
W
öiO

ZO
E

AKADEMIA 
EKONOMICZNA 
im. Karola Adamieckiego 
w Katowicach

I 
c

53
Zeszyty Nhukdwe



METODY WNIOSKOWANIA STATYSTYCZNEGO

W BADANIACH EKONOMICZNYCH 

(METHODS OF STATISTICAL 

INFERENCE IN ECONOMIC SURVEYS)



ZESZYTY NAUKOWE
AKADEMII EKONOMICZNEJ IM. KAROLA ADAMIECKIEGO

„Studia Ekonomiczne"



METODY WNIOSKOWANIA STATYSTYCZNEGO

W BADANIACH EKONOMICZNYCH 

(METHODS OF STATISTICAL 

INFERENCE IN ECONOMIC SURVEYS)

Katowice 2009



Editorial Board

Krystyna Lisiecka (przewodnicząca), Anna Lebda-Wyboma (sekretarz), 
Halina Henzel, Anna Kostur, Maria Michałowska, Grażyna Musiał, 
Irena Pyka, Marian Sołtysik, Stanisław Stanek, Stanisław Swadźba, 

Janusz Wywiał, Teresa Żabińska

Editions

Józef Kolonko 
Janusz L. Wywiał

Reviewers

zO y
* Biblioteka S
I Główna
V®. &&

Czesław Bracha
Witold Miszczak 

Krzysztof Piasecki 
Aleksandras Plikusas 
Andrzej Sokołowski 

Józef Stawicki 
Jacek Wesołowski

Edition

Patrycja Keller

© Copyright by Publisher of The Karol Adamiecki University of Economics in Katowice 2009

ISBN 978-83-7246-580-1

Publisher of The Karol Adamiecki 
University of Economics in Katowice

ul. 1 Maja 50, 40-287 Katowice, tel. +48 032 25 77 635, fax +48 032 25 77 643 
www.ae.katowice.pl, e-mall: wydawnlctwo@ae.katowice.pl

http://www.ae.katowice.pl
mailto:wydawnlctwo@ae.katowice.pl


CONTENTS

INTRODUCTION........................................................................................ 7

Wojciech Gamrot: ON COMPOSITE ESTIMATION UT1LIZING

REGRESSION AND CLASSIFICATION METHOD ........................ 9

Janusz L Wywiał: ON APPLICATION OF NON RESPONSE 

MODEL IN INTERNET SURVEY SAMPLING ............................... 19

Janusz L. Wywiał: SAMPLING DESIGN PROPORTIONAL TO 

POSITIVE FUNCTION OF ORDER STATISTICS OF AUXILIARY

VARIABLE........................................................................................... 35

Tomasz Żądło: ON PREDICTION OF TOTALS FOR DOMAINS 

DEFINED BY RANDOM ATTRIBUTES.................................... 61

Grażyna Trzpiot: ESTIMATION METHOD FOR QUANTILE 

REGRESSION ........................................................................... 81

Grażyna Trzpiot, Justyna Majewska: SENSITIVITY ANALYSIS OF 

SOME ROBUST ESTIMATORS OF VOLATILITY.................... 91



6

Grażyna Trzpiot, Dominik Krężołek: QUANTILES RATIO RISK

MEASURE FOR STABLE DISTRIBUTIONS MODELS IN

FINANCE............................................................................................. 109

Alicja Ganczarek-Gamrot: VECTOR AUTOREGRESSIVE MODELS 

ON THE POLISH ELECTRIC ENERGY MARKET.................. 121

Grzegorz Kończak: ON THE METHOD OF DETECTION LINEAR 

TREND IN STOCHAST1C PROCESSES ................................. 135

Dorota Rozmus: USING BAGGING AGGREGATION METHOD IN

TAXONOMY........................................................................................ 149



INTRODUCTION

The papers are prepared by the employées of the Department of Statistics at 

the Faculty of Management of the University of Economies in Katowice. In general 

the following topics are considered: survey sampling, time sériés analysis, éco­

nomie statistics, classification and clustering, demography, time sériés analysis, 

robust Statistical inference.

In this volume there are ten papers presented. Four of them are connected 

with survey sampling. The first páper is about non response problem where some 

composite estimators using régression and classification methods are considered 

by Gamrot. In the second paper Wywiał considers a problem of application of 

the well-known Poisson sampling scheme to the modeling Internet survey. The 

response probabilities are explained by logit model. The approximate mean squ­

are error of a total estimator is derived. In the third paper by Wywiał a sampling 

proportional to a positive function of sample quantiles of an auxiliary variable is 

defined. Its sampling scheme and inclusion probabilities are evaluated. In the 

paper by Żądło some problem of small area estimation is studied. In this paper 

the problem of prédiction of totals for domains specified by random attributes is 

presented.
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Next papers are close to analysis of robust Statistical methods. The páper 

by Trzpiot is a review of estimation methods of quantile régression parameters. 

In the next páper Trzpiot and Majewska present sensitivity analysis of selected 

robust estimators of volatility and the classification of generated Investment port­

folios with respect to Chosen robust estimators. The authors try to convince that 

applying robust estimation in portfoho analysis ensures better method for effective 

investment decjsion-making than classical portfolio analysis. The purpose of the 

paper by Trzpiot and Krężołek is to present some quantiles ratio risk measures of 

financial assets. These measures are based on the VaR approach. The assump- 

tion of stable distributed log-returns is used. It allows to estimate investment rsk 

more accurate.

Next two papers are connected with time sériés analysis. Paper by Ganczarek- 

-Gamrot is about application of vector autoregressive model to analysis of Polish 

Electric Energy Market. Then a nonparametric test for linearity of trend is proposed 

by Kończak.

Some special taxonomie methods are considered by Rozmus. The main aim 

of her article is to compare the right dass structure recognizing ability of classical 

and ensemble Cluster Ing methods. The performances of the new and existing 

taxonomy algorithms were compared on the oasii if simulated and real data sets

Janusz L. Wywiał



Wojciech Gamrot

ON COMPOSITE ESTIMATION UTILIZING 
REGRESSION AND CLASSIFICATION METHODS

Introduction

Let U dénoté finite population of size N. Consider some characteristic Y taking 

fixed values ylt..., y^. The objective of the survey is to estimate its population 

mean:

ie£/

The sampling procedure involves two phases. In the first phase a simple ran­

dom sample s of size n is drawn without replacement from U. Assume stochastic 

nonresponse: each ?-th unit responds with some unknown probability pi. Due to 

nonresponse the sample s splits into two subsets si and s2 of sizes nj and n2 such 

that units from si respond in the survey whereas units from s2 do not. The second 

phase of the survey is then carried out to acquire some knowledge about non- 

-responding population units. In this second phase a simple subsample s' of size 

n' = cn2 (where 0 < c < 1) is drawn without replacement from the nonrespondent 

subset s2. It is assumed that ail subsampled units respond in the second phase 

so the response probabilities pi correspond only to the first phase of the survey.
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1. Straightforward estimators

Consider the statistic:

y(a) = + (1 - a)ys, (2)

where

l€S!
(3)

i(žs'
(4)

When a = ni/n it takes the well-known form:

_ nl- n2_
ysTD - —2/S1 + — yS' (5)

and as indicated by Särndal et al. (1992) it is unbiased for the population mean un- 

der any possible set of individual response probabilities pi,..., pN. In the following 

discussion it will be called the standard estimator and denoted by the symbol STD

Wywiał (2001) suggests another way to construct the weight a in (2) using the 

classification algorithm. It relies on the assumption that the population consists of 

two strata Ui and U2 of sizes M and N2, such that p, = 1 for i e L\ and pi = 0 

for i e U2. It is then assumed that the vector x, = [xn,... containing the 

values of k auxiliary variables Xx,..., Xk is observed for each i-th population unit 

and that it follows multivariate Gaussian distribution with different means in both 

strata. This is a special case of the well-known deterministic nonresponse model. 

However, estimators based on this model may also be used with good results for 

stochastic nonresponse. To identity the strata we employ the well-known quadratic 

Bayesian discrimination function minimizing the unit misclassification probability 

(Duda and Hart 2001). This leads to the division of population into two subsets U[ 

and U2 of sizes N{ and N?. These subsets may differ from the original classes Ui 

and U2, but the ratio N[/N may be treated as an estimator of the true respondent 

fraction N^/N. It is thus reasonable to set a = N[/N in the formula (2) and 

consider the statistic:
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N{_ N^_ ...
yBAY — ~jÿ~ysi + "ŽV 1°)

In the following discussion it will be denoted by the symbol BAY.

The classification estimator discussed above relies on dependencies between 

auxiliary characteristics and response probabilities. An alternative approach to 

mean value estimation under nonresponse postulâtes the use of direct relationship 

between auxiliary variables and the variable under study. This leads to the well 

known régression estimator:

In further study the statistic (7) will be denoted by the symbol REG.

Vreg = ySl + b (xs - xS1 ) (7)

where
b = Í 52 ( 52x^1 ) (ß)

\«€si / \i€si /

X, = -52xi (9)
i£s

xsi = — 52 x* (w)
Tli L'iGsi

2. Composite estimator

Estimators REG and BAY both rely on the assumption that underlying models 

properly describe reality. When there is no possibility to décidé in advance which 

model fits the data better, the sampler may try to assess the goodness of fit on 

the basis of sample data. In the case of the linear model it may be done using the 

détermination coefficient:

Rreg = (11)
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and in the case of discrimination fonction, its ability to correctly identity respon- 

dents and nonrespondents may be assessed by the expression:

Rbay = 1 — Rm (12)

where RM is the initial sample misclassification ratio. These expressions enable 

the construction of a composite estimator in the form:

y COM = Wręg ■ VreG + WßAY • Vbay (13)

where Wreg = Rreg/(Rreg + Rbay) and Wbay = 1 — Wreg- lt is worth 

emphasizing that weights Wreg and WBAy dépend on the sample. The estimator 

based on better fitting model will dominate the combination (13). Consequently, 

the composite estimator should behave in a similar way to the régression estimator 

when the linear model fits relatively well and more like the classification estimator 

when the deterministic model fits relatively well.

3. Simulations

A simulation study involving four experiments has been conducted to com­

pare the accuracy of estimators: STD, REG, BAY, and COM. Each experiment 

was carried out by repeatedly drawing sample-subsample pairs from the predefi- 

ned pseudo-random population and simulating response/nonresponse decisions 

of individual population units. The mean square error (MSE) of each estimator 

was evaluated by examining its empirical distribution. In each experiment four 

pseudo-random variables: Y, Xi, X2, and X3 of joint multivariate Gaussian di­

stribution were generated. The mean value and standard déviation vectors were 

respectively set to p = [0,0,0,0] and <r = [1,1,1,1], The corrélation matrices were

different in each experiment and respectively equal to:

1 0 0.5 0.5 1 0.7 0 0

0 1 0 0 0.7 1 0 0
fil =

0.5 0 1 0
r2 =

0 0 1 0

0.5 0 0 1 0 0 0 1

(14)
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10 0 0 1 0.7 0 5 0.5

0 10 0 0.7 1 0 0
r3 = Rą —

0 0 10 0.5 0 1 0

0 0 0 1 0.5 0 0 1

(15)

The variable Y acted as a variable under study. The variable Xi was used 

as an auxiliary variable for the régression estimator. The variables X2 and X3 

determined the individual response probabilities according to the logistic model 

similar to the one considered by Ekholm and Laaksonen(1991):

1 + exp(ßoX2 + ßiX3)

with constants ßQ = ßr = 1 chosen arbitrarily so that response probability de- 

creases when X2 or X3 grows. It was also assumed that units respond indepen- 

dently. The functional form of the model (16) was assumed unknown Instead, 

the variables X2 and X3 were used to compute the classification estimator. For 

each experiment a total of 50000 samples were drawn from among the population 

of 5000 units for c = 0.3 and any value of n = 40,80,..., 200. The assump- 

tions of ail four experiments are in some sense extreme. The matrix flj corre­

sponds to the situation where only the deterministic nonresponse model fits well. 

The matrix R2 corresponds to the situation where only the linear model fits well. 

The matrix R3 corresponds to the situation where none of these models fits well 

and the matrix fl4 corresponds to the situation where both models fit well. The 

mean square errors observed in ail four experiments are shown in tables 1 and 2. 

To facilitate the comparison, we also define the relative efficiency of any estima­

tor T (where T = ÿREG,ÿBAY’ÿcoM) respect to the standard estimator as 

eff(T) = MSE(T)/MSE(ÿSTD). They are shown on figures 1-4.

The results obtained in first two experiments are promising. If only one model 

fits well then the MSE of the composite estimator is the lowest one (for R2) or 

very close to the lowest one (for fli). This resuit may be explained by low or even 

negative corrélation between REG and BAY estimâtes and by the fact that this es­

timator incorporâtes the informat.cn from two different sources. In both cases the

informat.cn
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relative efficiency of the composite estimator is lower than one (it has lower MSE 

than the standard estimator) and remains relatively stable when the initial sample 

size n changes. Overall, these results suggest that the composite estimator is 

quite robust with respect to the model misspecification. For the third experiment 

and the matrix R3 the composite estimator is the most accurate one for smali 

samples (n < 60), but then its MSE steadily grows in relation to all other estima- 

tors, and for larger samples the REG estimator proves to be much more accurate, 

without even using subsample data. The composite estimator is however still more 

accurate than the standard estimator.

Table 1

Mean square error of estimators as a function 
of initial sample size n for corrélation matrices Ri and R3

Ri r2
n STD REG BAY COM n STD REG BAY COM

40 0,0505 0,1709 0,0454 0,0434 40 0,0560 0,0393 0,0569 0,0376
60 0,0335 0,1554 0,0293 0,0285 60 0,0370 0,0257 0,0375 0,0244
80 0,0251 0,1477 0,0219 0,0215 80 0,0282 0,0192 0,0286 0,0184
100 0,0201 0,1430 0,0174 0,0171 100 0,0220 0,0152 0,0222 0,0143
120 0,0167 0,1409 0,0143 0,0142 120 0,0182 0,0126 0,0184 0,0118
140 0,0142 0,1391 0,0122 0,0121 140 0,0155 0,0107 0,0156 0,0100
160 0,0123 0,1370 0,0106 0,0105 160 0,0138 0,0094 0,0140 0,0089
180 0,0110 0,1356 0,0094 0,0094 180 0,0122 0,0083 0,0123 0,0078
200 0,0099 0,1348 0,0086 0,0085 200 0,0108 0,0075 0,0109 0,0069

Table 2

Mean square error of estimators as a function 
of initial sample size n for corrélation matrices R3 and Rą

r3 Ri
n STD REG BAY COM n ’ STD REG BAY COM

40 0,0542 0,0527 0,0553 0,0513 40 0,0520 0,1656 0,0454 0,0622
60 0,0362 0,0344 0,0369 0,0348 60 0,0344 0,1552 0,0292 0,0549
80 0,0274 0,0257 0,0278 0,0266 80 0,0258 0,1494 0,0217 0,0513
100 0,0216 0,0203 0,0220 0,0212 100 0,0208 0,1460 0,0173 0,0493
120 0,0179 0,0167 0,0182 0,0176 120 0,0173 0,1443 0,0144 0,0484
140 0,0155 0,0144 0,0156 0,0152 140 0,0147 0,1422 0,0122 0,0470
160 0,0134 0,0125 0,0136 0,0132 160 0,0129 0,1416 0,0107 0,0468
180 0,0120 0,0111 0,0121 0,0118 180 0,0114 0,1404 0,0095 0,0461
200 0,0108 0,0100 0,0109 0,0107 200 0,0102 0,1402 0,0084 0,0462
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The results of first three experiments suggest that in the fourth experiment 

where the corrélation matrix fl4 represents both models fitting well should prove 

the composite estimator to be very attractive in terms of MSE. However, simula­

tion results paint a different picture. Oníy the BAY estimator competes successfully 

with the standard one in this case. The MSE of the REG estimator grows quickly 

with increasing n and this tendency is reflected by the MSE of the composite es­

timator. This outcome may be explained by the fact that the REG estimator does 

not utîlize the subsample data and that the détermination coefficient is only loosely 

related to the nonresponse behavior of this estimator. Also, arbitrarily constructed 

weights in the formula (13) fait to reflect accurately relative efficiencies of REG and 

BAY estimators.

Figure 1. Relative efficiencies for fii
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Figure 2. Relative efficiences for R3

Figure 3. Relative efficiences for R3
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Figure 4. Relative efficiences for Rt

Conclusions

Presented results of simulation experiments indicate, that the general idea of 

constructing composite estimators by combining two or more simple estimâtes is 

promising. The composite estimator incorporating the estimâtes based on diffe­

rent data and/or different approaches may be more robust to model misspecifica- 

tion than any of straightforward single-model-based estimators. In some situations 

it may provide a significant gain in accuracy. However, simulation results also 

show that in some cases the construction of composite estimators in a heuristic 

way based only on pure intuition may lead to dramatically inaccurate estimâtes. 

This stresses the need to develop more systematic approach to the construction 

of these estimators based on analytical évaluation of their stochastic properties.
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Abstract

Several estimation procedures hâve been developed to compensate for the détériora­

tion in properties of parameter estimâtes resulting from sample data incompleteness. Most 

of them make use of available auxiliary data following one of two general approaches. The 

first approach relies on dependencies between auxiliary variables and the variable under 

study. This usually leads to the construction of various ratio and régression estimators. 

The second approach explores dependencies between auxiliary variables and response 

behavior of population units. This provides motivation to a broad range of methods such as 

weighting adjustments and classification estimators. In this paper a composite estimator 

of the population mean incorporating both approaches is considered. It is constructed as 

a combination of the well-known régression estimator and a classification estimator utili­

zing Bayesian quadratic discrimination function. The weights of the combination reflect the 

régression model’s goodness of fit and the classification quality. Hence, greater weight is 

assigned to the estimator for which available observations of auxiliary variables are more 

useful. Simulation results exposing its properties are presented in the paper.



Janusz L. Wywiał

ON APPLICATION OF NON RESPONSE MODEL IN 
INTERNET SURVEY SAMPLING

Introduction and basie définition

We assume U = {1,2,... TV} is a fixed and finite population of size N. Let us 

suppose that each population element (people, firms) is identif’ed and it can be 

observed by means of the Internet mail. We assume that all Internet addresses of 

respondents (population éléments) are known. A questionnaire form is sent to all 

respondents. It is possible that some of them do not return the quastionnaire. So, 

the sample s consists only of the respondents who hâve returned the form. So, the 

size of the sample can be smaller than the population size. We can assume that 

a respondent returns the questionnaire with some probability 7rfc, k = 1,..., N, 

which we call response probability.

Let us consider a sample as a vector s = s2... s/v]- If a fc-th population 

element is (is not) in the sample, sk — 1 {sk = 0). The sample size n(s) is not fixed, 

so, 0 < n(s) < N. The support (sampling space) is denoted by S. The sampling 

design is a probability distribution of a sample s defined on a support S : P(s) > 0 

for s e S. The inclusion probability of the first order is: 7rfc = fc6sy P(s). 

The inclusion probability of the second order is: nkti = fces ies} P(s). The 
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random sample is defined by Tillé (2006) as the vector S = [Si S2 ■ ■ - Sn]. The 

set S is the sample space of the random variable S and its probability distribution 

is: P(S = s) = P(s) for s e S.

Let us assume that elements of the random sample S are independent and 

P(Sk = 1) = tt and P(Sfc = 0) = 1 - tt for k = 1,..., N. So, E(Sfc) = tt, 

jD2(Sfc) = tt(1 - tt), Cov(SkSi) = 0, k = l = 1,... ,N and k / Z.

Hence, the sample s can be treated as an outcome of Bernoulli trial. The Bernoulli 

sampling design without replacement is as follows:

N
F(s) = 7TSk (1 — Tf)1-®* for ssS (1)

fc=l

It is obvious that, irk = tt and 7rk,i = tt2 for ail k = 1,..., N-1 = 1,..., N and k^l. 

Moreover, the distribution of the sample size is:

P(n(S)=n)= - tt)1"1 for s&S (2)
\n /

Of course E(n(S)) = 7Vtt and E2(n(S)) = ZV7r(l - tt).

Let us stress that in our case the sample s consists only of those respondents 

who return a questionnaire by email. The probability that a respondent returns it 

is equal to tt and it is the same in all the population. That is why we will name the 

Parameter tt as the response probability. Of course we assume that respondents 

décidé to return the questionnaire independently. So, it is a simple model of an 

Internet survey.

The more realistic model of an Internet survey can based on the following well- 

-known Poisson sampling design without replacement. Let the elements of the 

random sample S be independent and P(Sk = 1) = nk, P(Sk = 0) = 1 - -nk for 

k = 1,..., N. So:

N
p(s)=n * 7rfc)i-s‘ for ses (3) 

fc=l

In this case the response probabilities nk can be different and E(Sk) = nk, D^Sk) = 

7Tfc(i — TTfc), Cov(SkSi) = 0, k = 1,... ,N, l = 1,..., N and k Z.
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Let a non random variable y be observed in the population U. Its possible 

values are éléments of the vector y = [î/i î/2 • • ■ w]- So the value yk is attached 

to the fc-th element of the population. Our purpose is estimation of the total yu = 

EfcLi yk or mean value ÿ = £ yk.

