conditional attributes which separate all pairs from P. All mentioned above
kinds of reducts can be represented in such a form. We consider here not only exact,
but also partial (approximate) reducts.

We begin our consideration from a data table which columns are labeled with
discrete and continuous variables, and rows are tuples of values of variables on some

objects. It is possible that this data table contains missing values [13, 21]. We consider
the following classification problem: for a discrete variable we must find its value

using values of all other variables. We do not use variables directly, but create some
attributes with relatively small number of values based on the considered variables.
As a result, we obtain a decision table with missing values in the general case. We

define the universal attribute reduction problem for this table and consider a number
of examples of known attribute reduction problems which can be represented as the

universal one.
Based on results from Chap. 1, we obtain bounds on precision of greedy algorithm

for partial test (super-reduct) construction. This algorithm is a simple generalization
of greedy algorithm for set cover problem [16, 24, 44, 57, 58]. We prove that, under
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some natural assumptions on the class NP , the greedy algorithm is close to the

best (from the point of view of precision) polynomial approximate algorithms for
minimization of cardinality of partial tests. We show that based on an information
received during greedy algorithm work it is possible to obtain a nontrivial lower

bound on minimal cardinality of partial reduct. We obtain also a bound on precision
of greedy algorithm which does not depend on the cardinality of the set P.

This chapter is based on papers [36, 39].
The chapter consists of four sections. In Sect. 5.1, a transformation of a data table

into a decision table is considered. In Sect. 5.2, the notion of the universal attribute
reduction problem is discussed. In Sect. 5.3, greedy algorithm for construction of
partial tests (partial super-reducts) is studied. Section 5.4 contains short conclusions.

5.1 From Data Table to Decision Table

A data table D is a table with k columns labeled with variables x1, . . . , xk and N

rows which are interpreted as tuples of values of variables x1, . . . , xk on N objects

u1, . . . , uN . It is possible that D contains missing values which are denoted by “− ”.
As usual, we assume that each of variables xi is either discrete (with values from

some finite unordered set V (xi)) or continuous (with values from a set V (xi) ⊂ IR).
We will assume that “ − ” does not belong to V (xi).

Let us choose a variable xr ∈ {x1, . . . , xk} and consider the problem of prediction

of the value of xr on a given object using only values of variables from the set
X = {x1, . . . , xk} \ {xr} on the considered object. If xr is a discrete variable, then

the problem of prediction is called the classification problem. If xr is a continuous
variable, then the considered problem is called the problem of regression. We consider

only the classification problem. So xr is a discrete variable.
We consider only two kinds of missing values: (i) missing value of xi as an ad-

ditional value of variable xi which does not belong to V (xi), and (ii) missing value

as an undefined value. In the last case, based on the value of xi it is impossible to
discern an object ul from another object ut if the value xi(ul) is missing (undefined).

We now transform the data table D into a data table D∗. For each variable xi ∈
{x1, . . . , xk}, according to the nature of xi we choose either the first or the second

way for the work with missing values. In the first case, we add to V (xi) a new value
which is not equal to “− ”, and write this new value instead of each missing value of

xi. In the second case, we leave all missing values of xi untouched.
To solve the considered classification problem, we do not use variables from X

directly. Instead of this, we use attributes constructed on the basis of these variables.

Let us consider some examples.



5.2 Problem of Attribute Reduction 98

Let xi ∈ X be a discrete variable. Let us divide the set V (xi) into relatively small

number of nonempty disjoint subsets V1, . . . , Vs. Then the value of the considered
attribute on an object u is equal to the value j ∈ {1, . . . , s} for which xi(u) ∈ Vj. The
value of this attribute on u is missing if and only if the value of xi on u is missing.

Let xi ∈ X be a continuous variable and c ∈ IR. Then the value of the considered
attribute on an object u is equal to 0 if xi(u) < c, and is equal to 1 otherwise. The

value of this attribute on u is missing if and only if the value of xi on u is missing.
Let xi1 , . . . , xit ∈ X be continuous variables and f be a function from IRt to

IR. Then the value of the considered attribute on an object u is equal to 0 if
f(xi1(u), . . . , xit(u)) < 0, and is equal to 1 otherwise. The value of this attribute
on u is missing if and only if the value of at least one variable from {xi1 , . . . , xit} on

u is missing.
We now assume that the attributes f1, . . . , fm are chosen. Let, for simplicity,

u1, . . . , un be all objects from {u1, . . . , uN} such that the value of the variable xr

on the considered object is definite (is not missing).

We now describe a decision table T . This table contains m columns labeled with
attributes f1, . . . , fm, and n rows corresponding to objects u1, . . . , un respectively.

For j = 1, . . . , n, the j-th row is labeled with the value xr(uj) which will be con-
sidered later as the value of the decision attribute d. For any i ∈ {1, . . . , m} and
j ∈ {1, . . . , n}, the value fi(uj) is at the intersection of the j-th row and the i-th

column. If the value fi(uj) is missing, then the symbol “ − ” is at the intersection of
the j-th row and the i-th column.

5.2 Problem of Attribute Reduction

In this section, we define the problem of attribute reduction, consider some examples

and discuss the notions of reduct and decision rule studied in this thesis.

5.2.1 Definition of Problem

Let T be a decision table with m columns labeled with attributes f1, . . . , fm and n

rows which are identified with objects u1, . . . , un. It is possible that T contains missing

values denoted by “ − ”. Each row is labeled with a decision which is interpreted as
the value of the decision attribute d. Let A = {f1, . . . , fm} and U = {u1, . . . , un}.

We now define the indiscernibility relation IND(T ) ⊆ U×U . Let ul, ut ∈ U . Then
(ul, ut) ∈ IND(T ) if and only if fi(ul) = fi(ut) for any fi ∈ A such that the values

fi(ul) and fi(ut) are definite (are not missing). Since T can contain missing values,
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the relation IND(T ) is not an equivalence relation in the general case, but it is a

tolerance relation.
By DIS(T ) we denote the set of unordered pairs of objects ul and ut from U

such that (ul, ut) /∈ IND(T ). Let (ul, ut) ∈ DIS(T ) and fi ∈ A. We will say that

the attribute fi separates the pair (ul, ut) if the values fi(ul) and fi(ut) are definite
and fi(ul) 6= fi(ut). For any fi ∈ A, we denote by DIS(T, fi) the set of pairs from

DIS(T ) which the attribute fi separates.
Let P be a subset of DIS(T ). Let Q be a subset of A and α be a real number such

that 0 ≤ α < 1. We will say that Q is an α-test for T relative to P (an (α,P)-test
for T ) if attributes from Q separate at least (1− α)|P| pairs from P. An (α,P)-test
for T is called an α-reduct for T relative to P (an (α,P)-reduct for T ) if each proper

subset of this (α,P)-test is not an (α,P)-test for T . If P = ∅, then any subset Q of
A is an (α,P)-test for T , but only the empty set of attributes is an (α,P)-reduct for

