Piotr Zadora

University of Economics in Katowice

JOINING AGILE WITH UNIFIED PROCESS
IN ORDER TO IMPROVE
SOFTWARE QUALITY

Introduction

Business needs for improvement of the software development are increas-
ing. Organizations expect faster results from their investments; they want their
improvement projects to adapt to and follow changing business needs. The agile
way of working, used more and more in software development, contains several
techniques that support these business needs. So the question is: Could an im-
provement of the software development be performed in an agile way and what
about an adoption of this approach by more traditional practices? This article is
a quick introduction to Agile practices that can help improve the quality of soft-
ware creation by reducing defects, improving design, sharing the theory of the
code and building less. It includes an introduction of how to choose the practices
for your organizational context. It also includes an example how to adopt Agile
Modeling in one of the more popular traditional approaches in order to improve
software quality.

Improving software quality

The vast majority of software projects suffer from a steady degradation of
design quality and it becomes more and more difficult to keep in the same level
of quality. As the software ages it becomes harder and harder to maintain be-
cause of the lack of skilled personnel capable to deal with it. In some cases it be-
comes too expensive to maintain and therefore the software is put to rest and re-
written. In others, the software is released with a steadily increasing number of
defects. Both of these common situations are deeply unsatisfying, but there is
another way. Many of the practices from the Agile realm inhibit the degradation

266 Piotr Zadora

of software quality and turn the trend around. It is not unknown for teams to
have maintained a zero-defect status of their projects for months and years.

Software design and architecture have become elastic and easily influenced by
different transformations over time. According to this, Gartner recommends an
emergent approach to enterprise architecture. Practices that are helpful in improv-
ing the quality of developed software are shown on Figure 1 [Elss08, NeAp09].

>
More Effective

Test Driven Test Driven
Automated i Done State
Development Requirements
Developer Tests

Test First
Development i Acceptance Tests
— I&-.... x Pair -
Test Last ’ RefactOIingJ H
Development S N S
Continuous
Integration |%..

Collective Code Evolutionary -, :
Ownership Design Release
Often :

i ' Simple | : :

Design | : :

N Meeti

Less Effective eeting
y-

Fig. 1. Effectiveness of Agile practices in terms of quality

A

There are four major strategies that can help to improve the quality of software:

e The diminution of defects — a low defect count in the code is often synony-
mous with high quality software. Defects are also the most visible indication
of quality problems.

e Design improvement — high quality design makes for an application that is
easy to understand and flexible enough to change as new requirements are
discovered. In traditional approaches developers usually make very good de-
sign in the beginning of the process and then it degrades over time as it is
patched many times. Agile practices give an alternative; using practices like
test driven development and refactoring developers are now able to continu-
ously improve the design of their system.

e Theory building — programs can be treated as theories, i.e. models of the real-
ity mapped onto software. The proper way of managing these models leads to
success. Building a theory of the reality-to-software mapping is a human
process that is best done face to face by trial and error with more than enough
time. Effective development teams have a shared understanding of how the
software system represents the world. In consequence they know how to

JOINING AGILE WITH UNIFIED PROCESS... 267

modify the code when a requirement change occurs, they know where to go
searching for an error that has been reported, and they communicate well
with other members of the team about the model and the codebase.

e Building less — only about 20% of functionality which is usually built is used
often or always. More than 60% of all functionality built in software is rarely
or never used. One way to improve the quality of software is to write less
code which makes it easier to understand and maintain. Additionally smaller
codebase almost always has fewer defects.

There are some important dependencies between the aforementioned strate-
gies shown on Figure 2 [RefC11].

The Diminution
/ of Defects \

Fewer lines for

Easier to defects

change

Easier to make —
Design w fix” ‘ Building
improvement correct Tix Less

\U/

Modify design in Easier to
right places understand

\ ’ e /
Building
- =

Fig. 2. Strategy dependencies

It can be counted that there are few advantages of given strategies in prac-
tice. Maintaining the theory of the code makes it easier to modify the design be-
cause of a better understanding of the existing design. Keeping the theory up to
date also diminishes the number of defects and the difficulty in fixing those de-
fects once found. Improving the design also makes it easier to remove errors by
being inherently easier to change. Building less code makes it easier to under-
stand and communicate the theory of the code and is directly related to the num-
ber of defects in the system.