1. Estimation under the Bernoulli model

1.1. Basic resu Its

Under the Bernoulli model of génération of a sample the Horvitz-Thompson 

(1952) estimator of the mean ÿ is as follows, respectively.

^HTS = NÏÏ EVkSk = N^Vk (4)fc=i fces
It is unbiased estimator of the mean. Its variance is as follows:

D2 (ÿHTs) = E yk (5)
fc=l

The unbiased estimator of the variance is:

DS (ÿHTs) = ^2^ 52 yk$k (6)

fc=l

The probability tt in the above expressions is not known. The unbiased Horvitz- 

Thompson type estimator of this probability is:

= = (?) 
fc=i kes

When we substitute the estimator tts for tt in the expression (4) we obtain the 

following one (see the more general case considered by Bethlehem 1988):

1 N 1^ = ^E^ = ^E^ (8)
v 7 fc=i v ' kes

So, the sample mean ÿs is the ratio of the estimators ÿs = VkSk and n(S). 

They are unbiased estimators of the parameters j/tt and Nn, respectively. The 
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variance of the statistic is:
N

jD2 (^s) = tt(1 ~ tt) 5? î/fc. jD2 (n(S)) = 7r(l-7r)TV, Cov (ys, n(S)) = tt(1 - n)y 
k=l

(9)

Hence, the évaluation of the variance of the statistic ÿs is as follows:

D2 fe) - + (^)2 -o2 MS)) - "<S)) •

, /N 'ź\ 1

where vyy = ^2k=i(yk ~ 2Ž) ■

The estimator of the variance is:

« , N — n(S) ......
Nn{s>) VyyS (11)

where vyys = n(s')-i 52k=i(^fc ~ ÿs) Sk-

1.2. Stratified sample

We assume that a fixed and finite population is divided into H non empty and 

mutually disjoint strata, so U = (j£=i Uh- The fraction of h-th stratum size is deno- 

ted by wh = Nh/N where Nh is the size of the h-th stratum. Let tt^, h = 1,..., H, 

be the response probability for an h-th stratum, h = 1,. ..,H. We assume that 

the response probability 7rh is the same for ail population éléments in the stratum 

Uh, h = 1,..., H. It is the particular case of the Response Homogeneity Groups 

model considered by e.g. Särndal, Swenson, and Wretman. The Bernoulli sam­

ple selected from an Mh stratum will be denoted by Zh and its size by n(Zh-) The 

sample will be denoted by n(Zh)- So, the sample is: S = U/Li %h and its size: 

n(S) = n(zh)- The stratified sample mean is as follows:

H 
ÿs = ^2 ™hÿzh 

/l=l

where

(12)

(13)
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where vyyzh n^zh)-i^k=i(yk VZh) Sk-

It may be shown that in the case of the stratification of the sample after its 

sélection, the above results are valid, too.

The variance and its unbiased estimators are:

D2 (ýs) = ^w2hD2 (yZh),
h=\

H
D2s(ýs)= YAd2z,M 

h=l
(14)

where
D2 (ÿzh)

where Vhyy ~ ~ yh) »

1 - TT/i
~ Nh^h Vhvy (15)

D2Zh (ÿzh) = N - n(Zh)
Nn(Zh) VyyZh (16)

2. Estimation under the Poisson model

2.1. The case of known response probabilities

Under the earlier introduced Poisson model of the génération of a sample, the 

estimator of the mean ÿ can be as follows:

Vhtps = \T > ------ = 77 X — (17)”k N^k

It is an unbiased estimator of the mean. Its variance is as follows:

O2(»HrPS) = -^f;äÜ-^ (18)
N Łi *k

The unbiased estimator of the variance is:

L ; (ýfíTPs) = Tÿâ 52 Sk (19)
JV k=i

But there is a problem because the probabilities tt*, k = 1,..., TV, in the above 

expressions are not known. Let us suppose that it is reasonable to assume that 

the population can be divided into strata and in each of them there are the same 
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response probabilities. Moreover, we have at least one observation in the sample 

selected from each stratum and the sizes of the strata are known. So, these 

assumptions let us adopt the estimation procedure analyzed at the end of the 

section 1.2. Other approaches using the well known logit model, see e.g. Chow 

(1983), is presented below.

2.2. Logit approximation of response probabilities

We assume that is the row vector of m-auxiliary variables values attached 

to a fc-the population element, k = 1,..., N. Particularly, ail values of the first 

variable will be equal to one. Let us consider the following logit model of the 

probabilities (see Ekholm and Laaksonen 1991):

—-----~7------v k=l,...,N (20)l + eæp{-çfc}

where

9k = Xfc0 (21)

and ß is the column vector of parameters. The likelihood function is as follows:

N
hog(s,ß)=n - 7rfc)i-Sk <22>

fc=l

The vector of the first derivatives of the log likelihood function is:

h.„,s = = £(S„ - „„m: (23)

fc=l

The maximum likelihood ßs estimators of the parameters ß is a solution to the 

équation hiog s = 0. In order to evaluate it, an appropriate computer program is 

needed because solving of non-linear équations is necessary. One of them is the 

well known method of Newton-Raphson, see e.g. Kelley (2003).

The estimator of the inclusion probabilities can be denoted in the following way:

TTSfc = ------- 7------- r, Qsk = *kßs, k = l,...,N (24)
1 + exp{~qsk}
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This leads us to the construction of the following estimator of the mean y.

(25)

(26)

1 VkSk 1 Vk 
yiogs - ■

fc=i SK kes SK

Let us define the following moment.

1 N 
(!/,c,/(7r)) = -^Y^yrk,cvk,fzM 

* fc=i

where y and tt are treated as variables which také values yk and 7rfc, respectively, 

for k = 1,..., TV. Similarly, let cfc be a fc-th observation of a matrix c, k = 1,..., TV. 

If the matrix c reduces to a scalar c, then mrtV,z (y,c,fv(7?)) is substituted for 

nir.r.z (y,C,fv(ir)).

In the appendix, the following approximate formula for the variance is evalu- 

ated:
5

D2 (ÿiogs) = D2 (ühtps) + 5^ ai (27)
í=i

where D2 (ühtps) is given by the expression (18) or by

D2 (ynTPs) = ’7Fm2,i (y,------- (28)
7 V \ 7T /

where 
/ . x , N
/ 1 — 7T \ 1 2 A —

m2,i y, —— = -T7Z^Vk——

and

ai = (jí,xmfi1i_1(xT,X,7r(l - ír))xr, (tt-1 - 1)(1 - 3ít - 2tt2)) , (29)

2
a2 = mi,ijf?/,xmri}il(xT,x,7r(l-7r)),l-7r)mi.1,i(?/,xr,l-7r), (30)

<13 = ~j^2 (^řm2’2’’ (ť>xmr,Í,i (xT’x> í1 _ 7r)7r) xT,’r-1(1 ~ 7r)3(37r2 - 3ît + 1)) +

+ (y, xmfj,! (xT, x, (1 - 7r)7r) xt, ít-1(1 - tt)3} +

- ^^2,2,4 (j/.xmrj.i (xT,x,(l -ît)7t)xt,1 - tt) +

+ m2ii2 (í/.xmrj j (xT,X,(l-7r)7r)xT,l-7rH,

(31)
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2 (
ai ■=

j/.xmrJj (xr,x, (1 - ze») x^xmrXj (xT,x, (1 - tf)^) , (1 - tt)2(2ît - 1))- i32)

■mi.i.i (?/,xT, 1 -tt) ,

“5 = - 77^2.2,1 Ííí.xmrj.i fxT,X,(l - 7r)7r) XT,7t(1 - 7t)3) +
jvz \ 7v X. X / /

+ 2mi,i,i (y, xmf }.! (*T, x, (1 - tt») xTxmrJii (xT, x, (1 - 7r)jrj , (1 - jt)27t)

■mi.i.i (?/,XT,l-7r)

(33)

If Tnt is close to for k = 1, .., N

D2 {yiogs) = D2 (uhtps) — 2—miii(i/,xm1,|(xT,x))miii(?/,xT)+

+ Àfm2,i (2/,xm7j(xT,x)xT) + m?i (j/,xm“J (xT,x))xT) +

+ mM (j/,xmfJ (xT,x)xTxmf} ! (xT,x))m11 (y,*T)\ +O(n~lN~l)

D2(ÿiogs) = (m2(ÿ)-2m1.1(ÿ,xm1J(x7’,x))mlil(ÿ,xî')) + O(n 2). (34)

The estimator of the variance O2S (ÿiogs) can be obtained through substitution the 

appropriate sample moments mr,v,z,$ (y, c, f(7r)) for the moments mrjt,,2 (y, c, /(rr)) 

in the expressions (27)-(34) where the sample moment is defined as follows.

1 N
mw,s (y,c,fv(ir)) = —N 

/->k=l fc=l
(35)

Conclusions

Several estimators of mean values are considered in the case when the sample 

is equal to the whole population. Each respondent is supplied with a questionna­

ire by means of the Internet, e.g. by email. But there exist respondents who do 

not take part in the survey. So, it is the problem of non response. The two models 

of sampling were fitted to the considered problem. It was the Poisson sampling 

design and its particular case - the Bernoulli sampling design. Properties of those 
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sampung models let us adopt well-known estimators to estimate the mean value. 

Those estimators are unbiased or almost unbiased and their approximate varian­

ces are evaluated. Respective variance estimators are also given.

The inference on the basis of the stratified sample is proper when response 

probabilities are homogenous inside each stratum. In other cases the logit estima- 

tor involving the Poisson model should be ušed although it is quite complicated. 

In a separate páper a comparative analysis of the accuracy of the considered es­

timators should be developed in order to explain their properties under several 

assumed artificial distributions of a variable under study and auxiliary variables.

The analyzed problem can be generalized in several ways. The estimation of 

a mean value can be straightforwardly ušed to estimate the population total.

Appendix

Evaluation of the expression (27).

The expressions (24) and (23) lead to the following matrix of the second deri­

vatives of the log-likelihood function:

d2ln(llog(s,ß)) _ _ A , . T _ H .

fc=l

Let

H/og = 2Vm1,1,i(xT,X,7r(l-7r)) (37)

where
1 N 

mu.iix^.x,^! -tt)) = — ^2^(1 -TrOXfcXfc, 
fc=i

The first derivative hícgtS = hiogiS(J3) shown by the expression (17) is the function 

of the parameters ß because tt = So, hio9iS = hiog,s(ßa) = 0 because ßs is 

maximum likelihood estimator of ß. his leads to the following Taylor’s expansion of 

the vector of the first derivative hIogiS as a function of ß in the neighborhood of ßs. 

hlog,s{ß) « hlog^ßs) + - ßs} = d2ln^°^'ß}\ß - ßs)
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or

hfog.s » Hiog(/3S - 0)

So,

@s ß

This and the expressions (23) and (36) lead to the following:

N
ßs~ß~ £(& - 7Tfc)xI (38)

k=l

(
N \ -1 N

52 7Tfc(l - 7Tfc)Xfc Xj. j 52(Sfc “ • (39)
fc=l / k—1

It is easy to show that E(ßs - ß)(ßs - ß)T = H(“g.

The équation (24) let us rewrite the expression (25) in the following way:

1 N ÿiog.s = w 52 ykSk (!+
k~l

Under the assumption that 1 = 1 + e~Xk@, k = 1,... ,7V, see the expression 

(20), the Taylor’s expansion of the estimator ÿiogS as the function of ßs in the 

neighborhood of the parameters ß is as follows:

1 yk(l - nk)Sk „X 
y iog,s = y ht,s - -z; y,------------------(P s - P)

1 N 
yiog,s(ßs) = VHT,S - ÿÿ 9txfc(^s - ß)

v fc=l

where ÿnr.s = TV-1 ^k=i is the Horvitz-Thompson estimator. The expan­

sion is derived with accuracy to the linear éléments. This lets us infer that the sta- 

tistic ÿiogs is an approximately unbiased estimator of the mean value. The above 

expression and e-Xfc^s = - 1 lead to the following one:
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This let us make the following dérivation of the mean square error.

MSE(yiog,s) =
2

= E (| £ Vk{Sk ~ ) - IŽ ^-(1 - 7r-fc-)S-xfc(/3s - Z?/) =

= E( 1 £yk{Sk ~”k) - - £ _ ß}+
\N f-J TTfc N iiX fc = l K—X

1 N X 2 5
“ 7ř Eyk(l ~ nk)*k(ßs - ß) ) = E(a + C2 + c3)2 + D2 (ÿHT,s) + '^2a< 

fc=l ' i=l
(40)

where

TTfcTT/lfc=l '- = 1

vfc=l

c' v' ykyk^y - - ^k}(sh-^h}

fc=i

ai=2E(C1C2) = -E£ y^s-k-Lkl £ _ß} =

N nk

_ _ ß)+

On the basis of the expression (38) we háve:

2 r'i ylí1 ~ ™k)(Sk - 7Tfc)2„ u-1 v^/c \„T , 
“1 = ~M2E\ Z . ----------------^2----------------X*H1o9 USk - nk>Xk +

Vfc=l k fc=l

fc=l '■ = > fc^fc

N
ykyh(l - 7Tfc)(^fc - 7Tfc)(S/l - 7r/1)Kkl-|-l ý(5fc - 7Tfc)xJ 

k lo3h

k=l **=i 
fc#fc

2/fc(l _ Vk)E(Sk - TTfc)3 „_1 T
? >------------------L2---------- -------XkHiogXfc +
fc=l

j/2(l - 7rfc)E(Sfc - *kyE(Sh - nh) 1T
--------------------------------------------------------'^k^log^h +

N N

k=X
k^k

ž/fcL>h(l - irk)E(Sk - itk)2E(Sh - 7rh)

KkKh
XfcHloX +
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C' 'V' Vkyh(l - ^k)E(Sk - nk)E(Sh - 7rh)2__ -Xfc|-|Io9Xfc +

K~ 1 * TZfř
**'■ &

2 V- y K1 - 7rfc)(1 - 3îrfc - 2tt2)~ u_UT 
~ N2 2-^ 7. *knlog*k ■

k=l

k^k

ykyh^i — *k)E(Sk — Ttk)E(Sh — TVh)E(St — 7rt) li 'v7
Ł ë-----------------------------X‘H'™X'

This and the expression (36) lead to the following one:

_ 2 V' ,,2(1 — 7Tfc)(l - 37Tfc - 2?r2) fv'-H ,r >YTY YT —
ßl — _,2 / yk *k I / TThjXfcXfc I Xfc —

fc=l 71,1 \h=l /

2 V' Vk(l - ”>)(1 -3n - 2tt2) i , t „ f1 _a\vt
= -773 E------------------------- —--------------- XfcmM.iix ,x,7r(l - 7r))xfc

fc=1

This leads to the expression (29):

a2 = 2E(c1C3) = ~E 52 ÿfc(5fc ~ f>(l - 7Tfc)xfc(/3s - ß) =

2 Vk(ßk — irk){l — nh)Xk{ßs — ß) ,
= -----------------------+

' k=l

+ £ E ^ÿ--(1 ~ ~Sk ~—^tßs - ß)},

= -M Ž £(Sh - Â)«i+
\fc=l h=l

+ £ £ ^(l-^)(gfc-y fc)XhHrci £(St _ ^t\ = 

k=i h=i t=i '
h^k

2 ipf Vklßk - 7Tfc)2(l - 7Tfc) U-1„T ,

= “7^E£E-------------------------------------------- xfcHiosxfc +

+ 52 52 ~7rfc)(^fc —^k)(Sh — I

fc=l h=l
h^k

, ykyhll - 7Th)(Sk - 7Tfc)2 1T\
+ > , / -------------------------------------*hFllog*k ) —

L 1 » 1 ^k /K=1 h=l 
h^k

(41)

(42)
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/ N ■ N N v
= ~ jV2 ( E “ 7rfe)2x*HÍLsXfe + E 52 ywbt1 “ ~ } =

' fc=l fc=l h=l '
h^k

2 N "
= 52 y^1 - ^XhHioB 52 y^1 ~ =

J h=l k=l

2 N N
= —fis 52 y^1 - ’rh)xhm1-i11.1(xr,x,7r(l - tt)) ^2^(1 - TrJxjT 

h—1 fc-1

This leads to the expression (30):

(
TV \ 2
^ÿfc(l-rrfc)(5fc-7rfc)Xfc =

TTfc J

= ^2£í E y*(1~ nk)2íSk - ß)(ß, - 0)T^Ï+

fc=l k

N N
VkVhfl ~ 7Tfe)(l - 7Th)(Sfc - 7Tfc)(Sfc - 7T/t)

TTkTVh

xk(ßa-ß)(ßs-ß)T^

i / 2/1 \2/c \2 N N
= Vk{ -nk}íSk~nk)- ^g - nh)xTh ^{St - 7r()xtHi-4xI+

JV ^fc=i h=i t=i

N N

+EE
fc=d h=l

ÍZfcž/h(l - 7Tfc)(l - TthllSk - 7Tfc)(Sh - 7Th)

TTfc 7T/i

N
Xfc^log 5 .(Sp — ^p)3^ '

P=1

■ 52(St - rrt)xtH|o‘xř ) =

_ _LPf V' yk^ ~ ^Sk ~ y h-1xt Y^rç -Ti» h-1xt+
— JV2 \ ' TT2 XkHlogXk 2^,'^ 7rt)XlP‘logXk +

'fc=l fc t=l

+E 52 ^(1-7rfc)2(Sfc;7rfc)2(^-^)XfcH,-ox É(5t -

fc=i ),=i t=i

hj£k

- £(St - rrCx.H-xl) = ±e( £ (XfcH(-ixTy +

t=i 2 '-fc=i fc

+E E y2k{1^-k)2{Sk -2^^~ nh}\kH^hH^+ 

fc=l h=l 
hjtk

4.9VV ?/fc?/í>(1-7r*:)(1-’rh)(SK--7rk)2(Sh-’rí>)2Y h-1»ty
+ 2Z^ 2 > ---------------------------------------- -------------------------------------------------- XfeH^XfcX/.H^Xh I,

fc=l h=l '
hytk

Tíkl^h

V' ÿfcÿh(l - 7Tfc)(l - VhYSk - 7Tfc)2(Sh - 71h)
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1 ( V'' yl(.1 — ’rfc)3(37Tfe - 37Tfc + 1) ( ,
= ÿÿïï ( Z.------------------ ---------------- ÇxfcHIO9xfc ) +

x fc=l

, - 7Tfc)3(l - 7Th)7rh u -l„î’„ u l„î’ ,
+ / 4 / 4 ----------------------------------------------- *fct1iogXhXhr1io9Xfc +

fc=l h=l 
hytk

N N x
+252 12 y^1 ~ }

k=lh=l,h^k '

a^ — ^7712,2,1 (ÿ, XH^gX7’, K~l(l - 7rfc)3(37Tfc - Stt* + 1)) +

N 2(| .3 f N \
+ £ ^(1-fffc) xfcH,-o‘ 52(1 - H^xl-

fc=i \h=i /

n 2 / N
+ 3 52 Vk(l - 7Tfc)4 (xfcH^xl) + 2 I 52 í/fcí1 - ^fe)2XfeH1~Jxř 

fc=l \fc=l

On the basis ot this resuit and the équations (36) and (37) we dérivé the expres­

sion (31):

<M = 2E(c2C3) = _ /3) f>(l - *Mßs -ß) =

fc=l K—1

= 2 £ yl(l-^(Sk-.k)Xk{ßa _ ßWa _ ß)Txr+

71 k x fc=l

+ 52 52 _ /3)(/3s _ ßf*A =

fc=l kjth
n / 2/1 \2/t? x N N= ( £ ÿfc(l~^fc 7^)XfcH^ g(Sh - irh)iï ^(St - 7rt)x(Hlo19xI+

, ykVh(l - 7Tfc)(l - Kh)(Sk - 7Tfc)„ u-1
+ 2^ Z- ---------------- -------------------XfcH'°<

fc = l h=l,k^h
N N x

• 52^ - USSt " } =

h=l t=l '

' fc=l
(43)
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, V" ykVh(l - 7Tfc)(l -7Th)í?(5fc - TTk)3 U_1„T„ u-1„tA + 2^ / > --------------------~---------------------------------XfcHlosXfcXfrHlo9Xh I =
fc=l h=l ** J

k^h

2 W N

= ~ jyi 12 - l)XfcH,-XXfcHi-‘ £2 yh(l - 7Th)x£
fc=l h=l

This leads to the expression (43):

, / N \ 2

a5 = E(cl) = — E I 52í/fc(l -7rfc)xfc(/3s - ß) j = 
\fc=l /

1 / N

= ňže{ E s'fcO - - &T*ï+

' k=l

N N x

+E E ywhí1 ~ -‘Kh)*k(ß3 -ß)(ßs -ß)T*h i =
k=l h=l '

kyih

1 z N N N
= jy2£( E ^í1 ~ 7rk)2xfcH/«ś E<Sh ~ 7rh)x® E(St - 

fc=l h=l t=l

N N N N

+ E E ~ - 7r'>)xfcH'^9 E(S/‘ ~ nh')*h 'ž2(Si -
k~l h=l h=l t=l

= ^2 ( E- ^2E(Sk - n)2 (xfcHr^xř)2 + 
' fc=l

N N x
+2 E ywbt1 - ~ Tr^^fcH^xlxfcHr^xl) =

fc = l h = l /
k^h

1 z N 2
= ÿÿi( -7Vk)3 (xfcH^Xfc) +

' fc=l

N N K

+ 2 52 E yw*^1 - 7rfc)2(1 - 7rh)xfcHro‘xIxfcHi;’x^ ) = 
fc=l h=] /

fc#ft

= ^2^- -^m2,2,í ^XT,X,(l-ïr)7r))xT,ïrfc(l-ïrfc)3) +

N N x

+ 252 y^k(i - 7rfc)2xfcHí;XxkHi“9 52 y^1 - )
fc=l h=l ‘

(44)
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Abstract

The paper deals with a problem of estimating the total on the basis of data observed 

in Internet sample. The Poisson sampling design without replacement is used as a ba­

sie model of génération of Internet sample. Its particular case is so called the Bernoulli 

sampling design wnhout replacement when ail the response probabilities are the same. 