T . Note that each (α,P)-test contains an (α,P)-reduct as a subset. The parameter
α can be interpreted as an inaccuracy. If α = 0, then we obtain the notion of exact

test for T relative to P and the notion of exact reduct for T relative to P.
The problem of attribute reduction is the following: for a given decision table

T , subset P of the set DIS(T ) and real α, 0 ≤ α < 1, it is required to find an
(α,P)-reduct for T (an (α,P)-test for T ) with minimal cardinality. Let us denote
by Rmin(α) = Rmin(α,P, T ) the minimal cardinality of an (α,P)-reduct for T . Of

course, it is possible to use another measures of reduct quality.
The considered problem can be easily reformulated as a set cover problem:

we should cover the set P using minimal number of subsets from the family
{P ∩ DIS(T, f1), . . . ,P ∩ DIS(T, fm)}. Therefore, we can use results, obtained for

the set cover problem, for analysis of the attribute reduction problem.

5.2.2 Examples

We now consider examples of sets P corresponding to different kinds of reducts. It was
impossible for us to find definitions of some kinds of reducts which are applicable to

decision tables with missing values. In such cases we have extended existing definitions
(if it was possible) trying to preserve their spirit.

For an arbitrary ul ∈ U , let [ul]T = {ut : ut ∈ U, (ul, ut) ∈ IND(T )} and ∂T (ul) =

{d(ut) : ut ∈ [ul]T}. The set ∂T (ul) is called the generalized decision for ul. The
positive region POS(T ) for T is the set of objects ul ∈ U such that |∂T (ul)| = 1. The

set BN(T ) = U \ POS(T ) is called the boundary region for T .
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1. Reducts for the information system, obtained from T by removing the decision

attribute d. The set P is equal to DIS(T ) (we should preserve the indiscernibility
relation).

2. Usual decision reducts for T . The set P is equal to the set of all pairs (ul, ut) ∈
DIS(T ) such that d(ul) 6= d(ut) and at least one object from the pair belongs to
POS(T ) (we should preserve the positive region).

3. Decision reducts for T based on the generalized decision. Let us assume T is
without missing values. The set P is equal to the set of all pairs (ul, ut) ∈ DIS(T )

such that ∂T (ul) 6= ∂T (ut).
4. Maximally discerning decision reducts for T . The set P is equal to the set of all

pairs (ul, ut) ∈ DIS(T ) such that d(ul) 6= d(ut).

5. Usual local reducts for T and object ul ∈ POS(T ). The set P is equal to the set
of all pairs (ul, ut) ∈ DIS(T ) such that d(ul) 6= d(ut).

6. Local reducts for T and object ul ∈ U based on the generalized decision. Let us
assume T is without missing values. The set P is equal to the set of all pairs

(ul, ut) ∈ DIS(T ) such that ∂T (ul) 6= ∂T (ut).
7. Maximally discerning local reducts for T and object ul ∈ U . The set P is equal

to the set of all pairs (ul, ut) ∈ DIS(T ) such that d(ul) 6= d(ut).

5.2.3 Maximally Discerning Local Reducts

The notion of decision rule considered in this thesis is closest to the notion of maxi-
mally discerning local reduct. The consideration of maximally discerning local reducts
for objects from the boundary region can lead to construction of a decision rule system

which is applicable to wider class of new objects. We now consider an example.

T =

f1 f2

0 0 1

0 0 2

0 1 2

1 0 1

S1

f2 = 1→ 2

f1 = 1→ 1

S2

f1 = 0 ∧ f2 = 0→ {1, 2}

f2 = 1→ {2}

f1 = 1→ {1}

S3

f2 = 0→ 1

f1 = 0→ 2

f2 = 1→ 2

f1 = 1→ 1

Fig. 5.1. Illustrations to Example 5.1

Example 5.1. Let us consider the decision table T and three systems of decision rules
S1, S2 and S3 obtained on the basis of usual local reducts, local reducts based on

the generalized decision, and maximally discerning local reducts (see Fig. 5.1). Let us
consider two new objects (0, 2) and (2, 0). Systems S1 and S2 have no rules which are
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realizable on the new objects. However, the system S3 has rules which are realizable

on these new objects and, moreover, correspond to these objects different decisions.

5.3 Greedy Algorithm

We now describe the greedy algorithm which for a given α, 0 ≤ α < 1, decision table
T and set of pairs P ⊆ DIS(T ), P 6= ∅, constructs an (α,P)-test for T .

Algorithm 5: Greedy algorithm for partial test construction
Input : Decision table T with conditional attributes f1, . . . , fm, set of pairs P ⊆ DIS(T ), P 6= ∅,

and real number α, 0 ≤ α < 1.

Output: (α,P)-test for T .

Q←− ∅;

while Q is not an (α,P)-test for T do

select fi ∈ {f1, . . . , fm} with minimal index i such that fi separates the maximal number of

pairs from P unseparated by attributes from Q;

Q←− Q ∪ {fi};

end

return Q;

By Rgreedy(α) = Rgreedy(α,P, T ) we denote the cardinality of the constructed

(α,P)-test for T .

5.3.1 Precision of Greedy Algorithm

Using Theorems 1.8–1.10 one can prove the following three theorems.

Theorem 5.2. Let 0 ≤ α < 1 and d(1 − α)|P|e ≥ 2. Then Rgreedy(α) < Rmin(α) ×
(ln d(1 − α)|P|e − ln ln d(1 − α)|P|e + 0.78).

Theorem 5.3. Let 0 ≤ α < 1. Then for any natural t ≥ 2 there exists a decision

table T and a subset P of the set DIS(T ) such that d(1 − α)|P|e = t and Rgreedy(α) >

Rmin(α)(ln d(1 − α)|P|e − ln ln d(1 − α)|P|e − 0.31).

Theorem 5.4. Let 0 ≤ α < 1. Then

Rgreedy(α) ≤ Rmin(α)

(

1 + ln

(

max
j∈{1,...,m}

|P ∩ DIS(T, fj)|
))

.
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5.3.2 Polynomial Approximate Algorithms

From results obtained in [43, 63] the next theorem follows.

Theorem 5.5. Let 0 ≤ α < 1. Then the problem of construction, for given T and

P ⊆ DIS(T ), an (α,P)-reduct for T with minimal cardinality is NP -hard.

From statements obtained in [38, 40] (based on results from [11, 53, 61, 63]) the
next two theorems follow.

