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Introduction 
 

Let us introduce the assumptions of the general linear mixed model: 
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where Y and e are random vectors of sizes n × 1, X and Z are known matrices of 
sizes n × p and n × q, respectively, the random vector v is of size q × 1 and the 
vector of parameters β is of size p × 1. Hence, the variance-covariance matrix of 
Y is given by: 
 

                                   
2 ( ) ( )D = = = +TY V V δ ZGZ R ,                                (2) 

 

where δ is a vector of unknown variance components. 
 

If in the model (1) we additionally assume that elements of random vectors 
E and v are independent with zero expected values and variances 2

eσ  and 2
vσ , 

respectively, then 2 2( ) e n nD σ ×= =e R I  and 2 2( ) v q qD σ ×= =v G I , where I is 

the identity matrix. In this case, the variance-covariance matrix (2) simplifies to 
the following formula: 2 2 2( ) ( ) v e n nD σ σ ×= = = +TY V V δ ZZ I , where 

2 2 T

e vσ σ⎡ ⎤= ⎣ ⎦δ . 
In the paper the classic and permutation tests of fixed effects are studied in-

cluding the situation when the assumption of normality of random effects and 
random components is not met. 
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1. Classic tests of significance of fixed effects 
 

In the section we introduce classic tests of significance of fixed effects: 
Wald test, conditional t-test and likelihood ratio test. In particular, we present 
their assumptions, tests statistics and information on their properties. In all the 
tests the null hypothesis is H0 : βi = 0 and the alternative – H1 : βi ≠ 0. It should 
be noted that alternative approach (which is not considered in the paper) called 
“the transformation method” can be used as well (Rao, 2003, pp. 110-11) – we 
can transform the mixed model into a standard linear regression model and apply 
standard linear regression methods for model validation. 

The first classic test presented in this paper is Wald test, called also in the 
literature the Z-test (Verbeke, Molenberghs, 2000, p. 56). Moreover, this test can 
also be used to test fixed effects in more general class of mixed models (e.g. 
Wolny-Dominiak, 2011). This test is obtained assuming that the distribution of 
(Verbecke, Molenbergs, 2000, pp. 56-57): 
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can be approximated by standard normal distribution. Hence, for a known matrix 
K the null and alternative hypotheses in Wald test can be written as: H0 : Kβ = 0, 
H1 : Kβ ≠ 0 and Wald test statistic given by: 
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may be approximated by χ2 distribution with rank(K) degrees of freedom. When 
we test hypothesis H0 : β1 = 0, matrix K has the form: K = [1 0 0 … 0]. It should 
be noted that in the Wald test the problem of estimation of variance components 
δ is not taken into account (Verbeke, Molenbergs, 2000, pp. 56-57).  

To solve the problem we can use conditional t-test which is based on the ap-
proximation of (3) by Student’s t-distribution (Verbeke, Molenbergs, 2000). If the 
assumption of normality of random effects and components is fulfilled, the test sta-
tistic has a distribution close to the Student t-distribution and only for special cases 
exact Student t-distribution (Frątczak, ed., 2012, pp. 412-413). Hence for H0 : Kβ = 0, 
H1 : Kβ ≠ 0, distribution of the test statistic given by (Wolfinger, 1993, p. 1090;  
Littel et al., 2006, pp. 755-756, Frątczak, ed., 2012, pp. 412-413):  
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can be approximated by F distribution with rank(K) numerator degrees of free-
dom, and the denumerator degrees of freedom is estimated from the data using 
e.g. Satterthwaite’s (1946) approximation. 

The last classic test for fixed effects presented in this paper is the likelihood 
ratio test (LRT). The basic assumption in this test is that two versions of the ana-
lyzed model – without and with the fixed effect − should be nested. The model 
without the considered effect should therefore be a special case of the model with 
this effect. It is fulfilled when the model is estimated using maximum likelihood 
method (Biecek, 2012, p. 160). The test statistic in this case can be written as: 
 

                                
( ) ( )2
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2 log 2 log logL L L
L
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where L1 is likelihood for the model without the analyzed fixed effect (nested 
model) and L2 likelihood for the more general model (with this fixed effect). 
These values must meet the condition L2 > L1 (log(L2) > log(L1)), so the value  
of LRT statistic is positive. Under the null hypothesis, the distribution of this sta-
tistic is the χ2 distribution with k2 – k1 degrees of freedom, where ki is the num-
ber of parameters estimated in the i-th model (Pinheiro, Bates, 2000, p. 83). 
Hence, as written by Biecek (2012, p. 160), when we test one of the fixed effects 
we should use quantiles of χ2 distribution with one degree of freedom.  

However, it should be noted that LRT test is “anticonservative”, what means 
that reported p-values for this test can be smaller than the true p-value. It means 
that the test does not hold its size. Pinheiro, Bates (2000, pp. 87-89) write: “Even 
though a likelihood ratio test for the ML fits of models with different fixed effects 
can be calculated, we do not recommend using such tests. Such likelihood ratio 
tests using the standard Chi-square reference distribution tend to be »anticonserva-
tive« – sometimes quite badly so”. In the simulation study we will show that the 
properties of the LRT test for the considered problem are unsatisfactory.  
 