Some estimators (including logit type one) of the population mean as well as of the total 

are considered. Their variances are evaluated and their estimators, too.



Janusz L. Wywiał

SAMPLING DESIGN PROPORTIONAL TO POSITIVE 
FUNCTION OF ORDER STATISTICS OF AUXILIARY 
VARIABLE

Introduction

The sampling designs dependent on sample moments of auxiliary variables 

are well known. Except mentioned Lahiri’s sampling design Sing and Srivastava’s 

(1980) sampling design is proportionale to a sample variance while Wywiat’s 

(1999) one is proportionale to a sample generalized variance of auxiliary varia­

bles. Some other sampling designs dependent on moments of an auxiliary va­

riable were considered e.g. by Wywiał (2000, 2003, 2003a) where accuracy of 

some sampling strategies were compared, too.

As it was mentioned Wywiał (2004, 2007) proposed the sampling design pro­

portional to the value of an order statistic of a positive auxiliary variable observed 

in the simple sample selected without replacement. This sampling designs can 

be useful in the case when there are some censored observations of the auxi­

liary variable. Moreover, it cannot be too much sensitive to outliers observations. 

Its particular cases as well as its conditional version were considered, too. The

•The research was supportée! by the grant No. 1 H02B 018 27 from the Ministry of Science and 

Higher Education.
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sampling scheme implementing this sampling design was proposed. The inclu­

sion probabilities ot the first and second Orders were evaluated. The well known 

Horvitz-Thompson estimator was taken into account. A ratio estimator dependent 

on an order statistic was constructed. It is an unbiased estimator of the popula­

tion mean when the sample is drawn according to the proposed sampling design 

dependent on the appropriate order statistic.

1. Basic définitions and notation

Let U = (1,..., i,..., N) be a fixed population of size N. The observation of 

a variable under study and an auxiliary variable are identifiable and denoted by 

yi and ii,i = 1,..., N, respectively. Firstly, we assume that æ, < xi+l,i = 1,..., 

N -1. Our problem is how to construct a sample stratégy in order to estimate the 

population average ÿ = £fc6C/ yk.

Let us consider the sample space S of the samples s of the fixed effective size 

1 < n < N. The sampling design is denoted by P(S = s) or more simply by P(s) 

or P(S). We assume that P(s) > 0 for all s e S and J2s6S P(s) = 1.

Let s = {ij : ij < = 1,..., n - 1}. Moreover, let

S = {si, iri , ^2) ^r2> • • • ) Sj, irj-,.. ■ , Sh — 1, i » ^/i+l}

Where Si — {ii,.. . , iri — i }, S2 — {^ri+1i ■ • - » ir?— l}? ■ • • » {^r2-i+l » ■ - - » ir3 — 1}i

•••i $h. {ir/i._ i + l » • • • i ^r/L — ^h+1 {^r/, > • • • i ^n— ri, }■ ^1 0*

When rh = n, sh+i = 0. So, xí is one of the possible observations of the order 

statistic X(rj) of the rank r3, (j = 1,..., h < n) of the auxiliary variable from the 

sample s. In order to simplify the notation we state that ij = iTj for j = 1,..., h < 

XI- Let L?(7'i,...,7'/llii,...,ï/l) = {s . ) æii i - - ■ i -^(r2) æij > ■ ■ ■ » }

be the set of all samples whose order statistics of ranks n,..., rh of the auxiliary 

variable are equal to xit,..., xih, respectively, where ij < ij+1 and rj < ij < 

N - n + x3 for j = Particularly, G(ri;ú) = {s : X(ri) = +■,,}. Hence,
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ih=ih-l+rh-rh_i

G(ri, • • • • • ,ih) = s or more precisely;

TV—ri 4-ri TV—n+ra TV—n+rj TV—n+r^-i

u u •• u u

11=1 Î2=ii+r2-n ij^j-i+rj-rj-i th
N—n+rii 

u G(n... • • 7 » • • • ł ^/i)

In the Appendix tne following expression has been derived:

9h = 9(r1,...,rh-îi,.
rj - rj-i

- 1
- 1

(1)

(2)

where r0 = ie = 0, rh+1 = n + 1, ?\+i = N + 1.

As it is well known the simple sampling design is defined as follows 
= (^) -1 for all s G S. Wilks (1962, pp 243-244) shows that the pro­

bability, that the order statistics of ranks n,..., rh cf the auxiliary variable from 

simple sample (drawn without replacement) of an auxiliary variable takés values 

, • • •, xn,, is as follows (see Guenther, 1975, Hogg and Craig, 1970, too).

(3)

(4)

(5)Po (Xr = Xt) = Po (s G G(r; î)) =

1
Eq (X(r)) = (6)

where 73 < i3 <

Particularly,

If Xi = i for i — 1,..., N, the distribution function expressed by the équation (5) 

is called the negative hypergeometrical distribut in (see Johnson and Korz 1969, 

p. 157) or the inverse hypergeometrical one (see Patii and Joshi 1968, pp. 27-28) 

and£b(XM)

Pq (-^(ri) — æii » • • • ï — æih) — Po (^ £ G(t’i, . . . , Vh, 11, • • • , 7/i))

zil—11 ( Í2— il —1\ iN — i?' 
r> ( y___ v __L A _ Vi-lhri-ri-lAn-r;.

Po V^ri) — æia) zjV\
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The sample quantité of order a e (0; 1) can be defined by the équation:

— -^(r) (7)

where r = [na] +1 is the integer part of the value na, (see e.g. Fisz 1963). Hence, 

r = 1,2,..., n and X(r) = Qa for < a <

2. Sampling design proportional to positive fonction 

of order statistics

Let IV( Xri,..., Xrh ) be a positive function of the order statistics ),..., X(r/i ).

The value of the statistic W = W (Xri,..., XTh) will bedenoted by w(Ą,... ,ih) or 

by w where rj < ij < N — n + rj, j = 1,... ,h.

The expressions (1) and (38) lead to the following ones:

zr1,...,rh = 52 W(il,...,4) = 52 W

{sGS} {«€-<4}

where

N—n+ri
A= J S(t7(l,...,i1-l),si)x{i1}x...

il = l
N—n+rh

...X U S(U(ih_i + 1,.. .,ih),sh) X {ih} x S(U(ih + .A^Sh+t)}
ih=ih-i+rh-rh-i

zri,...,rh = y w

.....O.;ń.....

Finally, we hâve:

N —n+ri N—n+n N—n+rh
zri,...,rh — 52 52 ■■■ 52 (8)

»1 = 1 Î2=»i+’’a -ri ih=ii,-i+rh-rh-i

The above expression leads to the following one:

Ą(lHXn,...,XrJ) = ^^ (9)
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Definition 1. The sampling design proportional to the values wfa,... ,ih) > 0 

of thestatistic W(ri,... ,rh) is as follows:

rj ( _  w(íl, . . . , ih} rj p»
*Ti..... rt, (s) — (10)

zri,...,rn

for s e G(ri,... , ih.) or equivalently:

p.......,.(S) = w(r'........ri'
zrit...,rh

The important case of the function W(rr,..., rh) is the following positive linear 

function:
h

T = T(r1,...,rh) = Y/ajXir.} (11)
j=i

where a.■„ j: = 1,..., h be such real and non-random values that at least one value

aj 0. Let t = t(iu...,ih) = be a value of the random variable

T(ri,. .,rh) which expected value is asfollows:

h 
Eo (T(n,... ,rh)) = ^ajE0(X(r.}) (12)

j=i

Moreover:

Definition 2. The sampling design proportional to the values tfa,

0 of the statistic Tfa,rh) isas follows:

Pri....r„(S)= (14)

for s G G(ri,..., rh-, ii,..., ih) or equivalently

n,...,r„(^) (N)£,o(r(ri i rh))
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When aj = 1/n for all j = l,...,n, the sampling design Pn ri(s) redu- 

ces to the one proportional to sample mean ot the auxiliary variable which was 

considered e.g by Lahiri (1951).

In the case when h = 1 the expression (14) reduces to the following one pro- 

posed by Wywiał (2004, 2007):

Pr(S) (n)£o(X«)

for s e G(r-,i) or equivalently

(15)

Fr(S) =
*(r) 

CM PW

Wywiał (2004) considered the following particular case of the définition 2.

Definition 3. The sampling design proportional to the value xÍ2 - xit of the 

différence X(ra) - X(ri) between two order statistics is as follows: 

(16)

for s e G(rj ,r2;ij, i2) where 

(17)N-n-i-r?

PrtM = ~^ 
zri tri

or equivalently

Prl,r2(S) =
_________ -^(n)___________________

(n)

Let us note that the particular case of the sampling design is the sample range 

of an auxiliary variable: Pn,r„(s) = (X(r„) - X(ri)) /zn,r„-

The spread of values of an univariate variable can be analyzed by means of so 

called second L-moment which is alternative coefficient to the standard déviation, 

see e.g. Sillito (1969) or Elanir and Seheult (2003). In the case of the auxiliary 

variable the sample second L-moment is as follows:

Ds{x}=ïï(ïï^) è(n - %+<18>
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or
. [n/2]

DS{X) = ïïë^I) Ç (n ~2j + 1) (19)

This leads to the following possible particular case of the définition 2.

Definition 4. The sampling design proportional to the value ds(x) of the stati- 

stic Ds(x) is as follows:

Pri.....= (20)

fors e where

^r\y...trh ( I ■^'o(^s(^')) —
\ n /

1

(21)

'N'

n

or equivalently

Prt .....rh(S) =
ZT t....,rh

Let us consider the following statistic:

L (QanQa^iQas) = (Qa? ~ Qai) (Qaa ~ Qaa) (22)

where the quantile Qa is defined by means of the order statistic in the expression

(7) and 0 < «i < a2 < 03 < 1-

Particularly,

P (Qo,25> C?0,50> Qo,7s) = (Qo.50 — Qo,2s) (Qo,75 ~ Qo,5o)

or

L (X(ri)>^([n/2]+l),^(r„)) = (^(|n/2] + l) ~ ^(n)) (^(r„) ~ ^([n/2]+l))

The statistic L = L (Qai, QO2,QO3) can be treated as spread coefficient of the 

auxiliary variable.
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The équation (7) let us write that X(re) = Qai, X(r.) — Qaï and X^ = QQ3.

So, the expression (22) can be rewritten to the following one:

L {X(rt},X(Tj),X{rk}} = (X(ry) - X(rc)) (X(rk) - Xlrj)) (23)

On the basis of the statistic L we can construct the following sampling design 

which is the possible particular case of the Definition 1.

Definition 5. Under the assumption that re < rj < rk the sampling design 

proportional to the value l (x^^x^.^x^) ofthe statistic L X(rj),X(rk)) 

is as follows: 
Pri rh(s)=l^xM’x^ (24)

Zri,...,rh 

fors g G(re,rj,rk',ie,ij,ik) orequivalently

p rç\ _ 

zri,...,rh

where

(N\
njE0(L(X(re),X(rj},X(rk)^ (25)

E0{L(X^},X(rj},X(rk)))= ^6)

= E0 (^(rj)^(rfc)) - Eo (^(r„)^(rfc)) ~ E0 (^(%)) + E0 (X(r J X(rj) )

On the basis of the expression (4) and (5) we hâve:

E0 (X(rn)^(rb)) =

(28)

for (a, b) = (j, k), (e, fc), (e, j).



Sampling design proportional to positive function of order statistics... 43

3. Inclusion probabilités

As it is well known the inclusion probability of the first order is determined by 
the following équations: "'r'^ = 52{s;fcesj F(s) for k = 1,..., N.

Let 6(x) be such the function that if x < 0 then 8(x) = 0 otherwise 8{x) = 1.

Let us note that 8{x)8(x - 1) = 8(x - 1).

Theorem 1. Under the sampling design Pri (s) introducedby the Definition
1 the first order inclusion probabilities are as follows:

4ri... rh) =

h N—n+ri /V—n-f-ra le—1
+ 52ó(fc-rJ)ó(fc-rJ_1)ó(rJ-rJ_1-l) £ £ ... £

j=2 «l=n «2=il+r2-Tl ij_i=ij_2+Tj-i-rj_2

S(ij - ij-1 -rj +rJ_i)(ri....,rh;ti,...,ih)w(ii>...,ih)+

TV— n4-ri N—n+r^
+ <5(n - rh) 52 52

*l=ri t2— ti+ra— n

6(N—n+rfo— fc-ł-l)ó(fc—rh)(fc—l)+6(fc — N+n—rf, }(N—n+rit)

g(ri,.. ■ ... ,ih)+

N—n+r/j — i 
E 

Û-i=ift-2+rfc_i— rh-2
N—n+ri,

E

N—n+rz N—nĄ-rz
+ Ó(7V — n + ri — k + l)Ó(fc — ri + 1) E E 

I2=fc + r2— n *3~t2+r3—^2

. ,ih)+
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k — i -fc-1 ie— 1 — 1

(29)

e=j’4-2

+ Ó(7V — n + rh — k + l)ó(fc — + 1)

—11 kt *j+l i ■ • • » ^h)

h-1
4- 0(N — n + rj — k + l)ó(fc — rj + 1)

J=2

ff

„ '■r- — r._i - 1/

zie-ie^-lX (ii> 
'rh - rh—i — 1/ 'n — rh) kre _ re_j _ 17 

where i0 = r0 = O, rh+i — n + 1, ih+i = N + 1.

The proof of the theorem is in the Appendix.

4. Sampling scheine

The construction of the sampling scheme implementing the sampling design 

proposed by the définition 1 is as follows. Firstly, we evaluate the values of the all 

possible values w(iltih). Next, we calculate the following values:

pw(ii, ...,ih} = P(W(ri,.. .,rh) = w(ii,... ,ih)) = 
zri, ...,rh

(30) 

whererj < ij < N-n+rj,j = 1,...,/iandij < ij+1, j = 1,...Nowtheset 

of the auxiliary variables (x^,... ,xih) is drawn with the probability pw(ń, - - • ,ih)- 

Let us note that (x^,...,xih) is the value of the order statistics . ,X(r/i)).

In the next step the sequence of the samples (si,..., Sj,..., sfc+i) are drown in the 

following way. The sample sj is the simple sample of the size rj  i drawn from 

the subpopulation U (ij-i, ij) where j = 1,..., h+1 and r0 = 0, io = 0, rh+1 = 

«Jh+i = N- Hence, wedrawn thesamples = siU{íi}s2U{Í2}u.. .U.ShU{4}sh+i. 

It is drawn with probability determined in the définition 1 because

• • • , ■ ■ ■ P(Sh-i-i) = Pri,...,Th (s)
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Let us note that the number of the values w = w(źi,... ,ih) which we have to 

calculate is very large and it is equal to (^). So, the proposed sampling design 

will be quite difficult to implementing in the practise because we should have very 

speed computers which can work with very high accuracy.

5. Some sampling strategies

The well known Horvitz-Thompson (1952) estimator tWTjS = i ZLfces ^7 is t*1e 

unbiased estimator of the population mean ÿ if itt > 0 for k — 1,..., N. So, under 

this condition the stratégy (íht,s, Pn,...,rh(s)) is unbiased for ÿ.

Let us remember that the order ratio estimator is: yRtS = ^-x where 

Vs = n ^ies Ví, xs = ň Efces xk and x — 52jt=i xk-

Wywiał (2004) proposed the similar estimator defined in the following way:

(31) 
X(r)

where E0(X(r)) is given by the expression (6). Moreover, Wywiał (2004, 2007) 

proved the following.

Theorem 2. Under the sampling design stated in the définition 1 the stratégy 
, Pr (s)} is the unbiased stratégy of the population mean.

Properties of the stratégy Çt^,Pr(s)^ is analysed by Wywiał (2007a). His 

considérations connected with the both strategies Fr(s)} and (tRTtS, Fr(s)) 

lead to the following conclusions. Generally, these strategies can be more précisé 

than the simple sample means when the degree of the order statistic is large and 
the sample size is small. The Fr(s)} stratégy can be preferred especially in 

the case when outliers (too large values) of a variable under study and an auxiliary 

variable exist. In this case, ils précision can be even better than (ÿR,s,Po(s)) 

stratégy, but only for a small size of the sample and the large degree r of the order 
statistic. Moreover, let us note that the strategies: Pr(s)} and (tHTtS, Pr(s))

do not dépend on the shortest or largest values of the auxiliary variable. Hence, 
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they are useful when there are right or left censored observations of the auxiliary 

variable.

Similarly, to the construction of the estimator we can define the following one:

,-(n,....n.) _ - E0(W(r1,...,rh))
R’S V* P7(n,...,rh) (32)

where 2?o(IV(ri, • • • ,rh)) is given by the expression (9). The Theorem 2 can be 

generalized into the following one.

Theorem 3. Under the sampling design stated in the définition 1 the stratégy
(ÿfi.s’ ”n,)>Pri,...,ra(s)j is the unbiasedstratégy ofthe population mean.

The proof of the above is in the Appendix.

It seems that not ail particular cases of the statistics g "'r'^ is sensible. The 

following propositions seems to be interesting.

Ur,s = Vs
Eo(X(rk)) - Eû(X(r.))

X(rfc) -
(33)

where from the expression (17) we hâve:

Eo (^(r2)) - Eo (^(n)) =
. N-n+r2

£kn/ «2—^2

(34)

Particularly, we can assume that X(rfc) = Q0 75 and X(rj) = Q0,25 or 

X(rfcj = X(r„) and = X(ri). So, in this case the estimator dépend on the 

sample quantile range eise sample range of the auxiliary variable.

The next proposition is as follows:

- mi w - Eo(Ds(x)) VR,s(D(x)) = ys Ds{x) (35)

where the estimator of the standard déviation of the auxiliary variable Ds(x) is 

given by the expression (18) or (19) and

EQ(Ds(x)) = A- 

kn/

1
n(n — 1)

n

J2(n - 2j + 1)

(36)
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The defined by the expressions (22) or (23) the coefficient of the auxiliary variable 

spread can by used in the following way:

-y< L(x(re),x(rj),x(rfc)) (37)

where L (X(re),X(rj), X(rjk)) is given by the expressions (26), (27), (28).

The defined estimators dépends on some sample coefficients of spread of 

the auxiliary variable. So, they can be useful when values of the variable under 

study are dependent on spread of the auxiliary variable. This case is similar to that 

dealing with ratio estimator dependent on sample variance of the auxiliary variable 

considered e.g. by Das and Tripathi (1980) or Srivastava and Jhajj (1981).

Finally, let us note that Wywiał (2004) proposed sampling stratégy dependent 

on some régression estimator and the sampling design defined by the expres­

sion (16).

The considered strategies are rather complicated and that is why analysis of 

their accuracy could be rather difficult. So, we will try to it on the basis of computer 

simulation, but in a separate páper.

Conclusions

The sampling design belonging to the dass of the sampling designs depen­

dent on the sample parameters of an auxiliary variable has been proposed. It is 

proportional to the non-negative function of order statistic of an auxiliary variable. 

It has several particular variants. The inclusion probabilities of the first and second 

degrees were derived. The sampling scheme implementing the sampling design 

has been constructed, too.

The new version of the ratio estimator has been proposed, too. It is an unbia- 

sed estimator of the population mean. Several, particular version of the ratio es­

timator has been considered.

Finally, let us note that the strategies dependent on quantiles do not dépend on 

the values which are between two neighboring quantiles of the auxiliary variable. 
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Hence, they can be useful when there are censored observations of the auxiliary 

variable.