Theorem 5.6. Let α ∈ IR and 0 ≤ α < 1. If NP 6⊆ DTIME(nO(log log n)), then for

any ε, 0 < ε < 1, there is no polynomial algorithm that, for a given decision table T

with DIS(T ) 6= ∅ and nonempty subset P ⊆ DIS(T ), constructs an (α,P)-test for

T which cardinality is at most (1 − ε)Rmin(α,P, T ) ln |P|.

From Theorem 5.4 it follows that Rgreedy(α) ≤ Rmin(α)(1 + ln |P|). From this
inequality and from Theorem 5.6 it follows that, under the assumption NP 6⊆
DTIME(nO(log log n)), the greedy algorithm is close to the best polynomial approxi-

mate algorithms for partial test cardinality minimization.

Theorem 5.7. Let α be a real number such that 0 ≤ α < 1. If P 6= NP , then there

exists % > 0 such that there is no polynomial algorithm that, for a given decision table

T with DIS(T ) 6= ∅ and nonempty subset P ⊆ DIS(T ), constructs an (α,P)-test for

T which cardinality is at most %Rmin(α,P, T ) ln |P|.

From Theorems 5.4 and 5.7 it follows that, under the assumption P 6= NP , the

greedy algorithm is not far from the best polynomial approximate algorithms for
partial test cardinality minimization.

5.3.3 Lower Bound on Rmin(α)

In this subsection, we fix some information about the greedy algorithm work and find
a lower bound on Rmin(α) depending on this information.

Let us apply the greedy algorithm to α, T and P. Let during the construction
of (α,P)-test for T the greedy algorithm choose consequently attributes fj1, . . . , fjt

.

Let us denote by δ1 the number of pairs from P separated by the attribute fj1 .
For i = 2, . . . , t, we denote by δi the number of pairs from P which are not

separated by attributes fj1, . . . , fji−1
, but are separated by the attribute fji

. Let
∆(α,P, T ) = (δ1, . . . , δt). As information on the greedy algorithm work we will use

the tuple ∆(α,P, T ) and numbers |P| and α.
We now define the parameter l(α) = l(α, |P|, ∆(α,P, T )). Let δ0 = 0. Then
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l(α) = max

{⌈

d(1 − α)|P|e − (δ0 + . . . + δi)

δi+1

⌉

: i = 0, . . . , t − 1

}

.

Using Theorems 1.22 and 1.25 one can prove the following two theorems.

Theorem 5.8. Let T be a decision table, P ⊆ DIS(T ), P 6= ∅, and α be a real

number such that 0 ≤ α < 1. Then Rmin(α,P, T ) ≥ l(α, |P|, ∆(α,P, T )).

The value l(α) = l(α, |P|, ∆(α,P, T )) can be used for the obtaining of upper

bounds on cardinality of partial tests constructed by the greedy algorithm.

Theorem 5.9. Let α and β be real numbers such that 0 < β ≤ α < 1. Then

Rgreedy(α) < l(α − β) ln

(

1 − α + β

β

)

+ 1 .

From Theorem 5.9 it follows that the lower bound Rmin(α) ≥ l(α) is nontrivial. In

Chap. 1, it is shown that for decision rules (maximally discerning local reducts) the
bound Rmin(α) ≥ l(α) is the best lower bound on Rmin(α) depending on ∆(α,P, T ),

|P| and α (see Theorem 1.46).

5.3.4 Upper Bound on Rgreedy(α)

In this subsection, we obtain an upper bound on Rgreedy(α) = Rgreedy(α,P, T ) which
does not depend on |P|. The next statement follows immediately from Theorems 5.8

and 5.9.

Theorem 5.10. Let α and β be real numbers such that 0 < β ≤ α < 1. Then

Rgreedy(α) < Rmin(α − β) ln

(

1 − α + β

β

)

+ 1 .

In Chap. 1, it is shown that for decision rules (maximally discerning local reducts)
this bound is, in some sense, unimprovable: it is impossible to multiply the right-hand

side of the considered inequality by any real δ such that δ < 1 (see Theorem 1.52).

5.4 Conclusions

The chapter is devoted to discussion of universal problem of attribute reduction

and to analysis of greedy algorithm for this problem solving. The obtained results
show that, under some natural assumptions on the class NP , greedy algorithm is
close to the best polynomial approximate algorithms for the minimization of partial
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test cardinality. Based on an information received during greedy algorithm work it

is possible to obtain nontrivial lower bound on the minimal cardinality of partial
reducts.

A part of obtained results (Theorems 5.2, 5.4, 5.8, 5.9, and 5.10) is true for any

special kind of reduct that can be represented as a (0,P)-reduct for appropriate P,
in particular, for usual decision and local reducts.

Another part of results (Theorems 5.3, 5.5, 5.6, and 5.7) is proved only for the
whole universal attribute reduction problem and for maximally discerning decision

and local reducts. To obtain, for an another special kind of reducts, results similar
to Theorems 5.3, 5.5, 5.6, and 5.7 we should make additional investigations.



Final Remarks

In this thesis, we study partial decision rules for the case, where the weight of each
conditional attribute of a decision table is equal to 1, and for the case, where condi-

tional attributes can have arbitrary natural weights.
In both cases, under some natural assumptions on the class NP , greedy algorithms

for partial decision rule construction are close to the best (from the point of view

of accuracy) polynomial approximate algorithms for minimization of complexity of
partial rules.

We consider the accuracy of algorithms in the worst case. It means that we can
try to find algorithms which will work better than greedy algorithms for some part of

problems. We make such attempts. The results of experiments with new polynomial
approximate algorithms, which are modifications of greedy algorithms, seem to be

promising.
We find new nontrivial lower bounds on the minimal complexity of partial deci-

sion rules based on an information obtained during the work of greedy algorithms.

Experimental results show that these bounds can be used in practice.
One of the main aims of the thesis is to evaluate possibilities of the use of partial

decision rules for the improvement of accuracy of classifiers, and for more compact
representation of knowledge.

Results of experiments with decision tables from UCI Repository of Machine
Learning Databases show that the accuracy of classifiers based on partial decision
rules is often better than the accuracy of classifiers based on exact decision rules.

Experimental and some theoretical results confirm the following 0.5-hypothesis:
in the most part of cases, greedy algorithm during each step chooses an attribute

which separates at least one-half of unseparated rows that should be separated. It
means that greedy algorithm constructs often short partial rules with relatively high

accuracy.
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We design also new algorithm for construction of the set of all irreducible partial

decision rules for almost all decision tables of a special kind. The considered algorithm
has too high time complexity to be used in practice. However, this algorithm has
essentially lesser complexity than the brute-force algorithms.

The obtained results will further to wider use of partial decision rules in rough set
theory and related theories such as test theory and logical analysis of data (LAD).

