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Introduction 
 

Stratified sampling is one of the most common sampling designs in surveys 
in economic official statistics, such as those conducted by the Central Statistical 
Office of Poland. Independent sampling in domains is of special interest for 
practical reasons; for instance, in Polish economic surveys voivodeships consti-
tute the domains, and in many surveys estimation is required for both the whole 
country and each voivodeship. This paper deals with optimizing stratification 
when estimation for domains is of interest in addition to estimation for the whole 
population. 

Consider a population U subdivided into D non-overlapping domains Ud, 
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We aim to stratify each domain Ud, d = 1, … , D; the constraints for stratifi-
cation are related to the whole population, namely sample size n from the whole 
population is fixed and equal to 
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where nd is the sample size from the dth domain. The quantities nd, d = 1, … , D, 
which are to be determined, depend on stratification points provided for the cor-
responding domains. Stratification is to be done with the aim of optimizing  
a common value of precision of estimation (that is, minimizing the variance or, 
equivalently, the coefficient of variation of the estimator of a population charac-
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teristic considered) in the domains. The problem of fixed-precision stratification 
of a population subdivided into domains was considered by Lednicki and Wiec-
zorkowski (2003); however, they studied stratification orientated towards mini-
mizing a final sample size from a population subject to fixed precision of estima-
tion in the domains of the population. Kozak and Zieliński (2005) presented 
formulas for sample allocation between domains and strata in the domains under 
fixed-precision approach; they did not study, however, stratification in such  
a situation.  

Following the approach the most common from the practical point of view, 
we will consider constructing a so-called take-all stratum (Hidiroglou, 1986; 
Lavallée and Hidiroglou, 1988) in each domain; all the elements from the take-
all stratum are taken to the sample with probability 1. The take-all stratum ap-
proach is effective for a positively skewed stratification variable, which is the 
case in many surveys (e.g. Hidiroglou, 1986; Lavallée and Hidiroglou, 1988; 
Lednicki and Wieczorkowski, 2003). Let us also assume that a stratification 
variable is equal to the survey variable that we aim to study, an often assumption 
in the stratification theory and practice. 

We will use the following notation. Hd is the number of strata to be con-
structed in the dth domain; Nd is the size of the dth domain; Ndh is the size of the 
hth stratum in the dth domain; ∑ =

= dH
h dhdhdh NNW 1/ ; and 2

dhS  is the popula-

tion variance of the variable X restricted to the hth stratum of the dth domain.  
Under the conventional unbiased estimation and the take-all stratum ap-

proach, the coefficient of variation (for simplicity denoted as δ) of the estimator 

dt̂  of the population total of the variable X in the dth domain is equal to: 
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Our aim is to stratify each domain Ud, d = 1, … , D, so as to minimize the 
common value of δd, say δ, subject to the fixed sample size n from the whole 
population. The aim of this paper is to present and compare two algorithms for 
such stratification.  
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1. Optimum stratification 
 

The problem under consideration can be formulated in the following way. 
Find D sets of strata boundaries ( )T–Hd d

aa 11  , ... ,=a , each referring to the cor-

responding dth domain, that minimize the common value δ of the coefficients of 
variation δd of the estimator considered in the domains, i.e.: 
 

                                         δd = δ for all d = 1, … , D,                                         (2) 
 

subject to: 
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n being fixed at the outset. In other words, we aim to minimize δ subject to the 
constraints (2) and (3). The vector of strata boundaries ad unequivocally divides 
the dth domain into Hd non-overlapping strata, providing lower and upper 
boundaries of the strata on the range from min(X) to max(X), X being the stratifi-
cation variable (for details see, e.g., Lednicki and Wieczorkowski, 2003).  

A general description of stratification can be found in multiplicity of papers; 
see e.g., Dalenius and Hodges (1959), Lavallée and Hidiroglou (1988), Rivest 
(2002), Lednicki and Wieczorkowski (2003), or Kozak and Verma (2006). For  
a particular domain, stratification we consider aims at minimizing the variance 
of the estimator studied (this approach is equivalent to minimizing the coeffi-
cient of variation (1)) subject to given sample size nd. Such stratification can be 
treated as the optimization problem in which the formula (1) stands for the opti-
mization function and strata boundaries are the parameters sought. For our pur-
pose, one may apply any optimization function that starts the optimization proc-
ess based on initial strata boundaries; for example, it may be the optim function 
available in R language (R Development Core Team, 2006) that uses the simplex 
method of Nelder and Mead (1965) (this function was used by Lednicki and 
Wieczorkowski, 2003), the random search method (Kozak, 2004. Kozak and 
Verma, 2006), recently found efficient by Baillargeon et al. (2007) and Baillar-
geon and Rivest (2009) and implemented in the R package stratification (Bail-
largeon and Rivest 2007), genetic algorithm (Keskintürk and Er, 2007) (Kozak, 
2013 proved that random search method is a little more efficient than Keskintürk 
and Er’s genetic algorithm) or any other similar method. 