It seems that without an additional large analysis it is not possible to détermine 

precisely how the sampling strategies dépend on the parameters of the conditional 

sampling design as weil as on the joint distribution of a variable under study and 

an auxiliary variable. It seems that in the next paper a computer simulation will be 

useful in this case.

Appendix

1. Dérivation of the expression 2

A subpopulation of the population U = (1,...,7V) will be denoted by 

+ -1). It isof sizeij,-ij-i -1. LetS(f7(îj_1 + l,.. be

the space of a simple sample Sj of size rj - rj^ - 1 drawn without replacement 

from the subpopulation +1,... ,i3; - 1). This lead to the following:

G(ri,...,rh;źi,...,źh) = S(t7(l,... ,û - l),si) x {ii}x

x S(t7(ii + 1,... ,i2 - 1), s2) x {i2} x ...

x {ij-i} x + - l),Sj) x {ij}x

x S(U(ij + 1,...,îj+i - l),sj+i) x {ij+i} x

x {ih-i} x S(f7(ih_i + 1,.. .,ih - l),sh) x {ih}x

x S(f7(îh +

or
h+l

G(ri,... = Q + l),s7) x {ij
i=l

where x is the symbol of the Kartezian product. Now the équation (1) can be 

rewritten in the following way:
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TV—n+n
U S(tZ(l,...,i1-l)^ft)x{i1}x 

ii=n
TV — n+rs

U S(t7(ii + l,...,Ż2-l),s2)x{i2}x... 
t2=ii+r2-n

TV—n+rj-1

S(L7(ij~2 + !»•••»ij—i 1),1) * i}*
Tj-2

TV—n+rj

U S(U(ij-i + 1),Sj) X {íj,}X
tj=tj_i+Tj-rj_i (38)

N-Ärj+l

U S(U(ij + l,...,ij+1 - l),Sj+i) X {ŻJ+1} X ...

TV—n+Th-i

(J xS(U(ih-2 + 1,• • -,ih-i — l),s/i-i) x {zh-i}x
«h-l=th-2+nt-i—rfc-2

TV—n+r/,

U xS(t7(îh_i + l,...,íh - l),Sh) X {ih}x
ih=»h-i+rh-rh_i

xS(U(ih + l,...,N),sh+1) = S

Let g(ri, ...,rh-,ii,...,ih) be the size of the set G(ri,... ,rh;ii,.. So, 

g(ri,.. .,rh-,ii, ...,ih) = Card(G(rlt... ,rh,ii, -,ih)) =

= Card(S(U(l,... — 1), st))Card({ii})... Card({ij-j.})-

■ Card(S(U(ij-i + l),sj))Card{{ij})...Card{{ih})-

■ Card(S(U(ih + 1,.. -, N), sh)) = Card(S(U(l,... ,ii - 1), sj)...

... Card(S(U(ij^i + 1,... ,ij; - 1), sj))... Card(S(U(ih + 1,..., N), sh)) = 

/ij-ij-i —1\ ÍN — ih\
\ri - 1/ Vj - n-i - 1/ \n-rhj

Hence:

h+l
5^1,...,^;»!,...,^) - JJ Card(S(U(ij-i + 1,...,^ - IJ.Sj^Card^}) =

J=1
h+1

= H Card(S(U(ij-l + 1,... ,ij - 1), *j))
J=1



50 Janusz L Wywiał

or

gh =g(ri,... ,rh\ii, TT ( j 3/=i - rj-i - V

where r0 = i0 = 0, rh+1 = n + 1, 4+i = N + 1.

Moreover, E{il>...>ih} s(n, ..., rh; ilt..., ih) = (*) or more precisely:

N-n+ri N-n+ra N-n+rj N-n+rk-i

E E ••• E ••• e
ii=ri Í2=ii+r2-ri ij=tj_i+rj-rj_i ih-i=»h-a+rh-i-»-fc-

N-n+rh ,Ny

\n /

2. Proof of the theorem 1

In order to simplify the dérivations we assume that Ui = rly vt = N - n + for 

i = 1,..., h. On the basis of the équation (38) we hâve:

4ri””r',) = Pri.....r„(s :kes) =

(
Í h

s : k Q I s/i+i U (sj U

\ j=1

(
h

s : (k Sfc+i) U ((A; E Sj) U = x^))
j=i

/i4-l h
= y \ ’ k £ sj) + Pri..... rk(s ■ = xk) ~

j=l j=l
h+1 h
=y? ^n,...,rh(s)+y2 yz Pr1,...,n,(s)=

J=1 Is-.kesj} j=l {s:X(rj)=xt:}

h
y ' Pri,...,rk (s) + •Pri,...,n, (s) + y2 y l Prt,...,rk{s)+

{s:fcGsj ,&<ri} {szfcGsi J=2{a:fc€Sj}

+ y Pri,...,rk (s) + y Pr!,...,rk (s) +
{s:fces),+i,fc<7V—n+r*} {s:k^3k+i ,k>N—n+rk}

3=1 {s:X{rj)=xk}

h

(39)
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fri,...,rh(s * € 51, Ä! < Fi) 5 ' (5) —

{s:fcGsi,fc<n}

f (J S(t/(l,...,i1-l)-{fc},S1-{fc})x{ii}x

N — n+r2
U S(t/(û + l,.

i2=ii+r2-n

,Í2 - 1),«2) X {î2} X ...

TV—n4-Fj-i

U S({7(źj_2 + 1,...,Źj_i - 1),S,_1) x {iy-Jx

TV—n-ł-rj
U S(t7(žj-1 + 1,... ,ij - 1),Sj) x {ij}x

N-n+rj+i
U S(t7(ij + 1,... ,ij+i l),Sj+i) x {ij+i} x ... 

ij+i—ij+rj-i-i — rj
N—n+r/,-1

U xS(U(ih-2 + l, --,ih-l - X {ih-i}x
«fc-i —ih-z4-Fh-i -r/t-3

TV—n+r/t

(J xS(U(ih~i + - l),sh) x {źh}x
ih=ih-i+rh-rK-i

xS(U(lh + 1,. . . ,N),sh+i)jw(ii,. . . ,lh) =

ó(ri - k)6(ri - 1) yí 1 ^íQírr/i • n /M rti\ /•
--------------------------- > , C'ard(S(t7(i,...,îl - 1) _ {/;},S1 _ {fc}) x {îi}) 

•r'‘------------ it=ri
N—n+rs

Card(S(U(ii + 1,... ,i2 - l),«?) x {i2})...
i2=ti+r2-ri

N—n+rj-i
52 Card(S{U{ij^2 + 1,..., ij_i - 1), Sj_!) x {ij-i})

b -1 =ij -2+rj _ ! -rj -2

TV—nH-Fj

52 Card(S{U(ij^i + 1,... ,ij - l),s_j) x {ij})
i j =i J -1 +rj - r-j _ 1

JV-n+rj+1

52 Card(S(U(ij+ ij+1 - l),sj+i) x {iJ+i})...
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N—n+rfr-i
52 Card(S(U(ih-2 + - l),s/>-i) x {ih~i})

ih-i=Mi-2+r/,-i-rh-2

N—n+ri,
52 Card(S(U(ih-i + 1,.. -, ih - 1), sh) x {íh} x 

»i.=»h-i+nt— n>-i

S(U(ih + l,...,N),sh+1)w(ii,...,ih) =

-1) Card(S(t/(l,...,ź1-l)-{fc},si-{fc}))
Zr*....&

N—n+r?
52 Card(S(U(i! + 1,..., i2 - 1), s2)) - - • 

i2=ii+r2-ri
N — n+rj^j

52 Card(S({7(źj_2 + l,...,ij-i - l),Sj_i)) 
b-i=ii-24-rj-i-rj_3
N—n+rj

52 Card(S(U(ij-i + 1,... ,i3-, - l),Sj))

N-n+rj+i

52 Card(S(U(ij + l,...,ij+i - l),sj+i))...
*j+i=h+rj+i-»,J-

AT—n+rfe-i

52 Card(S(U(ih-2 + l,---,ih-i -
ih -1 =ih ~2 +ri, -1 -n» -2

N—n+ru
52 Card(S(U(ih~i+ !,■■ ■ ,ih ~

ik=ih-l +n» —Hi -1

Card(S(U(ih 4-1,..., N), sh+i ))w(i3,..., ih) =
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This resuit and the expression (2) lead to the following one:

pn,...,r,,(s : k e Si,k < n) = Pn, ,rh(s) =
{s:A:Gsi

N— n+rj

p(n, • • •,rh;ii,...,ih)w(ii, - - •,ih)

(40)
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Next dérivation is as the follows:

P• fc G sljTc r'i) — \ Pri
{s:kÇ.si,k>ri}

6(k - n + i)ô(?'i -1) 
•,n.(s) =---------- --------------------
r/,

zJV—n+ri

Card Í (J S(t7(l,...,íi - 1) - {fc},si - {fc}) x {ii}x
' tj— fc+i

N—n+r2
(J S(t7(îi + 1,... ,»2 — 1),«2) x {^2} X - • ■ 

»a=«i+r2-n

x S(U(ih + 1,..., TV), sh+i) . ,ih)

Now after similar operation as it was in the case of évaluation of the équation (40) 

we obtain the following one:

N—n+rj_i
U S(tZ(ij_2 + l,...,ij_i - l),Sj-i) X

*3 -1 =*j -2 +îj _ 1 - Fj _2

N—n+rj
|J S(U(ij-! + l),Sj) x {ij}x

JV—n+Fj+i

U S(t/(ij + 1,... ,ij+i - 1),SJ+1) X {ij+1} x ... 
b+i=b+n+i-r,-

N—n+r/,-1
|J xS(t/(îA-2 + l,...,îh-l - l),Sh_i) X {îh-i}x

ih-i=’h-2+n»-i —ni-2

N-n-^-rh
U xS(U(tfc_i +1,. .,ih - l),sh) x {ih}x

(s • k £ k — r'i) — Fri..... (s) —
{srfcGsi ,k>ri}

= ô(k - n + i)ô(n - i)ô(N -n + n-k) 7V^tri N~^

Í!=k+1 Í2— Í1+F2— ri

(41)
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Hence, tt.e results (40) and (41) Gan be simultaneously expressed in the following 

way

Pri....rh(S;fceS1)= $2 Pri....rh(s)= J

N~n+n TV—n+ra TV—n+rj-i

L E • E
il=r\6(ri—k)+6(k -ri + l)<5(lV-n+ri-fc)(fc+l) «2=*i+^2-ri ij — 1 —i j -2 +fj- -1—1

N—n+rj 7V-n+rj+i TV—n+r^-j N—n+r/i

z z E E
t J —t J _ 1 ’P j — 1 «j+l=«J+rJ+l~rJ «1.-1==ih-a+n.-i-rfc.-2 «h=«i.-i+n,-n,.

(r* 2)
/iî-Zng(n,. •. il,... . ,ih)
kn-i/

(42)

ThesimilardérivationsleadtotheexpressionsPri,„ r/, (.s : k e sj), j = 2,...,h+l.

Finally, we make the following dérivation:

(s • — *^k) —

= E Pr r (s) = 8(N-n + r3~k+ - rj + 1)
{a:X(r.,=x*} " 2r*.....r'-

zTV—n+ri
Card \ (J S(t/(l,...,ii-l),sI)x

x ii=n
N — n+r?

x {il} x U S(t/(^+l,...,i2-l),s2) x {i2} x ...
t2=«i+r2—n

N—n+r3-i
U S(t7(ij_2 + 1, .. ,ij-i — r),Sj_i) x {ij_ i}x 

«j|_ 1 =t J1-2+rj_ 1 -Tj _2
k

(J S(Z7(ij_! + 1,.. .,k - l),Sj) x {&}x
i,=k

N-n+rj+i
U S(t/(fc + l,...,îj+1 - l),sj+i) x {ij+1} x ...
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AT—n+r/t-i
U xS(t/(ih_2 +- l),Sh~i) X {ih_i}x

tfa-i=»h-2+n»-i
N—n+rh

U xS(t/(4_! - l),Sh) X {ih}x
źh=i/1-i+r/l-r/ł_i

X S(Č7(ifa -|- 1,. . . , S/i+l^(^1, - - - » fcj —li ^i ^j+li • • • i ^h)

The above expression and similar transformations to those developed during dé­

rivation of the équation (40) lead to the following one:

Pri,...,rh(s : ^(rj) xk) — } Pri,...,rn (s) ~~

{«:X(ri>=x*}

N — n+ri 7V—n+r2

ti=ri ï2=«i4-T2— n

6(N — n + vj — k + l)6(k — Tj + 1) 
zri..... Th

ih-i=ih~2+rh-i-rh-2
N—n+rh

g(ri,... ,rh-,h,. ■ ■ ■ ■ ■ ,ij ił k, , ż/i)

or

,ri,(s)

ij+i — k — 1 fe fe—1 f 
re - re_i - 1.

Pri,...,rh{s : -^(rj) xk) —

k — ij_! — 1
.r3 - r3~l - 1

_ 6(N — n + fj — k + l)ó(fc — rj + 1) 
zri,-.,rh

łł-f-1 z . _ 1 \
TT (îe îe-1

The above dérivations compleat the proof of the theorem 1.
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3. Proof of the theorem 3

The expressions (8), (9), and (10) lead to the following:

N—n+r2 N—n+rii

Xh

w(rlt... ,rh)

seC(ri

ih=«h-i+n.-n>-i seG(rj

N—n+rh

E

y s =
,«h)

£0(lV(ri,...,rfe))

w(n,...,rh)

_ E0(W{n,...,rh)) 
y»

N—n+r2

i/a = E0(ya) = y 
seS
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Abstract

The sampling design proportional to some positive fonction of an auxiliary variable is 

considered. Its characteristics are derived on the basis of well known combinatoric défi­

nitions and theorems. For instance, it is well known the sampling design proportional to 

the sample mean, see Lahiri (1951). The sampling design proportional to the value of an 

order statistic of an auxiliary variable was prepared by Wywiał (2004, 2007). In this paper 

that sampling design is generalized in the following way. The sampling design proportional 

to the positive function of order statistics of the auxiliary variable is defined and its ba­

sie properties are considered. Its inclusion probabilities are derived. This let to use the 

Horvitz-Thompson statistic to estimation population mean value of an variable under study. 

The sampling scheme implementing the sampling design is proposed, too. Particular ca­

ses of the proposed sampling design are as follows. The sampling design proportional to 

the sample second L-statistic of the auxiliary variable. Sampling design proportional to the 

sample range of the auxiliary variable. It is useful to construction sampling stratégy using 

estimators of the régression coefficients based on order statistics of the auxiliary variable.



Tomasz Żędło

ON PREDICTION OF TOTALS FOR DOMAINS 
DEFINED BY RANDOM ATTRIBUTES

1. Mot i vat i ng example

In many countries during referendum voters present their opinion on more than 

one problem. Hence, one voter may be proponent of several issues at the same 

time. Let suppose that the purpose of some sample survey is to estimate total 

value of income of proponents of certain issue. In this case one population ele­

ment (one voter) may belong to many such defined domains (may be proponent 

of many issues at the same time). In the páper it is assumed that population élé­

ments belong to such defir ed domains at random. In the discussed example this 

can be explained by the fact that people are uncertain about their final voting de­

cision. Moreover, in a opinion poil sampled voters may be asked to present their 

support in percents. In this case the probabilities that one element belong to dif­

ferent domains are known for ail of sampled population éléments. On the other 

case, voters may déclaré their support as 0-1 variable in the sample survey. In this 

case probabilities that one element belong to different domains may be estimated 

based on sampled data (some auxiliary variables may be used in this case too). 

It is important to note that some voters may vote ”no” for ail of questions.
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2. Basic notations

Let us consider population fž of size N and a sample s of slze n drawn from 

the population. The set of nonsampled éléments of the population is denoted by 

fžr and its size by Nr = N - n.

In the classic approach population is divided into D domains denoted by Í7d, 

the dth of size Nd (where </=!,...,£>) such that:

D

d=l
(1)

fžj n fžj/ = 0 (2)

for d ± ď.

In this páper we consider some random sets (random domains) c fi, where

d = 1, but we do not assume (1) and (2) (as in the motivating example).

3. General linear mixed model

In the model approach in survey sampling when we use the general linear 
r 1Tmixed model it is assumed for a random vector Y = I y y2 • • • Yn that 

(e.g. Rao 2003):
Y = X/3+Zv + e

Bc(e) = 0

- £€(v) =. 0 (3)

Dl

where X and Z are known N xp and N x h matrices, ß is apx 1 vector of unknown 

Parameters, and random vectors v and e are h x 1 and N x 1, respectively. If the 

population éléments are rearranged so that the first n éléments of Y are those in 

the sample, and the first n rows of X and Z are for units in the sample, then Y,
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es
e, X, Z, R and £>|(Y ) — V, can be expressed as Y — • c =

, where Y.X =

and es are n x 1, Yr and er are Nr x 1, Xs is n x p, Xr is Nr x p, Zs is n x h.

8

Xs , z = Zs
. R =

Rsr v = V Vv ss v sr

xr Zs Rrr V V v rs v rr

Zs is Nr x h, Rss is n x n, Rrr is Nr x Nr, Rs- is n x Nr and Rrs = Rfr, Vss 

is n x n, Vrr is Nr x Nr, Vsr is n x Nr, and Vrs = V^. We assume that V is 

positive definite.

linder (3) we can express variance-covariance matnx of Y as:

J9|(V) = V = R i-ZGZT (4)

and variance-covariance matrix of Ys as:

P|(Y,) = Vss ■ Rss + ZsGZf (5)

Matrices R and G (and hence matrix V) may dépend on some variance Parame­

ters.

The équations of the BLUP and its Ç-MSE are presented by Henderson (1950).

Theorem 1 (Henderson 1950). Assume that the population data obey the GLMM 

(see équation (3)). Among linear, model-unbiased predictors 6a — arYs + t of 

linear combination of ß and the realization of v given by = lTß + mTv (for 

specified vectors, 1 and m, of constants) the MSE is minimized by:

&BLU = lTß + (6)

where
ß = (Xf V^X,)_1 Xf V-1 Y, (7)

v=GZl’V-1(Ys-XsJâ) (8)

The MSE of èBLU is given by

MSE^blu) = Var.(êaBLU - 6a) = ffJ(ó) + ff|S) (9)
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where

ffí(ó) = mT(G-GZrv-1ZsG)m (10)

£(ß) = (1T - m^GZlVÄ) (XTV-1^)-1 (f - mî'GZlV-1X.,)T (11)

The proof of the theorem is presented in details for example by Rao (2003, 

pp. 112-113).

4. Superpopulation model

Let us define random variables which realizations inform if the i-th population 

element has the attribute d (belongs to the dth random domain). Hence, we con- 

sider D random vectors Q(dj for d = 1,..., D each of size N x 1 where the î-th 

element of Q(d) equals:

Q(d)i = <

but - what is important - we do not assume that random sets fid meet assump- 

tions (1) and (2). Define a TV x 1 vector K(d) which i-th element equals K(d)i = 

= !)• Suppose that the values K(d)ť are known for ali the population élé­

ments. Hence, K(d)i for i = 1,..., N is the known value of the probability that the 

i-th element has the attribute d. In addition the probability that the i-th element 

does not hâve the attribute d equals Fr(Q(d)i = o) = 1 - K(d)j. Suppose also 

that Q(d)i and Q(d)j for i j are independent and that Q{d)î and Q(ď)3 for i j 

and d ď are independent too. Let us assume that and for d ď 

do not hâve to be independent and let K(dd,}i = Fr(Q(d)i = 1 A Q(ď)i = 1). In 

the special case, when Q(d)1 and Q(ď)i for d^ď are independent, we obtain that 

«(dd')i = Generally, the probability that the î-th element of population

belong to domains fid,fid/,f2d»,... will be denoted by K(ddM"...)i = /V(Q(d)i = 

1 A Q(d')i = 1 A Q(d")i = 1A...).

Consider joint distribution of Q(d)i which will be denoted by q. We introduce the 

notation q similarly to response distribution q considered by Cassel, Särndal, and

(12)
if i Î2d 

if i £ Î2d
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Wretman (1983) what we discuss below. Finally, we can write the assumptions as 

follows:

^ę(Q(d)i) K(d)t (13)

COVg^Qçd)^ ) — 1

«(d)i(l - «(d)i)

^(d)i^(df)i

0

if i = j f\d = ď

if i=j/\d^d' (14)

if i / 3

where ail of the values the of K(d)i are known for i = 1,..., N and d = 1,..., D. In 

empirical analysis they are usually unknown (especially for unsampled elements 

of population) and should be estimated.