The most part of results of the thesis is based on the study of set cover problem.
We formulate an “universal attribute reduction problem”, and show how the results

obtained for the set cover problem can be used for the study of another kinds of
reducts such as reducts for information systems, local and decision reducts based on
the generalized decision, etc.
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Uwagi

W niniejszym opracowaniu przedstawiono streszczenie pracy doktorskiej pt. „Con-
struction and Optimization of Partial Decision Rules”, która została napisana w języku

angielskim. W streszczeniu zostały pominięte twierdzenia wraz z dowodami. Przed-
stawiono jedynie najważniejsze rezultaty rozprawy oraz część bibliografii.



Streszczenie

Zagadnienia poruszane w rozprawie doktorskiej związane są z problemami występu-
jącymi w dziedzinie odkrywania i wydobywania wiedzy z danych (ang. data mining

and knowledge discovery). Pierwszy problem, to reprezentacja wiedzy zawartej w ta-
blicy decyzyjnej w formie dogodnej dla zrozumienia. W tej sytuacji długość opisu
wiedzy odgrywa istotną rolę. Drugi problem, to przewidywanie wartości atrybutu de-

cyzyjnego dla nowych obiektów. Wówczas dokładność przewidywania (klasyfikacji)
ma duże znaczenie, np. w medycynie.

Te dwa cele (zwięzły opis i wysoka dokładność) wydają się być sprzeczne ze
sobą, aczkolwiek wiadomo jest, że klasyfikatory ze zwięzłym opisem wiedzy są często

bardziej dokładne. Przedstawiona rozprawa doktorska stanowi potwierdzenie tego
faktu.

Praca poświęcona jest rozważaniom dotyczącym jednego z głównych pojęć teorii
zbiorów przybliżonych: pojęciu reguły decyzyjnej (lokalnego reduktu) [16, 18, 20,
23, 24, 31, 32]. Definicja rozważanej w pracy częściowej reguły decyzyjnej została

przedstawiona poniżej.
Niech T będzie tablicą z n wierszami oznaczonymi przez nieujemne liczby całkowite

(decyzje) i m kolumnami oznaczonymi jako atrybuty warunkowe f1, . . . , fm. Tablica
ta wypełniona jest przez nieujemne liczby całkowite (wartości atrybutów). Tablica T

jest nazywana tablicą decyzyjną. Powiemy, że atrybut fi separuje (oddziela) wiersze
r1 i r2 tablicy T , jeśli wiersze te posiadają różne wartości na przecieciu z kolumną fi.
Wiersze te nazywane są różnymi, jeśli przynjamniej jeden atrybut fi je separuje.

Niech r = (b1, . . . , bm) będzie wierszem tablicy T oznaczonym przez decyzję d.
Przez U(T, r) oznaczamy zbiór wierszy z T , które są różne od r i są oznaczone przez

decyzje inne niż d. Niech α ∈ IR i 0 ≤ α < 1. Reguła decyzjna

(fi1 = bi1) ∧ . . . ∧ (fit = bit) → d
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jest nazywana α-regułą decyzyjną dla T i r jeśli atrybuty fi1 , . . . , fit separują od r

przynjamniej (1 − α)|U(T, r)| wierszy ze zbioru U(T, r) (taka reguła nazywana jest
także częściową regułą decyzyjną).

Dokładne reguły decyzyjne są szeroko stosowane w teorii zbiorów przybliżonych,

zarówno dla konstruowania klasyfikatorów oraz jako sposób reprezentacji wiedzy [23].
Istnienie reguł decyzyjnych z małą liczbą atrybutów może ułatwić zrozumienie relacji

pomiedzy atrybutami warunkowymi a decyzją. Należy także zauważyć, że pojecia
podobne do pojęcia reguły decyzyjnej były badane w teorii testów (gdzie pojęcie

testu kontrolnego nie jest dalekie od pojęcia reguły decyzyjnej) oraz w logicznej
analizie danych LAD (ang. Logical Analysis of Data) (gdzie wzorzec jest analogią do
reguły decyzyjnej).

Główna teza rozprawy doktorskiej jest następująca: zastosowanie algorytmów
zachłannych do generowania reguł decyzyjnych pozwala uzyskać krótkie częściowe

reguły decyzyjne o odpowiednio wysokiej jakości.
Dokładne reguły decyzyjne mogą być przeuczone tzn. zbyt mocno zależne od

szumu lub (w przypadku klasyfikacji) zbyt mocno dopasowane do istniejących przy-
padków (obiektów). Jeśli reguły decyzyjne są traktowane jako sposób reprezentacji

wiedzy wówczas, zamiast dokładnych reguł z wieloma atrybutami, nie gorsze wyniki
można uzyskać stosując częściowe reguły decyzyjne z mniejszą liczbą atrybutów, które
oddzielają od danego wiersza prawie wszystkie inne wiersze z inną decyzją.

Rozważana idea nie jest nowa. Od lat w teorii zbiorów przybliżonych częściowe re-
dukty i częściowe reguły decyzyjne (częściowe redukty lokalne) są intensywnie badane

przez H.S. Nguyena, A. Skowrona, D. Ślȩzaka, Z. Pawlaka, J. Wróblewskiego i innych
[1, 15, 17, 18, 33].

Istnieją różne podejścia do definiowania przybliżonych reduktów. W [15, 28]
zostało udowodnione, że dla każdego z rozważanych podejść, problem minima-
lizacji częściowych reduktów (konstruowania częściowych reduktów o minimalnej

liczności) jest NP -trudny. Podejście przedstawione w [15] jest podobne do podejścia
rozważanego w tej rozprawie. Szczegółowa dyskusja dotycząca częściowych reguł de-

cyzyjnych została zawarta w rozdziale 5 rozprawy. Przybliżone redukty były także
badane przez W. Ziarko, M. Quafafou i innych, w rozszerzonym modelu zbiorów przy-

bliżonych VPRS (ang. Variable Precision Rough Sets) i α-RST (ang. alpha Rough
Set Theory).

Istnieją różne miary jakości reguł decyzyjnych: długość reguły, całkowita waga
atrybutów zawartych w regule decyzyjnej, wsparcie reguły decyzyjnej i inne. W pracy
koncentrujemy się na minimalizacji długości reguł (co pozwala konstruować klasy-

fikatory o większej dokładności lub uzyskać bardziej zwięzłą reprezentację wiedzy
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zawartej w tablicach decyzyjnych) oraz na minimalizacji całkowitej wagi reguł (co

pozwala zmniejszyć złożoność czasową, koszt lub ryzyko pracy klasyfikatorów).
Istnieją różne podejścia do konstruowania reguł decyzyjnych: brute-force algorytm,

który jest stosowany do tablic decyzyjnych o stosunkowo małej liczbie atrybutów, al-

gorytmy genetyczne, symulowane wyżarzanie, wnioskowanie Boolowskie, algorytmy
optymalizacji mrowiskowej, algorytmy oparte na tworzeniu drzew decyzyjnych, algo-

rytmy zachłanne.
Każda z tych metod posiada liczne modyfikacje. Np. w przypadku drzew de-

cyzyjnych można stosować algorytmy zachłanne oparte na entropii, indeksie Gini,
dla konstruowania reguł decyzyjnych.