2. Permutation tests of fixed effects based on log-likelihood 
 

Biecek (2012, pp. 22-23, 160) studies permutation test of fixed effects, 
where the test statistics equals log-likelihood of the model. Similarly to other 
tests in this class, the procedure can be described in three stages (Moore, 
McCabe, 2005, p. 54). In the first step, we calculate value of the test statistics 
measuring the effect, in this case it is a log-likelihood for original data denoted 
by lnL0. In the second step we repeat B times following points: 
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− we generate π*,b which is permutation of vector [1 2 … n] where n is the 
number of observations (where b = 1, 2, … , B),  

− for the test of the jth fixed effect, the jth column of X is permuted and we ob-
tain permutation version of X denoted by *,

,
b

i jX (where b = 1, 2, … , B), 

− we calculate log-likelihood for the model with *,
,
b

i jX  which is denoted by 
*,
0ln bL  (where b = 1, 2, … , B). 

In the third step we calculate p-value for this test (Biecek, 2012, pp. 22-23): 
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It is the fraction of cases where log-likelihood for the model based on per-
mutations is larger than model based on original data. 

In the simulation study we will also consider the permutation version of the 
conditional t-test and the permutation version of the log-likelihood ratio test. To 
obtain the permutation version of the conditional t-test we should replace in the 
three stage procedure presented in this section the log-likelihood by the t-test 
statistic. Similarly, to obtain the permutation version of the LRT test we should 
replace in the procedure the log-likelihood by the LRT statistic. 
 

3. Simulation study 
 

In this section we present results of the simulation study which is widely 
used in many applications to assess properties of new methods (e.g. Domański, 
Jędrzejczak, 2003; Gamrot, 2013; Krzciuk, Mierzwa, Wywiał, 2013). The simu-
lation is conducted in R (R Development Core Team, 2013). Similarly to Koń-
czak (2010, 2012) we will compare properties of classic and permutation tests. 
In those analyzes we use data on revenues from municipal taxation in 284 Swed-
ish municipalities, presented in Särndal, Swensson, Wretman (1992). In this pa-
per we analyze six variables: RMT85 – revenues from municipal taxation in 
1985 in millions kronor, P75 – population in municipalities in thousands in 
1985, REV84 – real estate values in 1984 (in millions of kronor), CL – indicator 
of cluster, REG – indicator of geographic region. 

We consider five models: nested error model (called also the basic unit level 
model by Rao, 2003, p.78)  
 

                                 0 1 1 2 2id id id d idY X X v eβ β β= + + + + ,                            (8) 
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two random regression coefficient models with constant: 
 

                              ( )0 1 1 2 2id d id id idY v X X eβ β β= + + + +                             (9) 
and 

                              ( )0 1 1 2 2id id d id idY X v X eβ β β= + + + + ,                         (10) 
 

and two random regression coefficient models without constant: 
 

                                  ( )1 1 2 2id d id id idY v X X eβ β= + + +                                (11) 
and 

                                  ( )1 1 2 2id id d id idY X v X eβ β= + + + .                              (12) 
 

In all of the models the variable of interest is RMT85 and explanatory vari-
ables are P75 and REV84. We considered two grouping variables – CL and 
REG, therefore we analyzed ten models. 

Model selection was made based on the Akkaike Information Criterion 
(AIC) and the Bayesian Information Criterion (BIC). The smallest value of AIC 
and BIC where obtained for the model ( )0 1 1 2 2id d id id idY v X X eβ β β= + + + + , 

where the grouping variable was the indicator of cluster (CL).  
We make two experiments to examine the significance of the parameter β2 

corresponding to the variable REV84. In the first experiment we generate data 
based on the model:  
 

                                        ( )0 1 1id d id idY v X eβ β= + + + ,                                 (13) 
 

where values of β0, β1, 2
vσ  and 2

eσ  are obtained based on the real data under as-

sumption of (13). Hence, the parameter β2 is omitted. In this experiment we ana-
lyze type I error for classic and permutation tests. In the second experiment we 
generate data based on the model: 
 

                               ( )0 1 1 2 2id d id id idY v X X eβ β β= + + + + ,                        (14) 
 

where values of β0, β1, β2, 2
vσ  and 2

eσ  are obtained based on the real data under as-

sumption of (14). Hence, we consider type II error for classic and permutation tests.  
Both experiments are conducted in two variants – (a) and (b). In the variant 

(a) random components and random effects are generated from the normal dis-
tribution. In the variant (b) shifted exponential distribution is used to generate 
values of random components and random effects. In both variants expectations 
were 0, variances – 2

eσ  and 2
vσ .  
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In all experiments we made 1000 iterations and additionally for permutation 
tests 500 permutations in each iteration. In the variant (a) of the first experiment 
we consider the data generated based on the normal distributions and the model 
without the analyzed parameter. 