It should be stressed that a similar approach is used when nonresponse occurs 

(e.g. Cassel et al. 1983). In this case the two subpopulations of respondents and 

nonrespondents can be treated as domains (the number of domains D = 2), but in 

this case one element of population may belong only to one domain (to the domain 

of respondents or to the domain of nonrespondents) and assumptions (1) and (2) 

are met. Moreover, it is often assumed that the elements of the population respond 

independently. Cassel et al. (1983) assume the form of the response distribution 

to propose imputation methods and to modify forms of classical estimators. In this 

paper the £ and q distributions are assumed to dérivé the formula of the BLUR

Let us define N x N matrices r(dd) and r(ddz) which (żj)th elements are re- 

spectively given by:

^-\dd)zj 1
K(d)i(l K(d)i)

0

if i=j

if ^3
(15)

''dd^d'^\dd‘)ij — *
«(dd')i - «(d)i«(d')i 

0

if i = j

if
(16)

Hence, (13) and (14) may be written as follows:

Eq(Q(d)) — K(d) (17)

cot>9(Q(d),Q(ďj) — r(dd,) (18)
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It should also be noticed that, for d = ď, (18) may be expressed as follows:

Vg(Q(d)') = r(dd) (19)

We consider the two distributions £ and q. Assume (13), ( 14) and that (compare 

with (3)):
Y = X/3 4- ZQv + e

= 0

< E€,g(v) = 0 (20)

V GO
Pi|ę ni?

e 0 R

where v and e are independent, ZQ and Eg(ZQ) = ZK are N x D matrices with 

żdth elements equal Z(d)iQ(d)i and respectively (i = 1,N; d = 1,D), 

where z^i is a value of known function of some auxiiiary variables (e.g. Vi,dZ(d)i =

Or Vi,dz(d)i = !)•

Note that model with assumption (20) may be written as the general linear 

mixed linear model with assumption (3) using: E^(Zqv) = 0, Egç(e) = 0 and 

E9ç(ZQve) = 0 what gives uncorrelated Zqv and e.

Thus,

Eg((Y) = EgE^g(Xß + ZQv 4- e) = Eg(Xß) = Xß (21 )

V = Vgi(Y) = E,(V€„(Y)) 4- yg(Bc|g(Y)) =

= E,(R + ZqGZ£) + Vg(X/3) = R 4- ZKGZJ + S

where

S = Eg(ZQ - Zk)G(Zq - Zk)t =

(
D DD \

Z(d)iGddi\dd)ii + e e ^(dyi^k'jiGdk^'idk'iii I
d=l d=ld?k=l J

If the population elements are rearranged so that the first n eiements of Qd 

and Kd are those in the sample and the first n rows of S, Zq and ZK are 

for units in the sample, then these matrices may decomposed as follows: Q(d) =
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and ZK =

Qs(d)
,Kd = ,r(dď) =

^ss{dd,) 0
,£ =

Sss 0

Qr(d) ^r(d) 0 0 5jrr

vss Vsr ZQa
,Zq =

Vrs vrr Zqr
are n x 1, k,.(í1) and Qr(d) are Nr x 1, r^j, S

, where Ka^d) and

ss and are n x

Srr and Vrr are Nr x Nr, Vsr is n x Nr, Vrs = V£., ZQs and ZKS are n x D, ZQr 

and ZKr are Nr x D.

It was mentioned that in practical applications probabilities K(d)i may be treated 

as known for ail of sampled éléments of population. For unsampled elements of 

population these probabilities háve to be estimated.

Let us also consider the following superpopulation model which is a special 

case of the above introduced model with assumptions (20). Let us assume that:

Eg(Q{ď)i) = «(d), (23)

COVq(Q(d)i, Ç(d')j) <
«(d)(l - «(d))

0

if i = j A d = ď 

elsewhere

D
YÍ — P1 'j Q(d)i^d "F e, 

d=l

(24)

(25)

where vd are Ud and vd ~ (0, av) (d = !,...,£>), e, are Ud and e, ~ (0, <re) 

(i = 1,...,7V) and vd and e, are independent (i = l,...,N;d = !,...,£>). Note

that we hâve inter alia assumed that Vd,ďViK(dď)i = K(d)iH(ď)i> = k^j,

^t,dæ(d)i — 1 and ^itd^(d)i 1*

5. Predictor and its MSE

We consider the problem of prédiction of the total value for population elements 

with attribute d* using a linear predictor of the form 6 — gJ’Y.,. We consider two 

cases, where the total of random domain is defined as 0^. — Q(d»j (Kfi + Zqv) or

= K(d»)(^/3+ZQv). Note, that both cases are more general then Henderson’s 

case f)s = 1Tß + mTv. Even in simpler case, i.e. 0dtL — (k^jXJ/3 + (K('c1,)Zq)v, 
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the expression (k^jZq) is random, while in Henderson’s case both 1T and mT 

are fixed. Note that this additional source of variability will hâve influence on the 

formula of MSE.

The forms of the BLU predictors are derived by conditional minimization of 

their error variances with respect to both the Ç and g distributions (denoted by 

Vargi(G - G)). The constraint is introduced to ensure the predictor’s g£-unbiased- 

ness and it is given by Eqç(G - G) — 0.

Theorem 2. Assume that the population data obey the model with the assump- 

tions (20). Among linear, q^-unbiased predictors Ô = gfYs of 0^, = 1q/3 4- m£v 

(whereÏQ = Q^jXandmq = Q'^Zq) the error variance (which equals qÇ-MSE 

under qÇ-ubiasedness) is minimized by:

Ôblup = p’V-1 (Y, - Xs0) + \TKß (26)

where

\T - kt y *k — K(d*)A

where

P — ^(ZqsGZqQ^*)) —

(
D D N

d=i k=i »=1

K(dd»)i

* K(dfcd*)t

if i = j Ad = k = d*

if i = j A d k A k = d*

if i — jf\dy^k^d*

K(d»)iK(d)j If i j f\k = d*

îf i 7^ j A À? d*

j9 = (xI’v-1xs)-1xJ’v-1y,

Vss — ZKSGZ^S + Sss 4- Ras

(27)

(28)

(29)

(30)

(31)
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— Eç(Zqs — Zks)G(ZQs — ZKS)T —

(
D D D \ (32)52 + Z z z(d)i2(k)iG(.dk-)^{dk)u Id=l d=l dytk=l J

G(dk) is dk-th element of G matrix.

The qÇ-MSE ofêBLUpis given by:

MSEç^Ôblup) = VaTqtißBLUP - #2.) = 5iu(<^ K) + S2#(^,K) + (X/3)Tr(dtdł)X/3

(33)

The proof of the theorem is presented in the part 1 of the appendix.

where

92ï(S, k)

ffi#(ô,K)=r-pTVss1p

= (£ - p’v-X) (xj-v-’x,)-1 (£ - pTV-1Xî)î’

(34)

(35)

r = Eg
D

(Q^jZqGZ^Q^)} =
D N N (36)= 52 d=l

where
Eq(Q

— <

ZL 52 53 z{d)iZ(.k)jG{dk}Eg(Q{d}iQWiQWjQ{dt}j) 
k=l i=l J=1

(ď)iQ(d*)iQ(k)jQ(d*)j) =

if i = j/\d=k = d*

K(dd*)i if i = jf\d=k^d*

K(dkd»)i if i = jf\d^k/\d^d*f\k^d*

K(dd*)t if i = jf\d^kf\d^d*f\k = d*

K(dd»)i^(kd*)j if i^j/\d^d*f\k^d*

^dd^ii^d^j if i^3 r\d^d*/\k = d*

^(d*)>^rI.)j if i j f\d = d* Afc = d*

(37)

Theorem 3. Assume that the population data obey the model with the assump- 

tions (20). Among linear, q(,-unbiased predictors ê = g?Ys of 6^ = Kfdł)(X/3 + 
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Zqv), the error variance (which equals q£-MSE under q^-ubiasedness) is minimi- 

zed by:

Öblup« = PIV“1 (Y. - X,ß) + \TKß (38)

where

Po ~ (ZftsGZ^g + Sss)łis(d») + (ZK«GZ^r)Kr(d») (39)

The q£-MSE oféBLUPa is given by:

MS Egç(Ô B LU Pa) = Varqt(GßLUPa — ^d,) = 91ta(S, łi) + <72|ja(Æ, łi) (40) 

where

ffi|ja(^ łi) = ra - plV~3Pa (41)

02Ba(ó, «) = (11 - PÍV-1X8) (X^V^X.,)’1 (£ - pfvr/x,)7’ (42) 

ra ~ + S)K(d«) =

= Ks(d») (ZksGZ^ + Sss)łis(d,) + K^dłj(ZKrGZ^r + 'Srr)K.r(d*)+ (43)

1" '^Ka(d*)(.^‘K’S^^,Kr)Kr(dt)

The proof of the theorem is presented in the part 2 of the appendix. The proof 

of the theorem 3 may also be obtained using theorem 1 and fact that model (20) 

may be written as (3).

6. Special cases

Let us introduce special cases of theorems 2 and 3 under superpopulation mo­

del with assumptions (23), (24), and (25). Let us introduce following notations: Q 

and K are N x D matrices with id-th éléments given by Q^i and respectively. 

Under these assumptions we obtain that:

Zq = Q (44)

ZK = K (45)
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Sss = Eę(Qs - ks)G(Qs - ks)t =
D / D

= 52r(dd) = ^diag^i-çn I 
<1=1 \d=l

D
=«r?YZ'í(d)í1-'í(d))In

<1=1
D

Vss = &i<risKs + O”v < ^(d)(f K(d))In “i" 
<1=1

Hence the ij-th element of Vss is given by:

Cuu^Yj) = < + avcl 
alc2

for i = 1

for i 1

(46)

(47)

(48)

where ci = Xd=i Kd, c2 = Ed=i Kd To obtain the following équation (e.g.

a b ... b

Rao 1982, p. 86) is used. If (ay) =

b b ...

has the same form where aiť = “« = 

then inverse matrix

a

v—,—===7—rr for i / j. In(a+(n —l)b)(a — b) * J
our case the ii-th and ?j-th éléments of V*1 are given by:

— A.
9

_ fc-l g«C2 
k + «72C2îl

(49)

where

2
g = fc-1 g"C2

“ k + a^c2n
(50)

k = al + a^(c! - c2) (51)

Theorem 4. Assume that the population data obey the model with the assump- 

tions (23), (24), and (25). Among linear, q^-unbiased predictors Ô = gjYs of 

0« = lg/3 + m^v (where = Qfdł)X and = Qfdł)Zę), the error variance 

(which equals q£-MSE under g^-ubiasedness) is minimized by:

&BLUP = K(d*)NYs (52)
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The q£-MSE of Obłup is given by:

MSEqi(0BLup) = Varqę(0BLUP ~ 6d*) ~

= gill(ó, k) + Ô2B (5, k) + (X/3)Tr(dłdł)X/3
(53)

where

«) = [«(d*)(l + Cl - K(d»)) + lĄd»)NkN - Bi1 + C2 - K(d.))] +

- «^(d.) [1 + ci + (N - 2)K(dł) + (N - l)(c2 - K(dł))] (k + <T2c2n)-1

(54)
g2u(ó,K.) = n~1{k + <Tlc2n)~1 [N Ki^-Ak + o%c2n) - na^Ki^x

2 (55)
x + ej + (N - 2)K(dł) + (N - l)(c2 - K(dł))}]

(X/3)Tr(dłdł)X/3 = M27VK(d.)(l - K(dł)) (56)

The proof of the theorem is the special case of the proof of the theorem 2.

Theorem 5. Assume that the population data obey the model with the assump- 

tions (23), (24), and (25). Among linear, q^-unbiased predictors 0 = gjYs of

= K(d»)(x^ + ZÇV)< the error variance (which equals qÇ-MSE under q£- 

ubiasedness) is minimized by:

Ôblupo. = K(d*)-^YS (57)

The q^-MSE oîÔblup is given by

MSEqç(0BLUPa) = Vo,rqç(0BLUP — @dt) = filial’ K) + Ö2|;«(^, K.) (58)

where

gita(S, k) = <72K(dł)(ci + (TV - l)c2)(fe + <72c2n)-1(TVfc + <r2n(c2 - ci)) (59)

<72|ia(à, k) = nrfd^(k + c%C2n)~3[Nk + na2(c2 - Ci)]2 (60)

The proof of the theorem is the special case of the proof of the theorem 3.
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7. Estimation of superpopulation nrcodel’s Parameters 

for special case

Proposed BLUPs (even in the presented special cases) are fonctions of un- 

known superpopulation model parameters. If they are replaced by their estimâtes 

we obtain the empirical best linear unbiased predictor (EBLUP). In this section the 

problem of estimation of superpopulation model parameters will be considered.

In the classic case, where only distribution is considered (Henderson 1950), 

different approximately unbiased MSE estimators of EBLUP were proposed (Pra- 

sad and Rao 1990; Datta and Lahiri 2000; Das, Jiang and Rao 2005). These 

estimators take into account the additional variability of EBLUP due to the estima­

tion of superpopulation parameters. Because in the classic case in many practical 

issues MSEs of EBLUPs are slightly higher than MSEs of BLUPs, the naive MSE 

estimator of EBLUP (which has the form of MSE of BLUP, where superpopulation 

model parameters are replaced by their estimators) gives acceptable results (its 

bias is not high).

To obtain naive estimators of MSE of EBLUPs considered in this paper un- 

known superpopulation model parameters in (53) and (58) will be replaced by 

maximum likelihood estimators under normality assumption. Density fonction of 

Y may be written as follows:

/(y) = 12 /(ylQ =
9

(61)

where the sum on right side of (61) is over all realization g of Q qiven by (44) (in 

practice - what is important - only one realization q of Q is known),

/(y|Q = q) = (2rr) ^det(VQSS) i exp —(y - M)TvçSs(y - m) (62)

Vçss = Dflq (Y.) = <#„ + ^qqT, (63)

Covçiq(Yt,Yj) = <
2 i 2

ae + av 2  ̂<1=1 9(d)>
2.■ Z-<d=l Ç(d)iii(d)j

for ż=l

for
(64)
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pq(q; = II Kw" - «|))n"z‘=*’(d,i (65)

d=l

Because only one realization q of Q is known, to obtain estimators of p, a%, a„,

and K(d) (d = 1,D), we solve the following equalities:

dln/(y|Q=_q) =Q (66)
dp

ďln/(y|Q^_q) =0 (67)
ÖO-2

gln/(ylQ^_q) =0 (68)
Sa?

ÔlnpQ(p) 1 y—' 1 , „ ,_Q.
—Ô ■ ■ ■ ■ =-----> . Ç(d)i + 1-----------(n - 5 Ç(d)i ) = o (69)

ÖK(d) 'M 1 - KW

Solutions of (66), (67), and (68) are obtained iteratively and they are denoted by 

A, respectively. Solution of (69) is given by K(d) = i q^i- Hence the 

naive estimators of (53) and (58) are given by (53) and (58) where p, and

K(d) are replaced by p, <%, and k^ (d = 1, ...,£>), respectively.

Additionally, in the next section the performance of EBLUPs and their naive

MSEs estimators will be studied in the simulation study.

8. Simulation study

In the Simulation study using R language (R Development Core Team 2007) 

M = 10000 of realization of Y and Q are generated based on (23), (24), and 

(25), where (parameters are chosen arbitrary) p = 100, Vd and e£ (i = 

d = are generated independently and Vd ~ 1V(0,6) and e» ~ N(0,3),

N = 2000, n = 200, D = 3, domain attributes are generated independently (see 

(24)) with K(ij = 0,8, K(2) = 0,6 and k(3; = 0,4.

Four predictors are studied:

- BLUP of given by (52) (denoted in further analysis by BLUPq),

- BLUP of 0%* given by (57) (BLUPK),

- EBLUP of 0% given by (52) where K(dł) is replaced by Ä(dt) (EBLUPq),
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- EBLUP of 02, given by (57) where K(dł) is replaced by K(dł) (EBLUPK).

Letć>2.(0. 03.(0. BLUPQ(i), BLUPK(i), EBLUPQ(i), EBLUPK(i) dénoté values 

of 0®,, 02,, BLUPq, BLUPk, EBLUPq, EBLUPk obtained in the ith step of the 

Simulation study (i = 1,...,M), respectively. In the simulation following statistics 

are considered: 

- Relative bias of BLUPq (denoted by B (BLUPq) in %) given by

(
Af \ -1 1 M

i=l / t=l
(70)

Relative bias of EBLUPq (denoted by B(EBLUPq) in %) is given by (70), 

where BLUPq is replaced by EBLUPq.

- Relative bias of BLUPK (denoted by B(BLUPK) in %) given by

(Af \ 1 M
± 5>X(0) jjj Z (BLUPK(i) - 02,(i))) (71)

i=l / i=l

Relative bias of EBLUPK (denoted by B(EBLUPK) in %) is given by (71), 

where BLUPh_ is replaced by EBLUPK.

- Relative root of prédiction variance error of BLUPq (denoted by D(BLUPq) in 

%) given by

100
Ś £(«(■») X

1=1 /
(72)

x\
1 M 

—y
i m

(BLUPQ(i) - (£(i)) - y(BWFç(i) - 0?.(i))
Î=1

2 ' '

Relative root of prédiction variance error of EBLUPQ (denoted by D(EBLUPq) 

in %) is given by (72), where BLUPq is replaced by EBLUPq.

- Relative root of prédiction variance error of BLUPK (denoted by D(BLUPK) in 

%) given by

100
1 M \ -1

(73)

x\
1 M 1 M 

(BLUPK(i) - 02,(i)) - — ^(BLUP^i) - 02,(i)) 
i=l

2 ' *
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Relative root of prédiction variance error of EBLUPK (denoted by D(EBLUPK) 

in %) is given by (73), where BLUPK is replaced by EBLUPK.

- Relative root of prédiction MSE of BLUPq (denoted by RMSE(BLUPq) in %) 

given by

Relative root of prédiction MSE of EBLUPq (denoted by RMSE(EBLUPq) in 

%) is given by (74), where BLUPq is replaced by EBLUPq.

- Relative root of prédiction MSE of BLUPK (denoted by RMSE(BLUPK) in %) 

given by

(
1 M \-1 1 M

-T7 A 77 E (BLUPK(i) - i&(i))2 (75)
M ! \ Mi=l / \ 1=1

Relative root of prédiction MSE of EBLUPK (denoted by RMSE(EBLUPK) in 

%) is given by (75), where BLUPK is replaced by EBLUPK.

- Relative root of expectation of naive MSE estimator of EBLUPq (denoted by 

ERMSÈ(EBLUPq) in %) given by

where MSE(EBLUPQ(i)) is a value of naive MSE estimator of EBLUPq obta- 

ined in the ith step of the simulation. Relative root of expectation of naive MSE 

estimator of EBLUPK is given by (76) where EBLUPq and are replaced 

by EBLUPk and 0£., respectively.
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Table 1

Simulation results

d=1 d=2 d=3

B(BLUPq) in % -0,0081 0,0152 -0,0804

B(BLUPk) in % -0,0007 -0,0007 -0,0007

B(EBLUPq) in % 0,0392 0,0601 -0,2000

B(EBLUPk) in % 0,0466 0,0442 -0,1204

D (BLUPq) in % 1,6977 3,0706 4,5469

D(BLUPk) in % 0,3911 0,3911 0,3911

D(EBLUPq) in % 3,6008 6,0346 9,1164

D(EBLUPK) in % 3,6097 5,8212 8,8291

RMSE(BLUPq) in % 1,6977 3,0707 4,5476

RMSE(BLUPK) in % 0,3911 0,3911 0,3911

RMSE(EBLUPq) in % 3,6010 6,0349 9,1186

RMSE(EBLUPK) in % 3,6100 5,8214 8,8299

ERMSE(EBLUPq) in % 1,5774 2,8297 4,2288

ERMSE(EBLUPK) in % 1,0402 1,1025 1,0081

Simulation results confirm that all of the considered predictors are model unbia- 

sed (Simulation biases are very small). In the above table MSEs of BLUPq are 

higher than MSEs of BLUPK and their values are higher for domains with smal- 

ler K(d). Due to the estimation of probabilities substantial increase of MSEs of 

EBLUPs is observed comparing with MSEs of BLUPs. What is more, naive MSE 

estimators do not explain additional variability of EBLUPs (due to estimation of 

unknown parameters) and further analysis have to be conducted to obtain better 
«

MSEs estimators.
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Appendix 1

To prove theorem 2 we consider the problem of prédiction of the total value 

in the d*th domain + mçv (where Iq = Q^X and hiq = Q(^,)Zq)
using a linear predictor of the form 3 = gfYs. The error variance of Ô with respect 

to both distributions £ and q is given by:

Varçf (Ö - 3%) = Varç(Ef|ç(0 - 0«)) + ^(Varfk(ö - 0« )) =

= (X/3)Tr(dłd,)X/3 + gfvssgs + r - 2gj p

where p and r are given by (28) and (36), respectively. The condition of 

g£-unbiasedness is given by:

EqEiïq(ê - 0«)) = (gJXs - /$.}X)/3 = 0 (78)

what gives:

gJXs = «fdł)X (79)

The optimal vector of weights of the predictor 0 = gf Yfl (and hence the for­

mula of BLUP and its MSE presented in the theorem 2) is obtained by conditional 

minimization of the error variance (77), where the constraint is given by (79). The 

problem is solved using the method of Lagrange multipliers.