To the best of the author’s knowledge, an algorithm that might be applied to 
the problem under consideration (i.e., minimizing δ subject to (2) and (3)) has 
not yet been proposed in the literature. The problem we must deal with is that we 
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do not know the domain sample sizes nd so we are not able to perform the strati-
fication in the domains. This issue begs the question, how to decide about the 
sample sizes that are required to fulfill the constraint (2). This is not troublesome 
in the approach of Lednicki and Wieczorkowski (2003) since they minimize 
sample size n subject to given δd, d = 1, … , D; for this reason, they can perform 
stratification in each domain independently. This is, unfortunately, not the case 
in our situation. 

If the population is small, one can stratify all the domains at the same time; 
then, the set of parameters searched for would comprise strata boundaries from 
all the domains. Otherwise, i.e., when the domains are too large to be stratified 
simultaneously, such an approach is unlikely to be applied. Below we present 
two alternative algorithms; both of them aim to minimize δ subject to (2) and 
(3), but the approaches to do it are different.  
 

Algorithm 1 
1. In each dth domain, construct Hd strata via any approximate stratification 

method (e.g. Dalenius and Hodges, 1959; Eckman, 1959; Gunning and Hor-
gan, 2004). Since we consider the take-all stratum approach, change the last 
stratum boundary in such a way that the last (take-all) stratum comprises five 
elements. 

2. Determine initial values of nd via the formula 
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3. Using any optimization approach to stratification (see, e.g., Lednicki and Wiec-
zorkowski, 2003; Kozak, 2004; Kozak and Verma, 2006, and the citations in 
these papers), stratify each domain independently so as to minimize δd subject to 
sample size nd. Take the approximate strata boundaries (obtained in step 1) as 
the initial values in the optimization. As a result, a vector δ = (δ1, … , δD)T of the 
domain coefficients of variation (1) and a vector n = (n1, … , nD)T of the do-
main sample sizes are determined. 

4. Choose a domain for which δd is minimal; let it be the domain dmin. Let a do-
main for which δd is maximal be dmax. Determine  

 

nd = nd − p if d = dmin,  
nd = nd + p if d = dmax, 
nd = nd otherwise. 
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The value of parameter p should be chosen based on the domain sizes and 
sample size n assumed. (Detailed information on parameter p is provided 
later). 

5. Perform steps 3 and 4 until at least one of the stopping criteria given below is 
fulfilled. In step 3, instead of the approximate strata boundaries, as initial pa-
rameters to perform the optimization take the strata boundaries obtained in  
a previous iteration; as the sample sizes nd take the sample sizes obtained in  
a previous iteration. 

The stopping criteria used in step 5 are as follows: 
(i) ε>δδ=

maxmin ddR , ε being a value fixed at the outset such that ε < 1; 

(ii) Ri+1 < Ri, Ri and Ri+1 being the R value in the ith and (i + 1)th iteration, re-
spectively; if this stopping criterion is fulfilled, the result of the ith step 
should be taken as the final result. 

The value of parameter p from step 4 of the algorithm has an influence on  
a size of changes of δd values and on time of executing the algorithm. A large p 
value will likely result in noticeable differences between δd values obtained, 
whereas a small p value will make the algorithm time-consuming. On the con-
trary, the greater the ε value, the smaller differences between δd values may be 
obtained and the more time the algorithm needs. Therefore, the algorithm may 
be executed several times; in subsequent executions, the p value should be no-
ticeably smaller and ε noticeably greater. For instance, the first p value may be 
equal to 0.05n, the second, to 0.01n, and the third, to 0.002n; the first ε value 
may be then equal to 0.80, the second, to 0.90, and the third, to 0.99. (Certainly, 
these are just exemplary p and ε values; they should be chosen on the basis of 
the domain sizes and n assumed. For instance, the greater n assumed, the greater 
the last ε value may be [providing less differences among final δd]). In each new 
execution of the algorithm, steps 1 and 2 should be omitted; instead, the strata 
boundaries and domain sample sizes obtained in the previous execution should 
be used in the first iteration (step 3). 