W przedstawianej rozprawie doktorskiej stosujemy algorytmy zachłanne do kon-

struowania reguł. Oczywiście, algorytmy te nie są nowe i były używane przez
licznych autorów [3]. Nasz wybór związany jest z matematycznymi wynikami badań

uzyskanymi dla algorytmów zachłannych. Zostało udowodnione, że biorąc pod uwagę
pewne założenia dotyczące klasy NP , algorytmy zachłanne pozwalają uzyskać wyniki

bliskie wynikom uzyskiwanym przez najlepsze przybliżone wielomianowe algorytmy
dla optymalizacji reguł decyzyjnych.

Ważną częścią rozprawy doktorskiej jest matematyczna analiza problemu kon-
struowania częściowych reguł decyzyjnych, której wyniki są blisko związane z wynika-
mi eksperyemntów. W wielu przypadkach, wyniki eksperymentów prowadziły do is-

totnych, nowych stwierdzeń a matematyczna analiza pozwoliła wybrać nowe kierunki
badań.

Badania dotyczące częściowych reguł decyzyjnych opierają się na badaniach doty-
czących częściowych pokryć. Niech A = {a1, . . . , an} będzie niepustym, skończonym

zbiorem i S = {B1, . . . , Bm} będzie rodziną podzbiorów A taką, że B1∪ . . .∪Bm = A.
Niech α ∈ IR i 0 ≤ α < 1. Podrodzina Q = {Bi1 , . . . , Bit} rodziny S jest nazywana
α-pokryciem dla pary (A, S) jeśli |Bi1 ∪ . . . ∪ Bit| ≥ (1 − α)|A|.

Istnieje prosta redukcja problemu konstruowania 0-pokrycia o minimalnej liczności
do problemu konstruowania 0-reguły decyzyjnej o minimalnej długości. Istnieje także

odwrotna redukcja. Podobna sytuacja dotyczy częściowych pokryć i częściowych reguł
(kiedy α > 0). Fakt ten pozwolił wykorzystać różne matematyczne wyniki dotyczące

problemu pokrycia zbioru uzyskane przez J. Cheriyana i R. Raviego, V. Chvá tala,
U. Feigego [2], D.S. Johnsona [3], R.M. Karpa, M.J. Kearnsa, L. Lovásza, R.G. Nig-

matullina, R. Raza i S. Safra, oraz P. Slavíka [25, 26], dla analizy częściowych reguł.
Dodatkowo, korzystamy z techniki stworzonej przez D. Ślȩzaka [28] dla dowodu NP -
trudności optymalizacji częściowych reduktów.

Znane i uzyskane w tej pracy wyniki badań dla pokryć i częściowych pokryć mogą
zostać wykorzystane w szerszym spektrum problemów rozważanych w teorii zbiorów
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przybliżonych, np. dla badania (i) reduktów i reguł systemów informacyjnych, (ii)

reduktów i reguł dla tablic decyzyjnych z brakującymi wartościami, (iii) podsystemów
danego systemu reguł, które „pokrywają” ten sam zbiór wierszy.

Rozprawa doktorska składa się z pięciu rozdziałów.

Rozdział 1 dotyczy częściowych pokryć i częściowych reguł decyzyjnych. Zawiera
m.in podstawowe pojęcia, znane wyniki badań dla problemu pokrycia i częściowego

pokrycia zbioru, relacje pomiędzy częściowymi pokryciami i częściowymi regułami
decyzyjnymi, oszacowanie dokładności algorytmu zachłannego, oszacowanie górnych

i dolnych granic minimalnej liczności częściowych pokryć oraz minimalnej długości
częściowych reguł decyzyjnych, oszacowanie górnych granic liczności częściowych
pokryć i odpowiednio długości częściowych reguł decyzyjnych, oraz wyniki badań

dotyczące pokryć dla większej części problemów pokrycia zbioru i odpowiednio,
wyniki badań dotyczące reguł decyzyjnych dla większej części binarnych tablic de-

cyzyjnych.
W rozdziale 1 udowodniliśmy, że biorąc pod uwagę pewne założenia dotyczące

klasy NP , algorytm zachłanny jest bliski (z punktu widzenia dokładności) najlepszym
przybliżonym wielomianowym algorytmom dla optymalizacji częściowych pokryć.

Dane uzyskane podczas pracy algorytmu zachłannego mogą zostać wykorzystane
do oszacowania dolnych i górnych granic minimalnej liczności częściowych pokryć.
W ten sposób zostały znalezione najlepsze dolne i górne granice zależne od tych

danych. Teoretyczne i eksperymentalne wyniki badań (rozdział 4) pokazują, że
uzyskana dolna granica jest nietrywialna i może zostać użyta w praktycznych za-

stosowanich.
Dokonaliśmy także oszacowania granicy dokładności algorytmu zachłannego dla

konstruowania częściowych pokryć, która nie zależy od liczności pokrywanego zbioru.
Udowodniliśmy, że dla większej części problemów pokrycia zbioru istnieją dokładne

(i odpowiednio częściowe) pokrycia o małej liczności. Wyniki eksperymentów dla

losowo generowanych problemów pokrycia zbioru pozwoliły sformuować nieformalną
0.5-hipotezę: dla większej części problemów pokrycia zbioru, algorytm zachłanny

w każdej iteracji wybiera podzbiór, który pokrywa przynajmniej połowę niepokry-
tych dotychczas elementów.

Większa część wyników badań uzyskanych dla częściowych pokryć została uogól-
niona dla przypadku częściowych reguł decyzyjnych.

Pokazaliśmy, że przyjmując pewne założenia dotyczące klasy NP , algorytm za-
chłanny pozwala uzyskać wyniki bliskie wynikom uzyskiwanym przez najlepsze przy-
bliżone wielomianowe algorytmy, dla minimalizacji długości częściowych reguł de-

cyzyjnych.
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Na podstawie danych uzyskanych podczas pracy algorytmu zachłannego zostały

znalezione nietrywialne dolne i górne granice minimalnej długości częściowych reguł
decyzyjnych.