Appendix 2

To prove theorem 3 we consider the problem of prédiction of the total value 

in the d*th domain 3%t = K(d*)(x/3 + zc?v) using a linear predictor of the form 

3 = gfYs. The error variance of 3 with respect to both distributions £ and q is 

given by:

Varq^é - 0£) = Varq(E&q(3 - 3^)) 4- E,(Varf|,(0 - ß^)) =
(80)

= gf Vssgs + Ta - 2gf pa

where p„ and ra are given by (39) and (43), respectively. The condition of 

ç£-unbiasedness is given by (79). The optimal vector of weights of the predictor 

3 = gfYs (and hence the formula of BLUP and its MSE presented in the theorem 

3) is obtained by conditional minimization of the error variance (80), where the 
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constraint is given by (79). The problem is solved using the method of Lagrange 

multipliers.
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Abstract

The problem of prédiction of domain totals is widely discussed in the small area esti­

mation literaturę (e.g. Rao 2003). In the classic approach it assumed that the population 

is divided into disjoint domains and sum of domains gives the whole set of population élé­

ments. In this paper we define random variables which realizations inform if the i-th popu­

lation element has the attribute d (belongs to the d-th random domain). What is more, one 

population element may hâve no attribute or more than one attribute. The proposed mo­

del may be treated as the model assuming random overlapping domains. We present the 

problem of prédiction of a domain total (or being more précisé - total value for éléments of 

population with some attribute) based on the general linear mixed model (GLMM). Different 
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model (assuming inter alia that one population element may belong at random only to one 

of domains) was considered by Żądło (2006). The main aim of this paper is to present the 

équation of the best linear unbiased predictor (BLUP) and its mean squared error (MSE) 

under the proposed model. Additionally the problem of estimation of model Parameters will 

be studied and its influence on the predictor’s accuracy will be considered in the simulation 

study.



Grażyna Trzpioť

ESTIMATION METHOD FOR QUANTILE REGRESSION

Introduction

Quantité régression, as introduced by Koenker and Bassett (1978), is gradu- 

ally evolving into a comprehensive approach to the Statistical analysis of linear 

and non-linear response models for conditional quantile functions. Like a clas- 

sical linear régression methods based on minimizing sums of squared residuals 

enable one to estimate models for conditional mean functions, quantile régression 

methods based on minimizing asymmetrically weighted absolute residuals over a 

mechanism for estimating models for the conditional median function, and the füll 

range of other conditional quantile functions.

Like robust estimation, the quantile approach detects relationships missed by 

traditional data analysis. Robust estimâtes detect the influence of the bulk of the 

data, whereas quantile estimâtes detect the influence of co-variates on alternate 

parts of the conditional distribution. Unlike least squares however, the régression 

through the quantiles produces a different estimate than the régression quantiles.

*The research was supported by the grant number KBN: N111 003 32/0262.
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1. Quantile régression

Quantile régression is a method for estimating functional relations between va­

riables for ail portions of probability distribution. Typically a response variable Y 

is some function of predictor variable X. Regression application focus in estima­

ting rates of changes in the mean of the response variable distribution as some 

function of a set of predictor variables, in the other words the function is defined 

for the expected value of Y conditional X, E(Y|X). Regression analysis gave in­

complète picture of the relationships between variables especially for régression 

models with heterogeneous variances.

Quantile régression was developed as an extension of the linear model for 

estimating rate of change in ail parts of the distribution of response variables. The 

estimâtes are semi parametric in the sense that no parametric distributional form 

(eg. normal, Poisson, negative binominal, etc.) is assumed for the random error 

part of the model e, although a parametric form is assumed for the deterministic 

portion of the model (eg. ß0X0 + ftXJ. The conditional quantiles denoted by 

Qy(r\X) are the inverse of the conditional cumulative distribution function of the 

response variable F“1(r|X), where t g [0,1] dénotés quantile.

The quantile model posits the rth quantile of Y conditional on x to be:

Q(t|3;) = a(r) + xß(r), 0 < t < 1.

If ß(r) is a constant ß, the model reduces to the standard conditional expectation 

model, E(Y|x) = a+xß, with constant variance errors. When ß(r) dépends on r, 

the model allows the distribution of Y to dépend on x in different ways at different 

parts of the distribution. The traditional linear model can be viewed as a summary 

of ail the quantile effects; that is, J Q(rlx)dr = E(Y|x). Under this interprétation, 

traditional analysis loses information due to its aggregation of possibly disparate 

quantile effects. Many different quantile paths, for example, can lead to ßk = 0. 

On the one hand, ßk = 0 can mean xk does not matter - does not affect the 

distribution of Y. But it can also mean there are important, but compensating 

quantile effects relating Y and x.
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2. Estimation linear quantité régression function

Consider the following régression model:

Vi = fl(æi) + ej (1)

where the dependent variable y = (yi, j/2, ■ • ■ > yn) and independent x = (xi, x2, - - -, 

xn) where y g R and x e Rp, g( ) is real valued and unknown. We are interested 

in estimating the régression function g( ) given Xi.

In the parametric framework of the linear régression model when 

g(xi) = ß(r)xi the quantile régression was proposed as a solution of:

1 "
min - 52 - xiß) (2)

jSeRp n z—'
t=l

where pT(z) = |t - 7(z < 0)| ■ |z|, I is the indicator function*.

* /[4] = 1 if A is true, /[4] = 0 otherwise.

The conditional quantile r of yi given xit by monotonicity of quantile function:

Q(t|x) = g(x} + = gT(x} (3)

where £>-1(t|x) is conditional rth quantile of error term e, and Q(r|x) = 

= inf{A : P{yi < A|x) > r}. In équation (3) g{x} and D_1(t|x) are not identi- 

fied separately. However gT(x), the conditional rth quantile can be identified, then 

the équation (1) can be rewritten as:

Vi = gT(xi) + t>i (4)

where = e< - and w is a new error term which has a zero conditional

quantile.

Given (yi;xi), the quantile model can be estimated by régression quantiles 

which are defined by the minimization problem:

/3*(r) = min< Y ~ xib\) + Y' uą(1 - r)^ - Xi&| > (5)
beR z—' .

yi>xtb yt<Xib ) 
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where the weights wt are introduced to account for different variability of x, and 

the different number of observations at each x<.

To compare the different quantile estimâtes it is useful to express the data in 

terms of the empirical distribution:

Fí(^) = -7 52 <ni
and let Qi(r) be the associated empirical quantile function. Notice that Q, is an or- 

dinary empirical quantile and hence is asymptotically norma! with mean 

a(r) + Xiß(r) and variance where of (r) = r(l - r)/(f(Qi(r))2).

Hence the data can be written in familiär linear model form as:

Q(r|x) = a(r) + x/3(r) + Ei, i=l,...,n (7)

where the error terms are independent and asymptotically normal with mean zero 

and variance The model is thus seen to be amenable to weighted least 

squares estimation, instead of implementing régression quantile estimation on 

ail the (î/i;xi) data, we can do weighted least squares on the smaller data set, 

[Qi(r);ïz]> i = !,■■■, n.

How does this "regression-through-the-empirical quantiles” estimate compare 

to regulär régression quantiles? What does the usual régression quantile problem 

look like when expressed in terms of the empirical distributions? The answer turns 

out to be given by: 
n

ß* (t) = min w, Q, (x, b; t) (8)
b i=l 

where V
Qi{v,r)= y Fi(t)dt — vr (9)

—00

It can be verified that these resuit in the régression quantiles. This can be most 

easily verified by taking the (sub)derivative of (9) and noting that the summands 

reduce to

For a given r, y/N(ß*(r) - ß(f)) is asymptotically normal under general depen­

dence and heterogeneity.
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3. Quantile régression model

In the general linear quantile régression model*  specified as:

* Here we consider function of X that the linear in the parameters Qu(r|X) = /3o(r)Xo+ 

+/?1(t)Xi + ... + /3n(r)Xn.

Q(r|x) = xTß(r) (10)

such models may be represented by the linear hypothesis:

ß(r) =& + 'ïFa ^r) (11)

for a and 7 in and F“1 a univariate quantile function. Thus, ail p coordinates of 

the quantile régression coefficient vector are required to be affine functions of the 

same univariate quantile function, F^1. Such models may be viewed as arising 

from linearly heteroscedastic model:

yi = xfa + (xí^Uí (12)

with the {wi} iid from the distribution Fo.

The parameters are for a specified quantile r e [0,1], The parameters vary 

with r due to effects of the r,h quantile of the unknown error distribution. Parame­

ters estimated in linear quantile régression model hâve the same interprétation as 

those in any linear model. They are rate of change conditional on adjusting for the 

effects on the other variables in the model.

Quantiles are usually estimated by a process of ordering the sample data. 

Extension to the régression model was to récognition that quantiles could be es­

timated by an optimization function minimizing a sum of weighted absolute dévia­

tions, where the weights are asymmetric r. They can be estimated by solving the 

linear programming problem:
n

min V qt (yi -x{b) (13)
beRp z—'

When the vectors a and 7 are fully specified under the null hypothesis tests may 

be formulated as suggested in Koenker and Machado (1999).
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The simplest unconstrained form of régression quantiles estimâtes allows the 

predictor variables (X) to apply changes in central tendency, variance, and shape 

of the response variable (Y) distribution (Koenker, Machado 1999). When we es- 

timate only a changes in central tendency (in mean) of the response variable (Y) 

distribution we hâve well known homogeneous variance régression model asso- 

ciated with least squares régression model. Ail the régression quantile slope fa (r) 

are for the common parameter, and any déviation among the régression quantiles 

estimâtes is simply due to sampling variation. An estimate of the rate of change in 

means from ordinary least squares régression is also an estimate of the same pa­

rameter as for régression quantiles. The intercept estimâtes 60(t) of the quantile 

régression model are for parametric quantile ß0(r) of y when Xx,X2,..., Xn = 0, 

which differ across quantiles and for the mean p,.

When the predictor variables X exert changes in central tendency and in va­

riance of the response variable (Y) distribution (Koenker, Machado 1999). We 

hâve a model with unequal variances (a location-scale model). As a conséquence, 

changes in the quantiles of y across X cannot be the same for ail quantiles. Slope 

estimâtes fa (r) differ across quantiles because ßi (r) differ, since the variance in 

y changes as a function of X. Note that the pattern of changes in estimâtes b0(r) 

mirror those for fci(r).

4. Nonparametric estimation of conditional 

quantiles

Dénoté, as earlier, the r quantile of the distribution Y given X = x as Qj,(r|X) 

which solves:

F(Qîz(t|X)|x) = t (14)

where F(y\x) is the conditional cumulative distribution of Y given x evaluated 

at Y = y an estimate Q(r|x) can be obtained from the observed pairs (X., Yt) 

(i = 1,... ,n) by solving (1) after replacing F with some estimate F. One choice 
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of F, which smoothes over X, is:

XK[(Xi-x)/h}I[Yi<y]
F(y\x) = - ------------------------------ (15)

^K^-xj/h} 
j=i

where K is a kernel fonction and I is the indicator fonction, h is the bandwidth 

Parameter. For chosen h we can ose a cross validation approach to minimize the 

loss fonction:
n

L(h) = j; eAzHYi - Q^{Xi)) (16)
i—1

where ^(z) can be interpreted as the loss fonction (Koenker, Bassett 19781 and 
Qt^ dénotés the estimate of QT(Xj) osing bandwidth h, where observationI has 

been dropped from a sample.

Eqoivalently, the nonparametric qoantile régression estimator can be de- 

fined to minimize.
u-i (17)

t=l v z

over ail QT.

For nonparametric qoantile régression Yo and Jones (1998) soggests the ao- 

tomatic bandwidth sélection stratégy for smoothing conditional qoantiles, which 

minimizes mean sqoared errer of tne conditional qoantile fonctions as follows:

hr = Àmean {r(l - r)/<^($-1(r))2}0’5 (18)

where <p and $ are the standard normal density and distnootion fonctions.

Conclusion

While qoantile régression and robost estimation are concerned with different 

aspects of data analysis, they hâve the shared objective of oncovering relation- 

ships missed by traditional data analysis. The robostness criterion translates into 

estimâtes that are onaffected by a small fraction of the data, and sampling distribo- 

tions that stay good when hypothesized models are only approximately valid. Ro­

bost estimation is designed to deal wnh mistakes doe to discrepant data Qoantile 
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régression is concernée! with mistakes due to summarizing potentially disparate 

quantile effects into a single, potentially misleading, représentation of the way y 

and x are related.

Quantile régression allows us to directly model conditional VaR, utilizing only 

the pertinent information that détermines quantiles of interest. This is contrast with 

the traditional methods that use information on the centrai moments of conditional 

distribution - mean, variance, kurtosis, etc. - to construct the VaR estimâtes. 

From this point of view quantile régression is important for modeling intermediate 

and extremal conditional VaR.
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Abstract

In this paper the estimation of linear quantile régression model is presented. That kind 

of model can be used for modeling conditional VaR using only the pertinent information that 

détermines quantiles of interest. Moreover, both the classical quantile régression models 

and nonparametric estimation approaches are shown.
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SENSITIVITY ANALYSIS OF SOME ROBUST 
ESTIMATORS OF VOLATILITY

Introduction

Leptocurtic tails of data distributions and contamination of data with outliers 

are two features which very often characterize the financial time sériés. Conse- 

quently, the standard estimators, which are optimal for uncontaminated multiva- 

riate normal distributions, háve very little chance to correctly estimate Statistical 

Parameters. In order to achieve stable and accurate estimâtes of parameters the 

robust estimators are required.

In the process of assets sélection and their allocation to the investment portfolio 

the most important is the accurate évaluation of the volatility of the return rate. 

Lots of robust estimators of volatility are presented and analyzed in literatuře, so 

we want to compare and use some of them in the process of asset sélection and 

their allocation to the investment portfolio.

In this páper we consider estimators with explicit formulas, satisfactory effi- 

ciency, 50% breakdown point.

The main goal of this páper is sensitivity analysis of selected robust estimators 



92 Grażyna Trzpiot, Justyna Majewska

of volatí lity and the classification of generated Investment portfolios with respect to 

chosen robust estimators. Selected methods of cluster analysis were used for the 

classification. We hâve tried to isolate homogeneous groups of similar portfolios 

as well as reveal relations between these portfolios.

Also authors try to convince that applying robust estimation in portfolio analy­

sis ensures better method for effective investment decision-making than classical 

portfolio analysis. We proceed as follows. In Section 1, we review some basie 

concepts of robust statistics. In Section 2 we characterize some robust estima­

tors of volatility. In Section 3 we give brief OverView of.the minimum-risk portfolio 

sélection problem. In section 4 applications to simulated time sériés are presented 

before we give some conclusions.

1. Basic concepts of robust statistics

The pioneering work of Tukey (1960), Huber (1964), and Hampel (1968) has 

laid the ground for the theory of robust statistics. As a generalization of classical 

theory, robust statistics takes into account the possibility of model misspecification 

(i.e. model déviation). This theory and its results are valid at the model as well as 

in a neighborhood of the model, which is not the case for classical statistics.

The aim of robust statistics is to provide tools not only to assess the robustness 

properties of classical procedures, but also to produce new estimators and tests 

that are robust to model déviations.

Let us define:

{Fe,G|Fe,G = (l-e)F + £G}

where G is an arbitrary probability function and s € [0,1], the set of ail distributions 

defining a neighborhood of the parametric model F.

The neighborhood FEjG of F represents data contamination (not all data follow 

the pre-specified distribution, but s-part of data can corne from a different distribu­

tion G). An estimator is robust if it remains stable in a neighborhood FEiG of F.
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One particular case is when G = <5X, the distribution that gives a probability of 

one to a point x chosen arbitrarily. In this case, the neighborhood of the model fe- 

aturing ail local nonparametric departures from F is given by Fejx = (1 -e)F+eóx. 

Hence Fe^ generates observations from F with probability (1 - e) and observa­

tions equal to an arbitrary point x with probability e.

Two main concepts for robust measures analýze the sensitivity of an estimator 

T to infinitesimal déviations (e —» 0) and to finite (large) déviations (e > 0).

The influence of infinitesimal contamination on an estimator is characterized 

by the influence function that measures the relative change in estimâtes caused by 

an infinitesimally small amount e of contamination at x. Clearly, the relative effect 

on T is desired to be small or at least bounded. A functional T() with bounded 

influence function is regarded as robust.

The influence function is defined as:

' e-»0 E

The influence function allows to define various désirable properties of an esti­

mation method. First, the largest influence of contamination on estimâtes can be 

formalized by the gross-error sensitivity:

7(7, F) = sup IF(x, T, F) 
x€R

which under robustness considérations be finite and small.

Second, the sensitivity to small changes in data, for example moving an obser­

vation from x to y € R, can be measured by the local-shift sensitivity:

\\IF(x-,T,F)-IF(y,T,F)\\
xjty II® - î/||

This quantity should be relatively small since we generally do not expect that small 

changes in data cause extreme changes in values or sensitivity of estimâtes.

Third, as an unlikely large or distant observations may represent data errors, 

their influence on estimâtes should become zero. Such a property is characterized 

by the rejection point:

e(T, F) = inf {r : IF(x; T, F) = 0, ||x|| > r} 



94 Grażyna Trzpiot, Justyna Majewska

which indicates the non-influence of large observations.

Alternatively, behavior of the estimator T can be studied for any finite amount 

£ of contamination. A very broad measures of global robustness of 7 at F is the 

so-called maximum bias defined as:

B(e; 7, F) = sup ||7(1 - e)F + eG) - 7(F)|| 
G

B(e; 7, F) measures the worst case bias due to an e amount contamination of the 

assumed distribution. 7 is regarded as robust if it has a moderate maximum bias 

for small e.

The most prominent is the breakdown point (Hampel 1971), which is defined 

as the smallest amount e:

e*(7) = min{E : B(e; 7, F) = oo}

Clearly, the higher the breakdown point of an estimator, the more robust the es­

timator against outliers. Besides, the intuitive aim of this définition spécifiés the 

breakdown point e*(7) as the smallest amount of contamination that makes the 

estimator 7 useless. Note that in most cases e* (7) < 0,5 (He and Simpson 1993).

The most popular measure of volatility - variance - is not robust estimator. 

It is not robust globally and locally - its influence function is unbounded (that is 

an infinitesimal point mass contamination can hâve an arbitrarily large influence) 

and his breakdown point is 1/n, the lowest possible value. It has an unbounded 

maximum bias for any e > 0 and hence is not robust in terms of this maximum 

bias measure.

We remark that robustness is one of the most important performance criteria of 

a Statistical procedure. There are, however, other important performance criteria. 

For example, efficiency is always a very important performance measure for any 

Statistical procedure. Also issue of equivariance concepts is very significant (if the 

estimator is affected by location or scalę transformation).
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2. Some robust scalę estimators

In this páper we will pay attention to scalę estimators that hâve the following 

properties:

- an explicit formula,

- 50% breakdown point,

- a bounded influence function,

- affine equivariant*,

- being easily computable, using at most O(nlog n) time and O(n) storage.

Most existing scale estimators proposed in the literaturę fail one or more of 

these requirements. Especially the condition of 50% breakdown cuts away most 

estimators such as the interquartile range (which has 25% breakdown) and the 

trimmed standard déviation.

We will concern on scale estimators, which can be written as combinations of 

médians. This includes L- and U-statistics, but excludes most M- and R-statistics. 

We also want the estimators to be consistent for the scale parameter of gaussian 

distributions**. We will concern also on location-free estimators. Locatio-free es­

timators hâve the advantage that they do not implicitly rely on a Symmetrie noise 

distribution.

The scale of X = (xlt... ,xn) is typically estimated by standard déviation 

which is very efficient for the assumed normal distribution, but highly sensitive to 

déviation from normality in a sample or empirical distribution.

The most commonly used robust estimator with 50% breakdown point (but 

location-based) is median absolute déviation about median (Hampel 1974)

MADn = an 1,4286med < xt — med(xj) > (2-1)
i ( i J

Here, an is a small sample correction factor that can be chosen depending on the

* Scale estimator S is affine equivariant if and only if S(axi + b,..., axn + b = |a|S(xi 

for arbitrary constants a and b.
" Usually this is achieved by premultiplying S by an appropriate factor C such that 

cS(xi,... ,x„) —> 1 when the observations are drawn from the standard gaussian distribution. 
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sample size to achieve unbiasedness. The MAD has become quite popular be- 

cause of its simplicity and extremely good robustness properties. Its gross-error 

sensitivity is the smallest possible for a Fisher - consistent estimator -1,17. The 

asymptotic efficiency of the MAD is 37%, which is unusually Iow. Collins (1999) 

noted that the discontinuity of the influence function of the MAD causes its asymp­

totic variance to increase in an ^-contamination neighborhood with arbitrarily small 

E resulting in even smaller efficiency -14,5%.