Worth noting is that, although for various nd the optimum strata boundaries 
in the dth domain may be different, it is likely that strata boundaries will not be 
changed in some iteration(s) of the algorithm, especially when p is small. Using 
the strata boundaries obtained in a previous iteration as the initial parameters 
makes optimization in a particular iteration takes less time. Therefore, the first 
execution of the third step, that is, with approximate strata boundaries as the ini-
tial parameters in optimization, should take most time; next iterations would 
likely be noticeably shorter. 
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If the domains are very large (for instance, they comprise hundreds of thou-
sands of elements), each domain should be saved in a different file on a com-
puter disc. Then, in a particular iteration (besides the first execution of the third 
step, in which the computer opens and works on every domain separately) we 
need to open and work only on two files independently (i.e. once we finish 
stratifying one domain, we close the corresponding file and open the second one 
to work on the second domain considered in this iteration). 

Note that we have considered estimation of the population total. The algo-
rithm, however, works for any stratification problem, irrespective of a parameter 
to be estimated, an estimator to be used, as well as a stratification approach em-
ployed (provided that it works based on initial parameters). Moreover, even 
though we present the algorithm for univariate stratification, it applies also for 
multivariate stratification; the only difference is that in step 3 we would apply  
a multivariate stratification algorithm instead of a univariate one. 

In this paper, we have used random search (Kozak, 2004; Kozak and 
Verma, 2006) and Nelder and Mead’s (1965) optimization methods for stratifica-
tion; both of them provided the same results.  
 

Algorithm 2 
This algorithm uses Lavallée and Hidiroglou’s (1988) algorithm for stratifi-

cation, which is orientated towards minimization of sample size subject to fixed 
precision of estimation. The algorithm is as follows.  
1. Perform steps 1 and 2 from algorithm 1. Set c = c0 as the initial value of the 

target CV for each domain; let nT denote the target total sample size. 
2. Using any optimization approach to stratification (see e.g. Lavallée-

Hidiroglou 1988; Lednicki and Wieczorkowski, 2003; Kozak, 2004; Kozak 
and Verma, 2006), stratify each domain independently so as to minimize nd 
subject to fixed c. Take the approximate strata boundaries (obtained in step 1) 
as the initial values in the optimization. As a result, a vector n = (n1, … , nD)T 

of the domain sample sizes is determined. Thus, we have ∑
=

=
D

d
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1
, nd be-

ing the sample size obtained for the dth domain. 
3. If |n – nT| < q, stop.  
4. If |n – nT | < |nold – nT |, nold being n from the previous iteration, stop and take 

results from the previous iteration as final results (this step applies only for 
iterations other than the first one).  

5. If n > nT, increase the target CV as cnew=cold + ε for some ε >0; if n<nT, 
cnew=cold – ε. Go back to step 2. 
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The parameters q from step 3 and ε from step 5 need to be commented on. If 
we choose too small a q value, especially when the population and the target overall 
sample size are large, then it is possible that the algorithm would be executed for  
a very long time. On the other hand, too large a q value may cause the final overall 
sample size n be too far from the target sample size nT to be accepted. The ε value is 
directly related with the q value: the higher the ε value, the higher the q value has to 
be chosen, and vice versa. The ε being too small will result in unnecessarily long 
execution of the algorithm; on the other hand, too large the ε value might cause the 
algorithm not able to reach the CV that is related to the target nT.  

Step 4 is to assure that the algorithm will not follow into a loop in which in 
one iteration ε is decreased and in the subsequent iteration it is increased, after 
which it would have the same value as in the previous iteration.  

Alternatively, similarly to algorithm 1, algorithm 2 may be applied gradu-
ally, where in the subsequent executions q and ε are decreased. Most of the gen-
eral, non-technical comments given on algorithm 1 apply also to algorithm 2. 
 