268 Piotr Zadora

Improving software quality in the Agile context

Developers usually start IT projects with general idea of how to choose the
first practices of the Agile methodology. Then, once the first practices that best fit
of given environment have been chosen, developers need to be aware of the mind-
set they need to get the most out of the practices they choose. Choosing a practice
comes down to finding the highest value practice that will fit into the context of the
system to be created. Figure 3 contains dependencies between practices that are ca-
pable to improve the quality of the software. There is also a measure which puts
these practices in order related to effectiveness shown in that figure.

Set new specific S Get new practise > Check the degree of match
business goal from the top of list between practise context and reality

| |

Not satisfactory
Making progress

3\

Evaluate Learn about practise

progress towards & and adopt

business goal

Fig. 3. Steps for choosing and implementing practices

For improving quality, the most valuable set of practices are those nearest
the top of Figure 1. Four of the practices are independent: done state, automated
developer tests, automated acceptance tests, and pair programming. For exam-
ple, developers should consider to adopt pair programming as a support practice
to the other three practices. Next step to consider should be done state and auto-
mated developer tests, and then finally automated acceptance test (probably the
most difficult of this set to adopt correctly).

The practices involved in improving the quality of software are some of the
most difficult to do from the body of Agile practices. For example pair pro-
gramming is frequently seen as a waste of resources and uncomfortable to many
developers who are used to working alone. Developers should consider to try out
this technique by agreeing as a team to practice pair programming for a couple
of months before deciding whether it is worth adopting permanently. Most fre-
quently Agile practices show problems that have always been there but have not
been discovered. Facing with difficulties is a chance to correct a problem and
improve towards the goal of increased quality. A good example of this happens
when developer team starts adopting done states for the first time. This is sce-

JOINING AGILE WITH UNIFIED PROCESS... 269

nario when a team frequently works on multiple features at a time and at the end
of the iteration there is a lot of work in the middle and nothing fully completed.
This is discouraging and a common response is to stop doing the practice instead
of examining the reason of problems and looking for alternatives to correct them
in the next iteration.

Another good approach of dealing with these practices are “small steps” be-
cause many of them are completely new that may slow down development and
cause frustration. It should be taken one practice at a time, performed well, and
then used regularly. There is an issue of examining whether the practice is per-
formed well. The estimation may be based on the value that the developers team
originally hoped to achieve. If a practice is completely easy and comfortable
from the first time, or has not noticeably improved the quality of work done then
the team most probably did not performed it well.

Much of what developers are working on at the moment do not provide
immediate sense. For example — writing the tests first, before writing working
code in the automated developer tests practice is non-intuitive. It causes the issue
of what is the real achievement by doing things backward? Those who have suc-
cessfully adopted this practice have “suspended their disbelief” and done it any-
way. After experientially learning the practice such developers then made their
judgments about its utility and usually kept doing it because of the value seen.

Merging heavy methods with Agile practices

Every Project Manager can successfully integrate Agile principles and prac-
tices with heavyweight approaches to improve software quality, by understand-
ing and applying that Agile is not made for projects as Project Managers define
projects but more likely for product management. Product management is con-
cerned with the life of the product; from conception, through development and
eventually to discontinuation. Projects are not concerned with the ongoing im-
provement or enhancement of a product over the entire lifecycle of that product.
A project is all about the creation of something but when the something is created
the project is done [InfoQ11]. Understanding that subtle difference, it is informa-
tive to find out how Agile practices can be merged with heavyweight methods and
whether there are some similarities or common elements between them.

One of the most known “heavy” methods of software development is the
Rational Unified Process (RUP) created by the Rational Software Corporation,
a division of IBM since 2003 [Eweek02]. RUP is not a single concrete prescriptive
process, but rather an adaptable and iterative process framework, intended to be tai-

270 Piotr Zadora

lored by the development organizations and software project teams that will select
the elements of the process that are appropriate for their needs [Wikil4].