We want to détermine whether any of these possess additional properties 

which the MAD does not have such as a continuous influence function (IF) or 

a better efficiency.

2.1. Location free estimators

A classical U-statistic is defined as the average of the Q) values {£ ..., xik ) ;

ii < i2 < ... < ik} where k is the order of the kernel For scalę estimation, we 

can use the generalized L-estimators:

&

ak {l^i — xjJ ; i < j}(fe) (2-2)
fc=l

with the kernel Ç(xî, Xj) = \xi - xA of the second order*.  Replacing the absolute 

values by squares we obtain a similar dass of estimators given by:

’The subscript (fc) means the fc-th order statistic of the (”) values in {|æi — xj\; i < j}.
**Note that h = [2.] + 1 (h standing for half).

Choosing ail the weights equal to (j)-1 yields the classical standard déviation in 

(2.3) and Gini's estimator in the case of (2.2).

We can obtain the maximal breakdown point if we choose coefficients ak for 

which ak = 0 when k > (ÎJ) and such that there exists f1"1) < k < (2) with 

ak > 0 **.
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An example of a 50% breakdown estimator of type (2.2) is:

MA“1 (S)
(2) 52ak<1^-<^(k) <2-4)
' ' fe=i

and relatively to (2.3):

To obtain consistency in gaussian models (2.4) and (2.5) must be multiply by 

17,904 and 7,7405, respectively. Besides, their efficiencies are 81,45% and 

81,55%, and their gross-error sensitivities amount to 2,0340 and 2,0416. A im­

portant drawback of these estimators is that they need O(n2) computation time. 

Therefore the following estimator is preferred (Croux and Rousseeuw 1992):

Qn = bn2,2219 {\xi - Xj\; i < j}^ (2.6)

which is a special case of both (2.4) and (2.5) and still attains the optimal bre­

akdown point. Its asymptotic efficiency 82,27% which is better than that of (2.4) 

and (2.5). Its gross-error sensitivity 2,069 is a bit worse. Croux and Rousseeuw 

(1992) construct an O(7ilogn) - time algorithm for computing (2.6). They also 

obtain finite-sample correction factor bn to make Qn unbiased at small samples. 

Here, bn is a small sample correction factor that can be chosen depending on the 

sample size to achieve unbiasedness and constant 2,2219 succeeds in making 

Qn approximately unbiased for finite samples (for details see Croux and Rous- 

-seeuw 1992).

2.2. Nested £-estimators

Apart from the generalized L-estimators there is also another way to robustify 

i7-statistics. Instead of Processing the kernels as one homogeneous set of data, 

it is also possible to carry out "nested" operations which eliminate one argument 

at a time.
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To define nested L-estimators for kernels of order 2, two steps are required: 

computation the L-statistic for each observation xt (i = 1,..., n):
n

= 52 aktë(xi, XjY, i / j)(fe) (2-7)
k=i

and the second, computation an L-statistic based on the H(xi) values:
n

'^2bk(H(xi);i= 1, ...,n)(fc) (2.8)
fe=i

Nested L-estimator has the maximal breakdown point if ah > 0, ak — 0 for k > h 

and bk = 0 for k > h. Its computation time is quite high, but in the special case 

of (2.7) given by H(xi) = med\xi - x,\ it is possible to compute each H(xi) in 

O(log n) (Shamos 1976; Croux and Rousseeuw 1992). This leads to the following 

type of nested L-estimator:

h , x
5 bk < med — Xj |; i = 1,..., n > (2 9)
ťi lJ W

which can be computed in O(nlogn) time and has maximal breakdown (if bh > 0). 

We take into considération the dass of estimators:

S1“ = sa < med fxi — Xj\;i = 1,..., n >
l J [an]

where 0 < a < 0.5.

The highest efficiency - 58.23%, is attained at a = 0,5 and corresponding to 

the estimator:

Sn = S“ = cn 1.1926 medmed \x, — Xj\ (2-10)
i

the influence function of Sn is discontinuous and its gross error sensitivity is 1,625. 

An algorithm for computation of Sn in O(nlog n) time is described by Croux and 

Rousseeuw (1992). Here, cn is a small sample correction factor that can be cho- 

sen depending on the sample slze to achieve unbiasedness.

Taking the average of ail S1" with 0 < a < 0,5 yields the another location-free 

50% breakdown point estimator-trimmed mean of median déviations defined as:

1 r >
Tn = 1,3800— 52 1 med [a:, — xj\ > (2-11)

h W 
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which is of type (2.9) with constant coefficients bk. The asymptotic efficiency of this 

estimator is about 52% and its gross-error sensitivity becomes 1,4578. Therefore, 

Tn is less efficient, but more robust than Sn, for which 7 = 1,625. An important 

advantage of Tn over Sn is that its influence function is continuous and yields a 

finite local-shift sensitivity.

2.3. Scale estimators based on contiguous subsamples

A different type of location-free scale estimator is given by:

= dn |a\i+fan]+l) ~ ^(i) l([n/2]-[an]) (2-12)

where 0 < a < 0,5 and < ... < x(7l) are the order statistics. The constant dn 

is needed to make the estimator Fisher-consistent at gaussian distributions.

For a satisfying [cm] = [n/2] - 1 the estimator C“ becomes:

LMSn = 0,7413 min |cc(i+r„/2]) - x^ I (2.13)
i

This estimator first occurs as a scale part of the least median of squares (LMS) 

régression estimator. We can interpret it as the length of the shortest half sample.

It had the same influence function and thus the same asymptotic efficiency as 

the MAD. For small samples its efficiency is larger than that of the MAD and its 

maximum bias in case of many outliers is smaller than that of the MAD.

Replacing the range of a subsample as in (2.12) by standard déviation, yielding 

the estimators:

Dn ~ e-nStd {cc(t), - ■ - > ^Ci-Fln/aj+i) }([3.l/2]_[o,n] (2-14)

where o < a < 0,5. For a satisfying [cm] = [n/2] -1 we get least trimmed squares 

estimator:

LTSn = 2,6477 min std {ccw,..., x(ź+[„/2]+i} (2.15)

For the scale estimator we obtain an asymptotic efficiency of 30,67%, which is 

less than the 36,74% efficiency of the scale estimator.
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3. The traditional approach to portfolio optimization

The fundamental goal of the portfolio theory is to optimally allocate Investments 

to different assets. Mean-variance optimization is a quantitative tool, which allows 

to make this allocation by considering the trade-off between risk and return. Ho- 

wever, sińce the covariance matrix can be estimated much more precisely than 

the expected returns the minimum variance portfolios are usually more stable be- 

cause the composition of the minimum variance portfolio dépends only on the 

covariance matrix of asset returns.

The classical Markowitz optimization problem, which constitutes the main theo- 

retical background for the modem portfolio theory is widely described and analy- 

zed in literaturę, so we will just briefly recall the minimum-variance problem.

For given n risky assets the minimum-variance portfolio is the portfolio of as­

sets that minimizes risk measured by the variance of portfolio return for a given 

covariance matrix C. It is a solution to the following problem:

min xTCx S.t. x € X (3.1)
a—(æi,...,æ„)T

where x g 3?” is the vector of portfolio weights.

The simplest non-empty and bounded set X of feasible portfolios are usually 

considered as: in 'l
X = < x G 3?n : = l,x > 0 >

L i=i J

4. Simulation results

The present section is devoted to a comparison of selected risk estimators* 

an analysis and classification of generated investment portfolios with respect to 

chosen robust estimation.

Risk is measured by volatility of returns.
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For our experiment we use market indexes: WIG20, WIRR, and MIDWIG* of 

the Polish Stock Exchange Members.

We háve generated 1000 weekly return following t-student distribution (Para­

meters were estimated weekly based on returns of each index WIG20, WIRR, 

MIDWIG). For this purpose we ušed the Monte Carlo simulation. In order to re­

duce estimation errors we hâve chosen a weekly periodicity for the rates of return 

(Simaan 1997).

We hâve considered the following types of database: without contamination, 

next we used 2%, 4%, 6%, 8%, and 10% percentage of contamination level. The 

point mass multiplicative contamination hâve been studied, that relies on random 

multiplication of 2%, 4%, 6%, 8%, and 10% of the asset returns by spécifie value 

- three times the estimated standard déviation. The contamination occurs for each 

of the three sériés at the same data points.

For each dataset we hâve established the risk estimators described in the Sec­

tion 2 (see Table 1).

After analysing the results form Table 1 and Figure 1 we observed that MAD, 

Qn, Tn, and Sn estimators offer a stable estimate of volatilities. Whereas, together 

with increasing the percentage of contamination the standard déviation changes 

substantially.

level of contamination

-•—stdev. J» MAD Sn  Qn » - Tn LSM -»—LIS

Figure 1. The impact of contamination on the risk level

•WIRR and MIDWIG were replaced by mWIG40 and sWIG80 on the Polish Stock Exchange Mem­

bers from March 2007.



102 Grażyna Trzpiot, Justyna Majewska

Table 1

Risk estimators calculated for six datasets

Amount 
of conta- 
-mination

Indexes 
déviation Standard MADn Sn Qn Tn LMSn LTSn

WIG20 0,0259 0,0232 0,0236 0,0243 0,0225 0,0305 0,0420

0% MIDWIG 0,0216 0,0194 0,0204 0,0195 0,0194 0,0233 0,0397

WIRR 0,0263 0,0254 0,0265 0,0261 0,0258 0,0331 0,0418

WIG20 0,0299 0,0232 0,0237 0,0248 0,0227 0,0305 0,0348

2% MIDWIG 0,0246 0,0194 0,0237 0,0218 0,0227 0.0239 0,0301

WIRR 0,0298 0,0260 0,0274 0,0271 0,0260 0,0339 0,0453

WIG20 0,0298 0,0237 0,0239 0,0278 0,0231 0,0309 0,0427

4% MIDWIG 0,0241 0,0201 0,0206 0,0223 0,0198 0,0242 0,0375

WIRR 0,0304 0,0271 0,0282 0,0301 0,0273 0,0345 0,0462

WIG20 0,0316 0,0262 0,0273 0,0278 0,0250 0,0338 0,0482

6% MIDWIG 0,0277 0,0210 0,0227 0,0223 0,0209 0,0257 0,0316

WIRR 0,0340 0,0295 0,0308 0,0301 0,0293 0,0366 0,0399

WIG20 0,0339 0,0258 0,0268 0,0276 0,0251 0,0338 0,0478

8% MIDWIG 0,0271 0,0192 0,0227 70,0225 0,0217 0,0255 0,0389

WIRR 0,0319 0,0277 0,0287 0,0292 0,0275 0,0354 0,0406

WIG20 0,0380 0,0279 0,0277 0,0283 0,0256 0,0365 0,0487

10% MIDWIG 0,0306 0,0211 0,0277 0,0249 0,0256 0,0277 0,0376

WIRR 0,0367 0,0287 0,0310 0,0315 0,0283 0,0372 0,0421

Source: Own calculations.

In the next stage we solved the minimum risk model (3.1) changing every time 

the estimators of risk. The Tables 2-7 present optimal minimum-risk portfolios.
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Table 2

Shares of optimal portfolios for dataset without contamination

Risk estimator WIRR WIG20 MIDWIG Portfolio risk

Standard déviation 25,60% 40% 34,40% 1,86%

MAD 25,46% 40% 34,54% 1,72%

Sn 26,68% 40% 33,32% 1,79%

Qn 24,92% 40% 35,08% 1,76%

Tn 27.80% 40% 32.20% 1.72%

LMSn 25,83% 40% 34,17% 2,18%

LTSn 26,72% 33,28% 40% 3,15%

Source: Own calculations.

Table 3

Shares of optimal portfolios for dataset with 2% of contamination

Risk estimator WIRR WIG20 MIDWIG Portfolio risk

Standard déviation 20,58% 40% 39,42% 2,30%

MAD 25,51% 40% 34,49% 1,87%

Sn 26,47% 39,55% 33,98% 2,07%

Qn 26,54% 40% 33,46% 2,02%

Tn 27,12% 39.13% 33,75% 1,97%

LMSn 28,58% 40% 31,42% 2,40%

LTSn 38,48% 40% 21,52% 2,96%

Source: Own calculations.
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Table 4

Shares of optimal portfolios for dataset with 4% of contamination

Risk estimator WIRR WIG20 MIDWIG Portfolio risk

Standard déviation 22,31% 40% 37,69% 2,29%
MAD 26,23% 40% 33,77% 2,18%

Sn 27,83% 40% 32,17% 1,98%

Qn 26,63% 40% 33,37% 2,18%
Tn 27,68% 40% 32,32% 1,91%

LMSn 28,96% 40% 31,04% 2,43%

LTSn 25,87% 40% 34,13% 3,47%

Source: Own calculations.

Tableö

Shares of optimal portfolios for dataset with 6% of contamination

Risk estimator WIRR WIG20 MIDWIG Portfolio risk

Standard déviation 27,69% 40% 32,31% 2,67%

MAD 27,07% 40% 32,93% 2,17%

Sn 27,89% 40% 32,11% 2,30%

Qn 27,80% 40% 32,20% 2,28%

Tn 27,74% 40% 32,26% 2,13%

LMSn 29,12% 40% 30,88% 2,72%

LTSn 20,00% 40% 40,00% 3,30%

Source: Own calculations.
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Table 6

Shares of optima! portfolios for dataset with 8% of contamination

Risk estimator WIRR WIG20 MIDWIG Portfolio risk

Standard déviation 20% 40% 40% 2,61%

MAD 26,96% 40% 33,04% 2,04%

Sn 25,84% 40% 34,16% 2,22%

Qn 26,09% 40% 33,91% 2,24%

Tn 27.70% 40% 32,30% 2,11%

LMSn 24,84% 40% 35,16% 2,67%

LTSn 20% 40% 40% 3,56%

Source: Own calculations.

Table 7

Shares of optimal portfolios for dataset with 10% of contamination

Risk estimator WIRR WIG20 MIDWIG Portfolio risk

Standard déviation 20% 40% 40% 2,61%

MAD 26,96% 40% 33,04% 2,04%

S„ 25,84% 40% 34,16% 2,22%

Qn 26,09% 40% 33,91% 2,24%

Tn 27,70% 40% 32,30% 2,11%

LMSn 24,84% 40% 35,16% 2,67%

LTSn 20% 40% 40% 3,56%

Source: Own calculations.

From the results analysis of Tables 2-7 some conclusions may be drawn:

- portfolios based on MAD-, Qn-, Tn-, and Sn-estimators hâve the most stable 

weights in the presence of contamination of data,

- portfolios based on standard déviation is sensitive to the presence of contami­

nation,
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- changes in Sn-risk and 7„-risk portfolios weights are practically indistinguisha- 

ble in every the cases,

- portfolios weights are the same for over 6% of contamination based on LTSn- 

estimator.

Finally, we hâve tried to classify generated Investment portfolios with respect 

to chosen robust estimators. The results are shown on the tree diagrams.

Figure 2. A-F) Tree diagram portfolios based on robust estimators in the case of 0%-10%

contamination
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One may notice homogeneous groups of similar portfolios. Note that in the 

case of 0% and 2% (Figure 2 A and B) there are the same 3 clusters. First cluster 

consists of portfolios based on standard déviation, MAD, Qn, LMSn. The second 

cluster consists of portfolios based on Sn- and Tn-estimators and the last duster 

of portfolios based on the LTSn estimator.

It is interesting that with increasing level of contamination portfolios based on 

MAD-, Qn-, Sn-, and Tn-estimators belong to the same group. For the highest 

considered contamination there are only two clusters (see Figure 2F).

5. Concluding remarks

Atypical observations (outliers) and sudden changes in the financial time sériés 

can be detected if we additionally apply a reliable estimator of scale. Robust esti­

mators are powerful tools for stable évaluation of Statistical Parameters. Especially 

in the process of assets sélection and their allocation to the investment portfolio 

the most important is the accurate évaluation of the volatility of the return rate.

If volatility is a measure of risk, then the Qn-, Sn-, and Tn-estimators, but also 

location-based MAD are seemed to be the most promising among analyzed vo­

latility estimators. However, the final choice between Qn,Sn, and Tn dépends on 

personal taste because their advantages and disadvantages are hard to compare. 

For instance, Qn, Sn hâve a higher efficiency than Tn. On the other hand, Qn and 

Tn hâve a continuous influence function, unlike Sn. And finally, it turns out that our 

algorithms for Sn and Tn need only half as much computation time and storage 

space as Qn.

In this paper homogenous groups of similar portfolios hâve been obtained 

as the resuit of classification. Portfolios based on Qn-, Sn-, Tn-, and MAD- 

-estimators of risk hâve the most stable weights in the presence of contaminated 

data. Achieved results can be used in the investment decisions-making process.
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Abstract

Leptokurtotic tails of data distributions and contamination of data with outliers in fi­

nancial time sériés are the reasons for adapting robust methods to constructing effective 

investment portfolios. In this paper we present the sensitivity analysis of selected robust 

estimators of volatility and the classification of generated investment portfolios with respect 

to chosen robust estimators.
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QUANTILES RATIO RISK MEASURE FOR STABLE 
DISTRIBUTIONS MODELS IN FINANCE

Introduction

The volatility analysis of financial assets becomes the new area in risk ma­

nagement. Unexpected and unpredictable events observed in financial markets 

exhibits higher risk level and therefore its forecasts can be biased. It becomes a 

big challenge not only for individual Investors, but also for the Companies and can 

produce very huge financial losses, including bankruptcy. The special role in risk 

management plays the Value-at-Risk (VaR) approach.

Classical financial models assume that the empirical log-returns are normally 

distributed, but the reality vérifiés this assumption and the classical Statistical mo­

dels are inappropriate. The most relevant features to be observed in time sériés 

of market returns are as follow: high volatility, clustering, fat tails, leptokurtosis, 

leverage effects, serial corrélations and hence the normality assumption has to 

be rejected. In the beginning of 60s Mandelbrot proposed the dass of distribu­

tions satisfying mentioned features - the stable distributions**. The term stable

‘Research supported by the grant number KBN: N111 003 32/0262.
"In financial area; stable laws was introduced by Lévy in 1925 during the investigation of the 

behavior of sums of independent random variables.
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refers to the property of these models*.  However, due to the lack of closed form 

of stable densifies (except Cauchy, Lévy, and Gauss distributions) its applicability 

in financial time sériés analysis is still limited. The solution arises from very ad- 

vanced computer tools and technics, therefore the use of stable distributions to 

modeling financial data can be extended.

*The stability is considered in terms of probability scheme; the sum of two stable distributed ran­

dom variables is also the stable distributed random variable (the summation scheme).

The purpose of this paper is to present some quantiles ratio risk measures 

of financial assets. These measures are based on the VaR approach. Additio- 

nally the assumption of stable distributed log-returns is used. It allows to estimate 

Investment risk more accurate.

1. Methodology

1.1. Stable distributions

Stable distributions (also called alfa-stable, stable Paretian) has been propo- 

sed as distributions to describe financial phenomena in the work of Mandelbrot 

(1963) and Fama (1965). While studying empirical distributions of stock returns 

they found the excess kurtosis and this find led them reject the assumption of 

normality. The strongest Statistical argument for use stable models is the Central 

Limit Theorem which States that stable laws are only possible limit distributions for 

properly normalized and centered sums of independent and identically distributed 

random variables (although exist other heavy-tailed distributions as hyperbolic, 

Student or truncated stable) (Borak, Hrdle, Weron 2005-2008). This dass of mo­

dels accommodate to heavy-tailed financial time sériés capturing also skewness 

in a distribution.

As mentioned previously the history of stable distributions dates the beginning 

of 60s, but the main barrier in use of these models was the lack of its densities. 

Hence the estimation of ali alfa-stable models is approximate in the sense that the
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alfa-stable density function is approximated via Inverse Fourier Transform. The 

most common* characterization of stable distribution can be obtained through its 

characteristic function (Borak, Hrdle, Weron 2005-2008, p. 4): 

In = <
tôt - 7ö|t|ö [1 - iß sign(t)tg (^)],

tôt - 7|t| [1 + iß sign(t)£ ln |t|],

dla a 1,

dla a = l,

where
1 <=> t > 0

sign (t) = o <=> t = 0

<=> t < 0

(1)

To describe the density of stable distributions four parameters are used. The 

most relevant is the index of stability a, responsible for the thickness of tail and 

satisfying (0,2). If a -» 0 then the analyzed distribution and the normal one differs 

more (if normal, then a = 2) (Racher, Hittnik 2000, p. 25). The last three parame­

ters ß G (-1,1), 7 > 0, Ö g IR describe skewness, scale and location of stable den­

sity, respectively. The value of a satisfying a g (1,2) confirms heavy-tailed data. 