Dla większej części losowo generowanych binarnych tablic decyzyjnych, algorytm

zachłanny konstruuje proste częściowe reguły decyzyjne, o odpowiednio wysokiej
jakości. Eksperymentalne i teoretyczne wyniki badań potwierdziły 0.5-hipotezę dla

reguł decyzyjnych: dla większości tablic decyzyjnych, algorytm zachłanny podczas
generowania reguły w każdej iteracji wybiera atrybut, który separuje przynajmniej

połowę wierszy dotychczas nie oddzielonych.
Rozdział 2 dotyczy częściowych pokryć i częściowych reguł decyzyjnych z uwzglę-

dnieniem wag atrybutów. Zawiera m.in podstawowe pojęcia, znane wyniki badań

dla problemu pokrycia i częściowego pokrycia zbioru z wagami, relacje pomiędzy
częściowymi pokryciami i częściowymi regułami decyzyjnymi z uwzględnieniem wag,

oszacowanie dokładności algorytmu zachłannego, porównanie zwykłego algorytmu
zachłannego z wagami i algorytmu zachłannego z dwoma progami, oszacowanie

dolnej granicy minimalnej wagi częściowego pokrycia oraz minimalnej całkowitej
wagi atrybutów częściowej reguły decyzyjnej, oszacowanie górnej granicy wagi czę-

ściowego pokrycia i odpowiednio górnej granicy całkowitej wagi atrybutów tworzą-
cych częściową regułę decyzyjną, oraz wyniki eksperymentów dla częściowych pokryć
z wagami i częściowych reguł decyzyjnych z wagami.

W rodziale 2 został zbadany przypadek, kiedy każdy podzbiór używany do
pokrycia posiada własną wagę i należy zminimalizować całkowitą wagę podzbiorów

tworzących częściowe pokrycie. Taka sama sytuacja dotyczy częściowych reguł de-
cyzyjnych: każdy atrybut warunkowy posiada własną wagę i należy zminimalizować

całkowitą wagę atrybutów tworzących częściową regułę decyzyjną. Waga atrybutu
może chrakteryzować złożoność czasową, koszt lub ryzyko (w medycynie lub diagno-
styce technicznej) obliczenia wartości atrybutu.

Większa cześć wyników badań przedstawionych w rozdziale 1 została uogólniona
dla przypadku arbitralnych, naturalnych wag.

Udowodniliśmy, że biorąc pod uwagę pewne założenia dotyczące klasy NP , al-
gorytm zachłanny z wagami jest bliski (z punktu widzenia dokładności) najlepszym

przybliżonym wielomianowym algorytmom dla konstruowania częściowego pokrycia
o minimalnej wadze i odpowiednio dla minimalizacji całkowitej wagi atrybutów

tworzących częściową regułę decyzyjną.
Na podstawie danych uzyskanych podczas pracy algorytmu zachłannego oszacowa-

liśmy dolne granice minimalnej wagi częściowego pokrycia i odpowiednio minimalnej

całkowitej wagi atrybutów tworzących częściową regułę decyzyjną.
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Uogólniliśmy zwykły algorytm zachłanny z wagami i zbadalismy algorytm zachłan-

ny z dwoma progami. Pierwszy próg określa dokładność konstruowanego pokrycia,
drugi jest wewnętrznym parametrem rozważanego algorytmu. Udowodniliśmy, że dla
większej części problemów pokrycia zbioru istnieje funkcja wagi i wartości progów

takie, że waga częściowego pokrycia konstruowanego przez algorytm zachłanny z dwo-
ma progami jest mniejsza, niż waga częściowego pokrycia konstruowanego przez

zwykły algorytm zachłanny z wagami. Taka sama sytuacja dotyczy częściowych
reguł decyzyjnych. Opierając się na algorytmie z dwoma progami stworzyliśmy nowe

przybliżone wielomianowe algorytmy dla minimalizacji całkowitej wagi częściowych
pokryć i częściowych reguł decyzyjnych. Wyniki dużej liczby eksperymentów dla
losowo generowanych problemów pokrycia zbioru i binarnych tablic decyzyjnych

pokazują, że algorytmy te mogą zostać wykorzystane w praktyce.
Rozdział 2 rozprawy doktorskiej, stanowi w pewnym sensie rozszerzenie rozdziału

1 dla przypadku, kiedy wagi nie są równe 1. Należy zauważyć, że nawet jeśli wagi
są równe 1, to wyniki pracy algorytmów zachłannych rozważanych w tym rozdziale

mogą się różnić od wyników przedstawionych w rozdziale 1. Np. dla reguł decyzyjnych
liczba atrybutów wybieranych przez algorytm zachłanny jest taka sama, ale ostatnie

atrybuty mogą się różnić.
Rozdział 3 dotyczy konstruowania wszystkich nieredukowalnych częściowych reguł

decyzyjnych. Zawiera m.in podstawowe pojęcia dotyczące nieredukowalnych t-reguł

decyzyjnych, oszacowanie długości i liczby tych reguł, algorytmy konstruowania
wszystkich nierdukowalnych t-reguł decyzyjnych oraz wyniki eksperymentów.

Niech t będzie liczbą naturalną. Reguła decyzjna

(fj1 = bj1) ∧ . . . ∧ (fjp
= bjp

) ⇒ di

jest nazywana t-regułą decyzyjną dla tablicy decyzyjnej T i wiersza r, jeśli atrybuty
fj1, . . . , fjp

oddzielają od r przynajmniej |U(T, r)|−t wierszy ze zbioru U(T, r). W tej

sytuacji powiemy, że atrybuty fj1 , . . . , fjp
tworzą t-regułę decyzyjną dla T i r. Jeśli

usuniemy pewne warunki fjs
= bjs

, s ∈ {1, . . . , p}, z rozważanej reguły, otrzymamy

jej podregułę. Podreguła pewnej reguły jest nazywana właściwą jeśli nie jest równa
początkowej regule. t-reguła decyzyjna dla T i r jest nazywana nieredukowalną, jeśli

każda właściwa podreguła tej reguły nie jest t-regułą decyzyjną dla T i r.
W rozdziale 3 zostały zbadane binarne tablice decyzyjne z m atrybutami warunko-

wymi, w których liczba wierszy wynosi bmαc, gdzie α jest dodatnią liczbą rzeczywistą

i częściowe reguły decyzyjne mogą pozostawić nie odseparowanych od danego wier-
sza najwyżej 5

⌈

(log2 m)β
⌉

różnych wierszy z innymi decyzjami, gdzie β jest liczbą

rzeczywistą taką, że β ≥ 1.
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Pokazaliśmy, że dla prawie wszystkich takich tablic, dla każdego wiersza z minor

decyzją (minor decyzja to decyzja, która dotyczy najwyżej połowy wierszy z ta-
blicy decyzyjnej), długość każdej nieredukowalnej częściowej reguły decyzyjnej nie
jest większa od α log2 m i liczba nieredukowalnych częściowych reguł decyzyjnych nie

jest daleka od mα log
2

m.
Opierając się na tych wynikach udowodniliśmy, że nie istnieje algorytm, który dla

prawie wszystkich tablic decyzyjnych, dla każdego wiersza z minor decyzją, konstru-
uje zbiór nieredukowalnych częściowych reguł decyzyjnych i posiada dla tych tablic

wielomianową złożoność czasową zależną od długości danych wejściowych. Istnieje
jednak algorytm, który dla prawie wszystkich tablic decyzyjnych, dla każdego wiersza
z minor decyzją, konstruuje zbiór nieredukowalnych częściowych reguł decyzyjnych

i posiada dla tych tablic wielomianową złożoność czasową zależną od długości danych
wejściowych i długości danych wyjściowych.