Many of Agile Modeling principles and practices are a part of the Unified
Process (UP) already, although perhaps not as explicitly as it could be. It is rela-
tively straightforward for teams using Unified Process to adopt Agile practices if
they choose to do so. This is because the Unified Process is very flexible and let
the developers to choose elements that meet their unique needs. Below is the list
of Agile practices used in modeling phase which may be adopted within Unified
Process framework [AMRUPOS]:

e active stakeholder participation,
e applying modeling standards,

e applying patterns gently,

o applying the right artifacts,

e collective ownership,

e creating of several models in parallel,
e depicting models simply,

o discarding temporary models,

o displaying models publicly,

e formalizing of contract models,
e iteration to another artifact,

e modeling in small increments,

e modeling with others,

e proving with code,

¢ reusing of existing resources,

e single source information,

e updating only when it is needed,
¢ using of the simplest tools.

Agile principles used in modeling define project stakeholders, users, man-
agement, operations staff, and support staff which are compatible with the Uni-
fied Process. The UP clearly includes project stakeholders, such as users and
customers, throughout most of it disciplines. To be successful project teams
should allow project stakeholders to take on modeling roles such as Business
Process Designer and Requirements Specifier as appropriate, there is nothing in
the RUP preventing this by the way. The more active project stakeholders are the
less of a need there will be for reviews, management presentations, and other
overhead activities that reduce team’s development velocity.

The application of modeling standards, in particular the diagrams of the
Unified Modeling Language (UML), is a significant part of the Unified Process.
Furthermore the RUP product includes guidelines for the creation of many mod-

JOINING AGILE WITH UNIFIED PROCESS... 271

eling artifacts, guidelines that developers team should consider adopting and fol-
lowing as appropriate, and explicitly suggests that the guidelines should be tai-
lored or even bend to suit developers needs.

Unified Process teams are free to apply modeling patterns, the RUP product
describes many common modeling patterns for any of the modeling disciplines.
Practice of applying patterns enhances Unified Process with its advice to ease
into the application of a pattern. There is no explicit clarification of this concept
within Unified Process framework.

Considering application of the right artifacts it should be stated that one of
the advantages of the Unified Process is that it provides advice for when to cre-
ate each type of model, even for non-UML artifacts such as data models and user
interface storyboards (UI flow diagrams).

Agile concept of collective ownership can be used to enhance the efforts on
Unified Process projects, assuming that the team behaviour supports the concept
of open and honest communication. The UP supports collective ownership with
its strong focus on configuration management issues. Developer teams should al-
low anyone on the project to access and work on any artifact that they wish, in-
cluding models and documents.

Unified Process clearly includes concept of creation several models in par-
allel. However, this concept could be communicated better because the near-
serial flow in its activity diagrams presented for each major modeling activity
doesn’t communicate this concept well. There is a larger issue as well when you
consider the lifecycle as a whole. Because the UP has organized its modeling ef-
forts into separate disciplines, for very good reasons, it is not as apparent that not
only could developer work on several business modeling artifacts in parallel but
he could also work on requirements oriented artifacts, analysis-oriented artifacts,
architecture artifacts, and design artifacts as well.

The practice of depicting models in straightforward way is a choice made
by the modeler, albeit one that must be implicitly supported by the rest of the
development team. Unified Process teams will need to adopt modeling guide-
lines that allow models that are just good enough and the customers of those
models (including programmers, project stakeholders, and reviewers) must also
be willing to accept simple models. This issue is one of the most difficult for
many organizations to adopt.

Modelers on Unified Process teams are free to discard anything that they
wish. As with the simplicity practices your organization’s culture must accept
the concept of developing and maintaining just enough models and documents
and no more.

272 Piotr Zadora

Unified Process teams are free to follow practice of showing models pub-
licly. Developer teams should follow the principle of open and honest communi-
cation by making all artifacts available to everyone.

The Unified Process includes the concept of integrating with external sys-
tems. These systems are typically identified on use case models and there is sug-
gestion to introduce ‘“boundary classes” as implementation of the interface to
these systems. The interaction between systems could be specified with one or
more use cases and the corresponding realization of them would be the formal-
ized contract model. Hence, the adoption of this Agile practice can make a posi-
tive contribution to strengthening the integration capabilities of enterprise appli-
cation realized according to Unified Process approach.

The practice of iteration to another artifact can be easily adopted by Unified
Process team. Understanding of UP’s modeling activities as quasi-serial proc-
esses and the division of modeling activities into separate disciplines can hinder
the iterative mindset required of Agile developers.