2. Numerical example 
 

To present the use of the algorithms, we generated a population of size  
N = 100 000 subdivided into four domains of sizes 13 000, 50 000, 7000, and  
30 000, respectively. The following formula was applied to generate the posi-
tively skewed stratification variable Xd in the dth domain:  
 

( )[ ]dd ZX exp= , 
 

where Zd is the realization of an ( )2,10 dN σ  random variable (i.e., the random 
variable normally distributed with the mean 10 and standard deviation σd); the 
function [.] stands for rounding to integers (to simulate an often situation in sur-
vey practice). The standard deviations σd chosen were 0.4, 0.4, 0.8, and 0.6, respec-
tively. Numbers of strata Hd constructed in the respective domains were 5, 8, 4, and 
8; the sample size from the whole population was assumed to be n = 5000.  

Algorithm 1 was executed three times; in the first execution, its parameters 
were p = 250 and ε = 0.80; in the second execution, p = 50 and ε = 0.92; finally, 
in the third execution, p = 10 and ε = 0.995.  

The first execution needed nine iterations (Table 1), which led to the ratio  
R = 0.868: this stopped execution of the algorithm. In each iteration strata 
boundaries in both stratified domains changed. The algorithm was executed once 
more, with the use of the domain strata boundaries and sample sizes obtained in 
the previous execution and with p = 80 and ε = 0.92. The results are presented in 
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Table 2. This execution needed just two iterations to fulfill the first stopping rule 
as it led to R = 0.936 > 0.92. Again, in each iteration the strata boundaries in the 
stratified domains changed. Finally, the third execution needed eleven iterations 
(Table 3), providing final domain precisions 0.004056, 0.004063, 0.004059, and 
0.004063, respectively. The ratio obtained in the last iteration was R = 0.998, 
which fulfilled the first stopping criterion. In most iterations of this execution 
one or both strata boundary sets did not changed. Altogether, algorithm 1 needed 
23 iterations so a single stratification algorithm (that is, for one domain) was car-
ried out 46 times; however, there were 36 effective iterations (the effective itera-
tion being one in which strata boundaries changed). 

Table 1 
 

Results of the first execution of algorithm 1, i.e. for p = 250 and ε = 0.80 
 

δ1 δ2 δ3 δ4 n1 n2 n3 n4 R 
0.007610 0.002283 0.012505 0.002992 650 2500 350 1500 0.183 
0.007610 0.002427 0.008488 0.002992 650 2250 600 1500 0.286 
0.007610 0.002596 0.006430 0.002992 650 2000 850 1500 0.341 
0.006325 0.002798 0.006430 0.002992 900 1750 850 1500 0.435 
0.006325 0.003047 0.005181 0.002992 900 1500 1100 1500 0.473 
0.005467 0.003047 0.005181 0.003324 1150 1500 1100 1250 0.557 
0.004836 0.003365 0.005181 0.003324 1400 1250 1100 1250 0.642 
0.004836 0.003365 0.004309 0.003767 1400 1250 1350 1000 0.696 
0.004340 0.003795 0.004309 0.003767 1650 1000 1350 1000 0.868 

 

Note:  
The subsequent columns contain precision of estimation δd and sample sizes nd corresponding to the dth  
domain, and ratio 

maxmin
/ ddR δδ= . 

 
Table 2 

 

Results of the second execution of algorithm 1, namely for p = 50 and ε = 0.92 
 

δ1 δ2 δ3 δ4 n1 n2 n3 n4 R 
0.004253 0.003795 0.004309 0.003865 1700 1000 1350 950 0.881 
0.004253 0.003900 0.004167 0.003865 1700 950 1400 950 0.909 
0.004169 0.003900 0.004167 0.003963 1750 950 1400 900 0.936 

 

Note:  
The subsequent columns contain precision of estimation δd and sample sizes nd corresponding to the dth  
domain, ratio 

maxmin
/ ddR δδ= . 

 
Like algorithm 1, algorithm 2 was executed three times. In the first execu-

tion its parameters were: c0 = 0.01 (as the initial target CV), ε = 0.0005 and  
q = 500; in the second execution, ε = 0.0001 and q = 25; and in the third execu-
tion, ε = 0.00005 and q = 5. 
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Table 3 
 