Rozwiązanie problemu konstruowania wszystkich nieredukowalnych częściowych
reguł decyzyjnych pozwoli np. (i) znaleźć najlepsze częściowe reguły, (ii) oszacować

ważność atrybutów, (iii) tworzyć zespoły klasyfikatorów.
Rozdział 4 zawiera wyniki eksperymentów przeprowadzonych na na tablicach

decyzyjnych znajdujących się w UCI Repository of Machine Learning Databases.
Eksperymenty zostały podzielone na dwie grupy. Pierwsza dotyczy 0.5-hipotezy dla
częściowych reguł decyzyjnych. Druga grupa eksperymentów dotyczy klasyfikacji

z wykorzytsaniem częściowych reguł decyzyjnych.
Celem pierwszej grupy eksperymentów była weryfikacja 0.5-hipotezy dla danych

rzeczywistych. Wykonalismy eksperymenty na 23 tablicach decyzyjnych. Wyniki 20
eksperymentów potwierdziły 0.5-hipotezę: podczas konstruowania częściowej reguły

decyzyjnej, algorytm zachłanny w każdej iteracji wybiera atrybut, który oddziela od
wiersza r przynajmniej połowę wierszy dotychczas nie oddzielonych, które są różne
od r i posiadają inne decyzje. Oznacza to, że algorytm zachłanny często konstruuje

krótkie częściowe reguły decyzyjne o odpowiednio wysokiej jakości. Szczególnie dla
przypadku, kiedy 0.5-hipoteza jest prawdziwa, algorytm zachłanny konstruuje czę-

ściową regułę decyzyjną z siedmioma atrybutami, które separują od danego wiersza co
najmmniej 99% różnych wierszy z innymi decyzjami. Takie krótkie częściowe reguły

decyzyjne są dogodniejsze dla zrozumienia.
Celem drugiej grupy eksperymentów było porównanie dokładności klasyfikatorów

opartych na dokładnych i częściowych regułach decyzyjnych. Rozważane podejście
do konstruowania klasyfikatorów jest następujące: dla każdego wiersza danej tablicy
decyzyjnej algorytm zachłanny konstruuje (częściową) regułę decyzyjną. Następnie

przez usunięcie z takiej (częściowej) reguły decyzyjnej pewnych atrybutów otrzymu-
jemy nieredukowalną (częściową) regułę decyzyjną. Uzyskany system reguł połączony
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z prostą procedurą głosowania stanowi klasyfikator. Metodą train-and-test wykona-

liśmy eksperymenty dla 21 tablic decyzyjnych. W 11 przypadkach okazało się, że
dokładność klasyfikatorów opartych na częściowych regułach decyzyjnych jest lepsza,
niż dokładność klasyfikatorów opartych na dokładnych regułach decyzyjnych. Metodą

cross-validation wykonaliśmy eksperymenty dla 17 tablic decyzyjnych. W 9 przypad-
kach okazało się, że dokładność klasyfikatorów opartych na częściowych regułach de-

cyzyjnych jest lepsza, niż dokładność klasyfikatorów opartych na dokładnych regułach
decyzyjnych.

Rozdział 5 dotyczy uniwersalnego problemu redukcji atrybutów. Zawiera m.in
definicję problemu, warianty pojęcia redukt, oszacowanie dokładności algorytmu
zachłannego dla konstruowania częściowego super-reduktu, oszacowanie dolnej granicy

minimalnej liczności częściowego super-reduktu oraz oszacowanie górnej granicy
liczności częściowego super-reduktu.

W rozdziale 5 został zbadany uniwerslany problem redukcji atrybutów. Niech T

będzie tablicą decyzyjną i P będzie podzbiorem par różnych wierszy (obiektów) z T .

Wówczas reduktem dla T względem P jest minimalny (w sensie zawierania) podzbiór
atrybutów warunkowych, które oddzielają wszystkie pary wierszy od P. Redukty dla

systemów informacyjnych, redukty decyzyjne i lokalne redukty (reguły decyzyjne)
dla tablic decyzyjnych, decyzyjne i loklane redukty oparte na uogólnionej decyzji,
mogą być reprezentowane w takiej formie. W rozdziale zostały zbadane nie tylko

dokładne ale także częściowe redukty. Został także przedstawiony scenariusz pracy
z rzeczywistymi tablicami danych, które mogą zawierać zmienne ciągłe i dyskretne

o dużej liczbie wartości, oraz zmienne z brakującymi wartościami.
Na podstawie wyników badań przedstawionych w rozdziale 1, dokonaliśmy osza-

cowania granic dokładności algorytmu zachłannego dla konstruowania super-reduktów.
Udowodniliśmy, że poza kilkoma wyjątkami dotyczacymi klasy NP , algorytm zachłan-
ny jest bliski (z punktu widzenia dokładności) przybliżonym wielomianowym algory-

tmom dla minimalizacji liczności częściowych super-reduktów. Na podstawie danych
uzyskanych podczas pracy algorytmu zachłannego, uzyskaliśmy nietrywialną dolną

granicę minimalnej liczności częściowego reduktu. Dokonaliśmy także oszacowania
granicy dokładności algorytmu zachłannego, która nie zależy od liczności zbioru P.

Eksperymentalne i teoretyczne wyniki badań przedstawione w pracy pokazują,
że zastosowanie częściowych reguł decyzyjnych zamiast dokładanych reguł, pozwala

uzyskać bardziej zwięzły opis wiedzy zawartej w tablicach decyzyjnych, oraz pozwala
konstruować klasyfikatory o większej dokładności. Są to powody dla których należy
zastosować częściowe reguły decyzyjne w dziedzinie odkrywania i wydobywania

wiedzy z danych do reprezentacji wiedzy oraz do predykcji.
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Wyniki badań uzyskane w tej pracy mogą być użyteczne dla naukowców z takich

dziedzin jak np. uczenie maszynowe, odkrywanie i wydobywanie wiedzy z danych,
zwłaszcza pracujących z teorią zbiorów przybliżonych.