Firstly, we should remind that LRT test does not hold its size. Although it is 
known property of LRT test of fixed effects in mixed models as it was stated at 
the end of the section 2, we would like to check in the simulation study what 
“quite badly” behavior means (see the opinion of Pinheiro and Bates, 2000, cited 
at the end of the section 2). Moreover, we have checked that the permutation 
version of LRT test does not hold its size, too. 

For classic tests, except for LRT, we obtained similar results for all of levels of 
significance and in some cases values of the type I error are greater than the assumed 
α. Classic tests tend to be “anti-conservative”. It should be noted that in permutation 
lnL test and permutation version of t-test we reject null hypothesis exactly or less times 
than it is assumed (than α). Log-likelihood ratio test in the group of classic tests gave 
the worst results, similarly to its permutation version among permutation tests. 
 

Table 1 
 

Summary of experiment 1(a) − values of type I error 
 

Test 
Assumed level of significance (α) 

α = 0,01 α = 0,05 α = 0,1 

Conditional t-test 0,011 0,047 0,150 
Wald test 0,011 0,047 0,106 
LRT 0,694 0,739 0,757 

Permutation lnL test 0,010 0,049 0,097 
Permutation t-test 0,010 0,046 0,090 
Permutation LRT 0,154 0,209 0,270 

 
Table 2 

 

Summary of experiment 1(b) − values of type I error 
 

Test 
Assumed level of significance (α) 

α = 0,01 α = 0,05 α = 0,1 

Conditional t-test 0,014 0,044 0,087 
LRT 0,255 0,278 0,287 
Wald test 0,014 0,045 0,088 

Permutation lnL test 0,005 0,046 0,106 
Permutation t-test 0,005 0,041 0,098 
Permutation LRT 0,622 0,684 0,711 

 

In the variant (b) we assume the same model as in the variant (a), but random 
effects and random components are generated based on shifted exponential distri-
bution. Similarly to the variant (a) the worst results are obtained for classic and 
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permutation LRT. For LRT this type of error was higher than 0,25 for all of as-
sumed level of significance, in the permutation version of this test – higher than 
0,6. As in the case of the variant (a), conditional t-test and Wald test gave similar 
results for all levels of significance. These tests should not be used because they 
are based on the normality assumption. Results obtained for permutation lnL test 
and permutation t-test in this variant of the first experiment were similar. 

In the second experiment – variant (a), we generate data from normal distri-
bution, but based on the model with the analyzed parameter. Although the best 
results for permutation tests, and all test too, we obtain for permutation LRT test, 
we omit both LRT tests in the interpretations because of their very high type I er-
ror obtained in the experiments 1(a) and 1(b). All of the permutation tests give 
better results than classis t-test and Wald test. Comparing classic t-test and per-
mutation t-test we should note that permutation version test give better results 
for all of assumed levels of significance.  

In variant (b) of the second experiment we use the same model as in variant 
(a), but random effects and random components are generated based on shifted 
exponential distributions. Firstly, classic tests should not be used because they 
are based on the normality assumption. Secondly, we omit both LRT tests in the 
interpretations because of their very high type I error obtained in the experi-
ments 1(a) and 1(b). For all of the considered cases we obtain smaller values of 
type II errors for permutation t-test than for permutation lnL test. 

To sum up the results of the second simulation study, we should stress that 
the values of the type II error are large. But it is not unusual in econometrics. For 
example, it is known (see Maddala, 2006, p. 615) that the powers of some 
widely used unit root tests of stationarity of time series are very low – for some 
tests even less then 0,1 (what implies values of type II error larger than 0,9). 
 

Table 3 
 

Summary of experiment 2(a) − values of type II error 
 

Test 
Assumed level of significance (α) 

α = 0,01 α = 0,05 α = 0,1 

Conditional t-test 0,907 0,763 0,637 
LRT 0,754 0,718 0,703 
Wald test 0,905 0,761 0,634 

Permutation lnL test 0,901 0,761 0,626 
Permutation t-test 0,849 0,628 0,491 
Permutation LRT 0,360 0,279 0,217 
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Table 4 
 

Summary of experiment 2(b) − values of type II error 
 

Test 
Assumed level of significance (α) 

α = 0,01 α = 0,05 α = 0,1 

Conditional t-test 0,912 0,791 0,689 
LRT 0,720 0,695 0,688 
Wald test 0,910 0,791 0,687 

Permutation lnL test 0,938 0,789 0,667 
Permutation t-test 0,937 0,738 0,574 
Permutation LRT 0,369 0,283 0,229 

 

Conclusions 
 

In the paper we study three classic and three permutation tests of fixed ef-
fects. Permutation tests can be used even if the assumptions of normality of dis-
tributions of random effects and random components are not met. Their proper-
ties are considered in the Monte Carlo simulation study based on the real data on 
revenues of municipal taxations in Swedish municipalities. In most of the stud-
ied cases in the simulation analysis, permutation lnL test and permutation ver-
sion of the t-test have the best properties. 
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Summary 
 

In the paper, we consider the problem of testing significance of fixed effects in the 
class of general linear mixed models. The problem is important especially when the as-
sumption of normality of random effects and random components is not met what is 
typical for economic applications. In the Monte Carlo simulation studies we compare 
properties of classic and permutation tests. 