Results of the third execution of algorithm 1, namely for p = 10 and ε = 0.995 
 

δ1 δ2 δ3 δ4 n1 n2 n3 n4 R 
0.004152 0.003922 0.004167 0.003963 1760 940 1400 900 0.941 
0.004152 0.003945 0.004139 0.003963 1760 930 1410 900 0.950 
0.004136 0.003968 0.004139 0.003963 1770 920 1410 900 0.958 
0.004136 0.003968 0.004112 0.003987 1770 920 1420 890 0.959 
0.004120 0.003991 0.004112 0.003987 1780 910 1420 890 0.968 
0.004104 0.003991 0.004112 0.004012 1790 910 1420 880 0.971 
0.004104 0.004015 0.004085 0.004012 1790 900 1430 880 0.978 
0.004088 0.004015 0.004085 0.004037 1800 900 1430 870 0.982 
0.004072 0.004039 0.004085 0.004037 1810 890 1430 870 0.988 
0.004072 0.004039 0.004059 0.004063 1810 890 1440 860 0.992 
0.004056 0.004063 0.004059 0.004063 1820 880 1440 860 0.998 

 

Note:  
The subsequent columns contain precision of estimation δd and sample sizes nd corresponding to the dth  
domain, and ratio 

maxmin
/ ddR δδ= . 

 

The results are presented in Table 4. The first execution needed 13 iterations; it 
leaded to CV = 0.40 and sample sizes from domains n = (1490, 968, 1550, 944)T, 
which sum up to the overall sample size equal n = 4952. Interestingly, the second 
execution of the algorithm led to a smaller sample size, n = 4913, than that from 
previous execution in spite of a smaller CV obtained (CV = 0.39). This execution 
was stopped based on the condition from step 4. The last, third execution led to  
CV = 0.00385 and n = 5001; it took just one iteration. Altogether, algorithm 2 
needed 16 iterations so a single stratification algorithm (that is, for one domain) 
was carried out 64 times; however, there were 39 effective iterations.  

Table 4 
 

Results of execution of algorithm 2 
 

CV n1 n2 n3 n4 n E 
0.0100 375 163 497 158 1193 1 
0.0095 408 180 534 175 1297 1 
0.0090 446 199 575 194 1414 1 
0.0085 488 222 621 216 1547 1 
0.0080 537 250 672 243 1702 1 
0.0075 593 284 730 275 1882 1 
0.0070 660 325 797 315 2097 1 
0.0065 738 373 875 364 2350 1 
0.0060 833 436 968 425 2662 1 
0.0055 948 517 1078 504 3047 1 
0.0050 1089 623 1206 608 3526 1 
0.0045 1264 767 1363 747 4141 1 
0.0040 1490 968 1550 944 4952 1 
0.0039 1543 914 1593 863 4913 2 
0.0038* 1597 956 1638 902 5093 2 
0.00385 1570 934 1615 882 5001 3 

 

* This iteration has been rejected because provided the worse results than the previous one. 
 

Note:  
The subsequent columns contain precision of estimation CV = δd, sample sizes nd corresponding to the dth  
domain, and the number of execution (E). 
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Conclusions 
 

The paper presents two algorithms useful in stratifying domains into which 
a population of study is subdivided, when a sample size from the whole popula-
tion is fixed. Insofar as could be determined this problem has not yet been posed 
in the statistical literature. We have presented the application of both algorithms 
for a particular population subdivided into four domains. The algorithms work 
for any stratification algorithm that is of optimization type (for some details see 
Kozak and Verma, 2006), that is, that treats stratification as the optimization 
problem posed as an optimization function to be minimized under specified con-
straints, and in which one uses some initial points to start the optimization proc-
ess. The choice of a stratification method has no bearing on the algorithms’ 
work, as what is going on within the stratification algorithm has no meaning for 
what is going on within the main algorithm. What has the meaning is the result 
obtained via the stratification algorithm, that is, the stratification points obtained 
in a particular execution of the stratification algorithm.  

From the comparison of the algorithms we are not able to clearly claim 
which of them is better. The results obtained via algorithm 2 are better in the 
sense that it provided a lower CV (which was the function to be minimized) than 
algorithm 1. However, when there are more than just four domains, algorithm 1 
might work faster than algorithm 2 as it is constructed in such a way that in one 
iteration it works only with the domains for which the results are the worst. It 
was not observed in the present study. The other aspect of the study is that both 
algorithms worked with a numerical optimization that might provide local  
minima − had it not been the case, both algorithms should have provided the 
same results and just times of their execution would have differed. This shows 
that there is still a need for an algorithm for optimum stratification that provides 
globally optimum strata. Such an algorithm would be especially important in of-
ficial statistics, especially when the survey budget is limited. 

It is to be noted that practice shows that with algorithm 2 there may be 
problems with obtaining a final overall sample size that indeed is equal or even 
close to the target n. This may happen especially when the population is divided 
into a large number of domains comprising many elements.  