The practice of modeling in small increments is clearly an aspect of the
Unified Process. The UP’s support for iterations implies that model established
at the beginning will be incrementally developing throughout the project. This is
obvious that smaller, simpler models may quickly lead to implementation and
testing.

Unified Process implicitly includes the practice of modeling with others
which clearly defines several roles played by one or more people. The subse-
quent Agile practice of proving with code is also included in Unified Process
framework. At the end of every iteration, except the Inception phase, the UP
specifically states that the team should have a working prototype. Furthermore,
the UP insists that developers have a working end-to-end prototype at the end of
the Elaboration phase that proves given architecture.

Reusing of existing resources is an implicit part of the Unified Process. Fur-
thermore, reuse management is an explicit part of the Enterprise Unified Proc-
ess. Developer teams should prefer to reuse existing resources instead of build-
ing them from scratch, including but not limited to existing models, existing
components, open source software, and existing tools.

According to single source of information practice, there is no reason why
developers cannot store information in a single place when following Unified
Process. Unfortunately, many organizations choose to instantiate the RUP in
a documentation-driven manner, and as a result they are proceeding with heavy
load and clearly take a multi-source approach.

JOINING AGILE WITH UNIFIED PROCESS... 273

Considering the practice of updating only when it is needed, many devel-
oper teams in reality prove to have a problem with this concept, particularly if
they have a strong habit of checking relations between aspects of project arti-
facts, the support for which is a strong feature of Unified Process as it is an im-
portant aspect of its Configuration and Change Management discipline. Fur-
thermore, Rational Unified Process includes tool mentors for working with
Rational RequisitePro, a requirements tracing tool, making it appear easy to
maintain a traceability matrix between artifacts.

Developer organizations with strong habit of checking relations between
project artifacts will often choose to update them regularly, even if it is not nec-
essary at the moment. Such attitude should be replaced with another one which
allows to maintain a traceability matrix between artifacts only when there is
clear benefit to do so and project stakeholders authorize the effort.

Rational Unified Process product includes tool mentors that make it easier
for teams to work with tools sold by Rational Corporation. However, in reality
many developer teams are using another development tools which suit their
needs and Rational tools are just one of the competitors in this area.

References
[AMRUPO8] Agile Modeling and the Rational Unified Process (RUP). Available
http://www.agilemodeling.com/essays/agileModelingRUP.htm, 2008.

[Elss08] Elssamadisy A.: Agile Adoption Patterns: A Roadmap to Organizational
Success. Addison-Wesley Professional, 2008.

[Eweek02] Taft D.K.: IBM Acquires Rational. Available: http:/www.eweek.com/c/a/
Desktops-and-Notebooks/IBM-Acquires-Rational, 2002.

[InfoQ11] Flahiff J.: Integrating Agile into a Waterfall World. Available:
http://www.infoq.com/articles/agile-in-waterfall-world, 2011.

[NeAp09] Gartner Identifies New Approach for Enterprise Architecture. Available
http://www.gartner.com/it/page.jsp?id=1124112, 2009.

[RefC11] Agile Adoption: Improving Software Quality. Available: http://refcardz.com,
2011.

[Wikil4] Rational Unified Process. Available: http://en.wikipedia.org/wiki/ Rational
_Unified Process, 2014.

274 Piotr Zadora

LACZENIE PRAKTYK AGILE Z PODEJSCIEM UNIFIED PROCESS
W CELU DOSKONALENIA JAKOSCI OPROGRAMOWANIA

Streszczenie

Wytwarzanie oprogramowania wysokiej jakosci stanowi jedno z najwigkszych
wyzwan stojacych przed deweloperami. W artykule zaprezentowano koncepcje
wykorzystywania praktyk Agile, ktora sprzyja wytwarzaniu oprogramowania wysokiej
jakosci. Przedstawiono rowniez jedna z mozliwos$ci taczenia praktyk Agile z tradycy-
jnymi ,,cigzkimi” podej$ciami. Zdaniem Autora wykorzystanie zalet obu podejs¢, zami-
ast przeciwstawiania ich sobie, powinno prowadzi¢ do skutecznego tworzenia opro-
gramowania wysokiej jakos$ci.