Wyniki eksperymentów opisanych w rozdziałach 1 i 4 zostały przeprowadzone na

oprogramowaniu, które wkrótce zostanie dołączone do systemu RSES – Rough Set
Exploration System [22] (Instytut Matematyki, Uniwersytet Warszawski, kierownik

projektu – prof. dr hab. Andrzej Skowron). Podstawowe funkcje biblioteki GRLib
to: generowanie częściowych reguł decyzyjnych dla każdego wiersza lub wybranego

wiersza z tablicy decyzyjnej, generowanie nieredukowalnych częściowych reguł de-
cyzyjnych, wyznaczenie dolnej i górnej granicy minimalnej długości dla wybranej
częściowej reguły decyzyjnej lub wyznaczenie minimalnej, średniej i maksymalnej

wartości dolnej i górnej granicy minimalnej długości dla zbioru reguł.



Bibliografia

1. Bazan G.J., Nguyen S.H., Nguyen T.T., Skowron A., Stepaniuk J. (1998) De-
cision rules synthesis for object classification. In: E. Orłowska (ed.), Incomplete

information: rough set analysis, Physica-Verlag, Heidelberg, 23–57
2. Feige U. (1996) A threshold of ln n for approximating set cover (preliminary

version). In: Proc. 28th Annual ACM symposium on the theory of computing

(Philadelphia, Pennsylvania, USA). ACM, 314–318
3. Johnson D.S. (1974) Approximation algorithms for combinatorial problems. J.

Comput. System Sci. 9, 256–278
4. Komorowski J., Pawlak Z., Polkowski L., Skowron A. (1999), Rough sets: A tuto-

rial. In S.K. Pal S.K. and Skowron A. (eds.) Rough-Fuzzy Hybridization: A New
Trend in Decision-Making, Springer-Verlag, Singapor, 3–98.

5. Moshkov M.Ju. (2003) Greedy algorithm for set cover in context of knowledge
discovery problems. Electronic Notes in Theoretical Computer Science 82(4), 174–
185

6. Moshkov M.Ju. (2005) On construction of the set of irreducible partial covers.
In: Lupanov O.B., Kasim-Zade O.M., Chashkin A.V., Steinhöfel K. (eds.) Proc.

Stochastic algorithms: foundations and applications. LNCS 3777. Springer, Berlin
Heidelberg New York, 38–44

7. Moshkov M.Ju., Piliszczuk M., Zielosko B. (2006) Lower bounds on minimal
weight of partial reducts and partial decision rules. In: Wang G., Peters J.F.,
Skowron A., Yao Y. (eds.) Proc. Rough sets and knowledge technology. LNAI

4062, Springer, Berlin Heidelberg New York, 290–296
8. Moshkov M.Ju., Piliszczuk M., Zielosko B. (2006) Lower bound on minimal weight

of partial cover based on information about greedy algorithm work. In: Proc. In-
formation processing and management of uncertainty in knowledge-based systems

(Paris, France)



Bibliografia 12

9. Moshkov M.Ju., Piliszczuk M., Zielosko B. (2006) On greedy algorithm with

weights for construction of partial covers. In: Kłopotek M.A., Wierzchoń S.T.,
Trojanowski K. (eds.) Proc. Intelligent information processing and web mining.
Advances in soft computing. Springer, Berlin Heidelberg New York, 391–395

10. Moshkov M.Ju., Piliszczuk M., Zielosko B. (2007) On partial covers, reducts and
decision rules with weights. In: Peters J.F., Skowron A., Düntsch I., Grzymała-

Busse J.W., Orłowska E,. Polkowski L. (eds.) LNCS Transactions on Rough Sets
VI. LNCS 4374. Springer, Berlin Heidelberg New York, 211–246

11. Moshkov M.Ju., Piliszczuk M., Zielosko B. (2007) Universal attribute reduction
problem. In: Kryszkiewicz M., Peters J.F., Rybinski H., Skowron A. (eds.) Proc.
Rough sets and intelligent systems paradigms. LNCS 4585. Springer, Berlin Hei-

delberg New York, 417–426
12. Moshkov M.Ju., Piliszczuk M., Zielosko B. (2007) On construction of partial

reducts and irreducible partial decision rules. Fundamenta Informaticae 75, 357–
374

13. Moshkov M.Ju., Piliszczuk M., Zielosko B. (2008) On partial covers, reducts and
decision rules. In: LNCS Transactions on Rough Sets VIII. LNCS 5084. Springer,

Berlin Heidelberg New York, 258–296
14. Nguyen H.S. (2006) Approximate Boolean reasoning: foundations and applica-

tions in data mining. In: Peters J.F., Skowron A. (eds.) LNCS Transactions on

Rough Sets V. LNCS 4100. Springer, Berlin Heidelberg New York, 344–523
15. Nguyen H.S., Ślȩzak D. (1999) Approximate reducts and association rules – cor-

respondence and complexity results. In: Zhong N., Skowron A., Ohsuga S. (eds.)
Proc. Rough sets, fuzzy sets, data mining, and granular-soft computing. LNAI

1711. Springer, Berlin Heidelberg New York, 137–145
16. Pawlak Z. (1991) Rough sets – theoretical aspects of reasoning about data. Kluwer

Academic Publishers, Dordrecht Boston London

17. Pawlak Z. (1998) Rough set elements. In: Polkowski L., Skowron A. (eds.) Rough
sets in knowledge discovery. Physica-Verlag, Heidelberg, 10–30

18. Pawlak Z., Skowron A. (2007) Rudiments of rough sets. Information Sciences 177,
3–27

19. Pawlak Z., Skowron A. (2007) Rough sets: some extensions. Information Sciences
177, 28–40

20. Pawlak Z., Skowron A. (2007) Rough sets and Boolean reasoning. Information
Sciences 177, 41–73

21. Quafafou M. (2000) α-RST: a generalization of rough set theory. Information

Sciences 124, 301–316
22. Rough Set Exploration System (RSES), http://logic.mimuw.edu.pl/∼rses



Bibliografia 13

23. Skowron A. (2000) Rough sets in KDD. In: Shi Z., Faltings B., Musen M. (eds.)

Proc. 16th IFIP World computer congress (Beijing, China). Publishing House of
Electronic Industry, 1–14

24. Skowron A., Rauszer C. (1992) The discernibility matrices and functions in infor-

mation systems. In: Slowinski R. (ed.) Intelligent decision support. Handbook of
applications and advances of the rough set theory. Kluwer Academic Publishers,

Dordrecht Boston London, 331–362
25. Slavík P. (1996) A tight analysis of the greedy algorithm for set cover (extended

abstract). In: Proc. 28th Annual ACM symposium on the theory of computing
(Philadelphia, Pennsylvania, USA). ACM, 435–441

26. Slavík P. (1998) Approximation algorithms for set cover and related problems.

Ph.D. Thesis, University of New York at Buffalo
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