These results should be treated as a starting point for further research. A fur-
ther comparison of the two approaches is necessary, based on simulation studies 
for a large number of populations as well as various situations; also, a compari-
son based on real life data might provide useful information on the behavior of 
the methods. The work on the algorithms presented in this paper has not ended, 
and it is possible that modifying them might lead to more efficient stratification. 



ON EQUAL-PRECISION STRATIFICATION IN DOMAINS… 

 

17 

References 
 
Baillargeon S. and Rivest L.P. (2007), Stratification: Stratification of Survey Popula-

tions, R package version 1.0. 

Baillargeon S., Rivest L.P. and Ferland M. (2007), Stratification en enquetes entreprises: 
Une revue et quelques avancees. Proceedings of the Survey Methods Section, Sta-
tistical Society of Canada. 

Baillargeon S. and Rivest L.-P. (2009), A General Algorithm for Univariate Stratifica-
tion, „International Statistical Review”, Vol. 77, pp. 331-344. 

Dalenius T. and Hodges J.L. (1959), Minimum Variance Stratification, „Journal of the 
American Statistical Association”, Vol. 54, pp. 88-101. 

Eckman G. (1959), An Approximation Useful in Univariate Stratification, „Annals  
of Mathematical Statistics”, Vol. 30, pp. 219-229. 

Gunning P. and Horgan J.M. (2004), A Simple Algorithm for Stratifying Skewed Popu-
lations, „Survey Methodology”, Vol. 30, pp. 159-166. 

Hidiroglou M. (1986), The Construction of a Self-Representing Stratum of Large Units 
in Survey Design, „The American Statistician”, Vol. 40, pp. 27-31. 

Keskintürk T. and Er Ş. (2007), A Genetic Algorithm Approach to Determine Stratum 
Boundaries and Sample Sizes of Each Stratum in Stratified Sampling, „Computa-
tional Statistics and Data Analysis”, Vol. 52, pp. 53-67. 

Kozak M. (2004), Optimal Stratification Using Random Search Method in Agricultural 
Surveys, „Statistics in Transition”, Vol. 6(5), pp. 797-806. 

Kozak M. (2014), Comparison of Random Search Method and Genetic Algorithm  
for Stratification, „Communications in Statistics: Simulation and Computation”,  
Vol. 43, pp. 249-253. 

Kozak M. and Zieliński A. (2005), Sample Allocation between Domains and Strata, „In-
ternational Journal of Applied Mathematics & Statistics”, Vol. 3, pp. 19-40. 

Kozak M. and Verma M.R. (2006), Geometric versus optimization approach to stratifi-
cation: comparison of efficiency, „Survey Methodology”, Vol. 32, pp. 157-163. 

Lavallée P. and Hidiroglou M. (1988), On the Stratification of Skewed Populations, 
„Survey Methodology”, Vol. 14, pp. 33-43. 

Lednicki B. and Wieczorkowski R. (2003), Optimal Stratification and Sample Allocation be-
tween Subpopulations and Strata, „Statistics in Transition”, Vol. 6, pp. 287-306. 

Nelder J.A. and Mead R. (1965), A Simplex Method for Function Minimization, „Com-
puter Journal”, Vol. 7, pp. 308-313. 

R Development Core Team (2006), R: A Language and Environment for Statistical 
Computing, R Foundation for Statistical Computing, Vienna, Austria, 
http://www.R-project.org. 

Rivest L.P. (2002), A Generalization of Lavallee and Hidiroglou Algorithm for Stratifi-
cation in Business Surveys, „Survey Methodology”, Vol. 28, pp. 207-214. 



Marcin Kozak 

 

18 

ON EQUAL-PRECISION STRATIFICATION IN DOMAINS SUBJECT  
TO FIXED SAMPLE SIZE 

 

Summary 
 

Stratified sampling is one of the most common sampling designs in economic sur-
veys of official statistics. Independent sampling in domains is of special interest for prac-
tical reasons; for instance, in Polish economic surveys voivodeships constitute the do-
mains, and in many surveys estimation is required for both the whole country and each 
voivodeship. The objective of the paper is to present two algorithms for stratification in 
domains, a population under study is subdivided into, orientated towards minimizing  
a common value of the coefficients of variation of an estimator considered in the do-
mains, subject to fixed sample size from the whole population. An application of the al-
gorithms and their comparison is presented for an artificial population comprising four 
domains.   