The important feature of stable distributions is the existence of moments of stable 

random variables. If X dénotés stable random variable and a < 2, then E(X) = ë 

and D2(X) = oo. In the case where a < 1 even E(X) = oo. Thus, the p-th mo­

ment of stable random variable exists if and only if p < a : E(X)P < oo <=> p < a.

The most common approach that gives rise to stability is based on probabilistic 

scheme, basically on the summation scheme, and can be expressed as follow: if 

Xi,X2,... are independent and identically distributed real-valued random varia- 
d nblés, then the summation scheme satisfies** Xi = an Xi + bn, an > 0, bn G IR. 

i=l
Apart from summation, the geometrie scheme is often in use. In this appro­

ach the number of terms p(p) is geometrically distributed and the scheme sa-
. "(p)

tisfies Xj = a(p) Xj + 6(p),a(p) > 0, fc(p) G IR. Moreover F(i/(p) = fc) = 
i—1

= p(l - p)fc-1,fc = 1,2,.... The number of terms can be interpreted as the 

‘The approach proposed by J. Nolan in "Stable distribution“ (2005).

“Notation = dénotés equality in distribution.
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moment at which the probabilistic structure governing the asset returns breaks 

down*.  Mittnik and Rachev (1991) show that geometrie stable random variable 

can be considered in terms of alfa-stable random variable using its characteristic 

function:

* As a resuit of new information, market crash, or catastrophe.

^(i) = (1-logyj(t))-1 (2)

where <p(t) dénotés alfa-stable random variable (Kozubowski, Rachev 1999, 

p. 178).

The application of stable distributions in risk management theory is confirmed 

to be more well-founded than the normal ones. If the stability approach in Marko- 

vitz optimalization is considered, then the estimâtes of expected returns and risk 

are better fitted to the real level of these characteristics than in the normal case 

(Rachev, Han 2000, p. 341). In this páper risk is considered as a measure based 

on quantiles and the most popular is the Value-at-Risk. This risk measure can be 

defined as a level of financial loss where the probability of achieving or exceeding 

this level in a given horizon of time is equal to the given confidence level a. As 

its seen, VaR is a function of corresponding 1 - a quantile in the distribution of 

analyzed séries.

The methodology of estimate VaR is very wide and includes models. where 

the normality assumption is strongly supported. In this páper the calculation of 

VaR based on estimation of quantile in arbitrary distribution is ušed.

1.2. Quantiles ratio risk measures

Risk management in a financial distribution analysis is the basis in decision- 

making process. Its importance arises from the history of world's financial cra- 

shes, when the biggest Companies suffered bankruptcy. Nonetheless the risk is 

not defined classically at the moment and has Statistical interprétation. Statisti- 

cally, the most popular risk measure is variance (standard déviation) and its va­

riants (semi-variance, safety level, aspiration level or coefficient of variation). Al- 
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though these risk measures play very important role in financial analysis, their use 

is supported by the normal distribution. As was presented earlier, financial time 

sériés characterize kurtosis, asymmetry, or outliers and for that reason normal 

distribution is inappropriate. If focused on unexpected events (market volatility, 

political situation, catastrophes, terrorist threat), risk measurement based on nor­

mality is biased, as the probability that one of these events occur is higher than 

if the normality assumption is supported. Hence, considering heavy-tailed distri­

bution, the proper risk measure should be analyzed using the tail of distribution. 

Thus, quantiles risk measures are of interest.

The analysis and risk assessment is carried out using quantiles ratio risk mea­

sures (including VaR and its dérivâtes). Let X be a random variable representing 

the log-return of an asset or portfolio (equally-weighted) with cumulative distribu­

tion function (cdf) F. Let VaRa(X) dénotés one-period Value-at-Risk with a confi­

dence level. Hence the expectedshortfall ESa(X) and median shortfall MSa(X) 

hâve the form:

ESa(X) = CVaRa(X) = E[X - Va/ÎQ(X)|X > VaÆJX)] (3)

MSa(X) = Median [X - VaÄ„(X)|X > VfljRo(X)] (4)

From (3) and (4) results that for any given a exists one-step-ahead prédiction 

representing expected value*  of loss beyond the VaRa. Moreover using (3) and 

(4) the new measures can be defined: 

*ln terms of expected value and median.

mo(X) =
VaR^X) + ESa(X) 

VaRa(X) (5)

mX(X) =
VaRa(X) + MSa(X) 

VaR^X) (6)

which represent expected (in terms of expected value and median) total loss of a 

portfolio standardized by its VaRa.

It can be shown (Vaz de Melo Bends, Martins de Souza 2004, p. 32) that if F 

is a standard normal cdf of random variable X, then ma(X) tends to 1 as a tends 
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to 0. Moreover, if X has a tn - Student distribution, then ma(X) -> n/(n - 1) as 

a -» 0. In this case ma(X) is greater than 1 even if a —> 0. Additionally, it can 

be shown that if random variable Z represents the sum of iid random variables X 

and Y (which can represent the components of a portfolio) then:

D(X, Y) = VaRa(X) + Vo.Ra(Y) - VaRa(X + Y) (7)

This measure informs if there is some benefit in diversifying a portfolio.

2. Empirical analysis

The assessment of risk level using the concept of VaR based on estimation 

of quantile in arbitrary distribution is modeled in the WSE. The daily log-returns of 

WIG and WIG20 in the period of 3rd of January 2000 - 29th of December 2006 

(1756 observations) are considered. The analysis is based on three scénarios: for 

both indexes separately and for the portfolio (considered as a linear combination 

of equally-weighted log-returns of WIG and WIG20).

Table 1

The Kolmogorov-Smirnov test of normality

Statistics WIG WIG20 PORTFOLIO

Expected value 0,00056 0,00033 0,00044

Standard déviation 0,01278 0,01567 0,01373

K-S statistics 1,84430 2,07255 1,66274

p-value 0,00222 0,00037 0,00794

Source: Own calculations.

The K-S test confirms discrepancy with the normal distribution (at 0,01 signifi- 

cance level). The parameters of stable distributions for empirical log-returns are 

estimated using MME. The results are presented in Table 2.
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The parameters of stable distributions

Parameter WIG WIG20 PORTFOLIO

et 1,78739 1,80872 1,84480

ß 0,06005 0,03081 0,01224

7 0,00794 0,00996 0,00889

S 0,00073 0,00031 0,00047

Table 2

Source: Own calculations.

These results show that both indexes and portfolio are heavy-tailed and more- 

over hâve right-side asymmetry. The location parameter representing the expect- 

ed return has the highest level for WIG.

The goodness of fit for stable distributions to empirical data is presented gra- 

phically (using histograms and QQ-plots). As it's seen, the fitting to the stable 

models is good and compiles with leptokurtosis and heavy tails. Additionally it's 

confirmed by the QQ-plots.

Figure 1. Stable distribution (left) and QQ-plot (right) - WIG

Source: Own calculations.
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Figure 2. Stable distribution (left) and QQ-plot (right) - WIG20

Source: Own calculations.

Figure 3. Stable distribution (left) and QQ-plot (right) - PORTFOLIO 

Source: Own calculations.

The main purpose of this analysis is to use some quantiles ratio risk measures 

based on stable distributions for quantiles risk measures. The quantiles of stable 

distributions for both indexes and portfolio are noticed in Table 3.
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Table 3

Stable quantiles

Quantité WIG WIG20 PORTFOLIO

0,001 -0,100564 -0,119033 -0,092484

0,01 -0,033301 -0,041289 -0,034715

0,05 -0,019169 -0,024492 -0,023403

Source: Own calculations.

The results presented above are then used to calculate the VaR. If the ap- 

-proach of arbitrary distribution for VaR is considered, the risk measures (2)-(6) 

which was described as were calculated (Tables 4-6).
Table 4

Source: Own calculations.

Source: Own calculations.

Quantiles ratio measures - WIG

Risk measure Quantiles

0,05 0,01 0,001
VaRa 0,0192 0,0333 0,1006

ESa 0,0265 0,0411 0,0699

MSa 0,0237 0,0390 0,0699

ma (X) 2,3828 2,2328 1,6953

2,2360 2,1713 1,6953

Quantiles ratio measures - WIG20

Risk measure Quantiles

0,05 0,01 0,001
VaRa 0,0245 0,0413 0,1190

ESa 0,0334 0,0497 0,0760

MSa 0,0297 0,0425 0,0760

ma(X) 2,3635 2,2042 1,6384

m*(X) 2,2142 2,0290 1,6384

Table 5
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Table 6

Quantiles ratio measures - PORTFOLIO

Risk measure Quantiles

0,05 0,01 0,001
VaRa 0,0234 0,0347 0,0925

ESa 0,0329 0,0626 0,0211

MSa 0,0264 0,0366 0,0211

ma(X) 2,4050 2,8044 1,2284

m*(X) 2,1284 2,0529 1,2284

P(X,F) 0,0203 0,0399 0,1271

Source: Own calculations.

For calculation ail risk measures presented in Tables 4-6 one-period forecast 

horizon is ušed. Considering risk in terms of the classical VaR, the smallest loss in 

one-period VaR gains WIG (with tolerance level 0,01 and 0,05, respectively). The 

similar conclusions give conditional VaR, considered in terms of expected value 

and median. In this case also Investments in WIG represent the lowest level of 

risk. But if the 0,001 tolerance level is of interest, the lowest losses are generated 

by diversification (portfolio investment). It confirms the classical approach given 

by Markovitz in the portfolio theory. The ratios representing total loss of a portfolio 

standardized by its value of VaR hâve the lowest level for WIG20 (in the case of 

expected shortfall) and for a portfolio (in the case of median shortfall).

Conclusions

Analyzing empirical stock returns in terms of their Statistical distributions iťs 

confirmed that outliers play very significant role in risk management. Therefore, 

iťs necessary to use the distributions with heavier tails than the normal one. Em­

pirical investigations support the alfa-stable distribution as a describing financial 

time sériés (see, for example, Mittnik, Paolella, Rachev 2000). As a part of the 



Quantiles ratio risk measure for stable distributions models in finance 119

family of stable distributions, the geometrie stable once are used also. This sub- 

class of distributions allows for unexpected events considered as a market break 

down. Moreover, geo-stable distributions exhibit very good fitting to empirical data, 

even if consider emerging markets (see Kozubowski 1999 - the case of exchange 

rates, Krężołek 2007 - the case of portfolio analysis), characterized by high vola- 

tility of price changes.

In this paper the unclassical approach for risk measure is presented. To cal- 

culate the VaR value the estimation of quantiles in arbitrary distribution is used 

(it allows to use the alfa-stable models). Stable models, as is confirmed in this 

paper, shows better fit to empirical data than the normal ones, complying with lep- 

tokurtosis, heavy tails and asymmetry. These features are very important in terms 

of risk assessment. Moreover, risk measures are considered as a quantiles ratios 

based on VaR approach (expected shortfall and median shortfall). Every of these 

measures hâve defects and advantages and should be interpreted very carefully. 

However, the results confirm the advantage of diversifying a portfolio in terms of 

risk level réduction.
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Abstract

This article présents some quantile risk ratio measures based on unclassical VaR ap- 

proach (expected and median shortfall). The stable distributed log-returns of Polish indexes 

WIG and WIG20 are used. The results shows elear lead of stable distribution over the nor­

mal one (especially in rerms of VaR calculation).
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VECTOR AUTOREGRESSIVE MODELS ON THE PO- 
LISH ELECTRIC ENERGY MARKET

Introduction

For the last few years the Polish energy market has developed significantly. 

The Polish Power Exchange was established in July 2000. It was the most im­

portant event in change of Polish energy market. The Day Ahead Market (DAM) 

was the first market which was established on the Polish Power Exchange. At 

the beginning of 2001 the Internet Electricity Trading Platform (IETP) fonctions on 

Polish electric energy market.

The Platform is an Internet-based trading tool which may be ušed to buy or 

seil electricity, green certificates, and CO2 émission allowances. Analogically to 

DAM, the prices are quoted 24 times per day.

The Balance Market (BM) exists from September 2001. This is technical mar­

ket, which looks after balance on Polish energy market. From July 2002 BM in- 

troduced additional prices, Price Accounting Déviations of sale PADs and Price 

Accounting Déviations of purchase PADp. These prices should discipline market 

participants to precisely anticipate their future demand for energy. The aim of this 

article was compare these three whole-day markets. Vector Autoregressive (VAR) 
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models were applied for this purpose.

1. Vector Autoregressive Models

VAR is one of the most successful, flexible, and easy to use models for the 

analysis of multivariate time sériés. VAR model in économies was popularized by 

Sims (1980) who proposed theory which is opposite to structural models.

For a set of k time sériés yt = (yie, • ■ • ; Vkt)* a basie VAR model of the order p 

(VAR(p)) has a form (Sims 1980; Lütkepohl, Krätzig 2004):

Vt = Ao + Aiyt_i + A2yt-2 + • ■ + Apyt_p + Et (1)

where the As are coefficient matrices, et = (elt,..., Ekt)' is a zero-mean indepen­

dent white noise process with time-invariant, positive definite covariance matrix; 

Et ~ AT(O; E(EtE't)). The process is stable if the eigenvalues of the matrix AkpxkP 

satisfy:

|/Äp - AM”"1 - A2XP~2 - ... - Ap\ = 0 (2)

Hence, VAR(p) is covariance stationary as long as |A| < 1 for ail values of Ä 

satisfying the above condition (Hamilton 1994). Basic VAR(p) models are usually 

necessary to represent trend and seasonality of time sériés:

yt = AoDt + BQt + Aiyt-i + A2yt-2 + • • • + Apyt_p + Et (3) 

where Dt is a deterministic trend and Qt is a matrix of seasonal dummy variables. 

The VAR(p) models may contain independent time sériés Xt. it is referred to 

as VARX(p):

yt — AgDt+BQt+CiXu + ■ - • + CrXrt + Aiyt_i + A2yt-2 + ■ ■ ■ + Apyt-p+Et (4)

Parameters of these k équations of VAR model may be estimated separately 

by ordinary least squares (OLS).

Each équation must hâve the same order of the lag p which may be chosen 

using model sélection criteria. The three most common information criteria are 

(Zivot, Wang 2006):
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- Akaike (AIC):
1 T 2

A/C(p) = ln +-pfc2 (5)

- Schwarz-Bayesian (BIC):

1 T 
SC(p) = In

1 t=l

- Hannan-Quinn (HQC):

+ (6)

1 T
HQ(p) = In ^Ylêtêt 

t=l

2 In In T ,
+ -T Pk2 (7)

The AIC usually leads to évaluations of p which are too high and as a re­

suit to inclusion of insignificant Parameters in the model. Consequently, the other 

two criteria are preferred. The significance of the VAR(p) model is verified by the 

F-test.

The general VAR(p) model has many parameters, and they may be difficult 

to interpret. As a resuit, properties of a VAR(p) are often explained with various 

types of structural analysis: Granger causality tests, impulse response function, 

forecast error variance décompositions (Osińska 2006).

The VAR(p) (1) model like the univariate AR(p) model háve MA(oo) (Moving 

Average) représentation (Hamilton 1994):

Vt = A) + Et + V'lEt-l + ^2^-2 + • (8)

where matrix faík x fc), has interprétation:

O) 
ôeJ

The element in the row i and column j of matrix V'e identifies the conséquences 

of a one unit increase in the jth variables innovation at date t(E^t) for the value 

of the ith variable at time t + s(yitt+s), holding ail other innovations at ail dates 

constant.

If the first element of et changed by <5i, at the same time second element chan- 

ged by 62. the fcth element by 6k then the combined effect of these changes on the 
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value of the vector would by given by (Hamilton 1994):

a _  dyt+s c , dyt+s &yt+s c , zm\
&yt+s = ------01 + ------ 02 + ... + —------ ôfc = V'sO (10)

OElt OE2t OEkt

By doing the separate simulation for impulses to each of the fc-innovations, ail 

of the columns of matrix V« can be calculated. A plot of the row i and column 

j as a function of s is called the impulse-response function. It describes 

the response of y, ,t+s to a one-time impulse in y^t with ail other variables dated t 

or earlier held constants (Hamilton 1994).

2. Vector Autoregressive Models on the Polish elec- 

tric energy market

To describe dependencies between prices on DAM, IETP, and BM markets 

from July to September 2007 VAR models were used. The prices on each of 

these markets are quoted 24 times a day. The advantage of the DAM and the 

IETP is that ail participants can buy and sell electric energy, irrespective of whether 

they are producers or receivers. The quotations on each market are calculated 

simultaneously, so the hypothesis of their interdependence shall be tested. Each 

financial decision involves risk. The knowledge of dependencies may be useful 

for risk management. The electric energy cannot be stored; it is delivered once 

there is demand for it. The BM has ensured the balance on the Polish energy 

market. Hence, the second hypothesis verified in this paper States, that prices on 

DAM and IETP dépend on real demand for electric energy.

Hourly time sériés (T — 2208) of prices of electric energy from every market 

were analyzed. For ail time sériés three VAR models were constructed containing 

seasonal variables and exogenous variables of volumes (4) (Tables 1-3). Based 

on Schwartz-Bayesian criterion for each VAR model the lag order p = 3 was Cho­

sen. All three models are stationary |A| < 1 (Figure 1).
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1

Figure 1. The eigenvalues of the matrix Akpxkp

The first VAR(3) model describes dependence between three prices on diffe­

rent markets (Table 1 ). The model incorporâtes hourly seasonality and exogenous 

variables. All parameters are significant. Criterion function values indicate high 

goodness of fit of the VAR model (Figure 2-4).

Figure 2. Theoretical and empirical PAD noted on BM from 24 to 30 September 2007
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Figure 3. Theoretical and empirical prices noted on DAM from 24 to 30 September 2007

Figure 4. Theoretical and empirical prices noted on IETP from 24 to 30 September 2007
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Table 1

The VAR(3) of prices of electric energy on BM, DAM, and IETP

Endogenous variables/prices PAD yu DAMP y2t IETPP y3t

Parameters
Mean 117,21 112,40 112,40

Standard déviation 23,30 18,17 17,51

Standard déviation of residuals 11,41 5,69 4,98

R2 0,76 0,90 0,92

D-W 1,95 2,01 2,01
p-value

PAD yu-3 0,0000 0,0173 0,0018

DAMP P2Í-3 0,0276 0,0000 0,0403

IETPP p3t_3 0,0005 0,0000 0,0000

F 0,0000 0,0000 0,0000

Linear trend <0,01 <0,01 <0,01

Seasonal variable <0,01 <0,01 <0,01

Exogenous variable/volumes

ælt,æ2t,X3t

<0,01 <0,01 <0,01

AIC 18,5469

BIC 18,8337

HQC 18,6517

Source: Own calculations.

The détermination coefficients are close to one. Residuals of separate models 

are not correlated and have very small variance. Hence, every price on whole- 

-day market can be a cause of change for another one. Empirical time sériés 

observed in last week of the available data and the theoretical values of VAR(3) 

are presented below on Figures 2-4. Comparison of Figure 3 and Figure 4 leads 

to conclusion, that time sériés of prices on DAM and IETP are very similar.

Figure 5 shows a length and a size of impulse describing the influence of PAD 

on DAM and IETP. After fifteen hours influence of impulse vanishes. The impulse 

Corning from DAM causes increase of prices on BM and IETP. The impulse from
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PAD yields the same resuit but its influence vanishes later. The impulse from IETP 

has the longest duration, but its influence is the most weak.

PAD->PAC

Mme

DAMP -> PAD

0 5 ID 15 20 25

IETPP -> PAD

PAD -> DAMP

0.6
0.5
0.4
0.3
0.2
0.1

0
-0.1

0 5 ID 15 20 25

IETPP -> DAMP

time

PAD -> IETPP

DAMP -> IETPP

IETPP > IETPP

0 5 10 15 20 25
time

Figure 5. Impulse response function

The second VAR(3) model describes dependence between three prices noted 

on BM and prices noted on DAM (Table 2). Ali four sériés are seasonal, but the 

trend is significant only for PAD and DAM. PADs and PADp dépend only on the 

volume of BM and on DAM prices. Criterion function values indicate high good- 

ness of fit of the VAR model. The price on )AM can be a cause of every price on 

BM, and the opposite. But the PADs can not be the cause of PAD or PAPp and the 

opposite. Empirical time séries noted in last week of the data and the theoretical 

values of VAR(3) are presented on Figures 6-7. The time séries corresponding to 

PADs and PADp shown on Figures 2 4 are significantly different from PAD, DAM 

and IETP.
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Table 2

The VAR(3) of prices of electric energy on BM and DAM

Endogenous variables/prices PAD yit PADs y2t PADp yst DAMP y4t

Parameters
Mean 117,21 150,98 76,56 112,40

Standard déviation 23,30 3,07 6,96 18,17

Standard déviation of residuals 11,46 2,31 3,42 5,70

R2 0,76 0,44 0,76 0,90

D-W 1,95 1,99 1,99 2,00
p-value

PAD pit-3 0,0000 0,4606 0,7340 0,0004

PADs yzt-3 0,9684 0,0000 0,8366 0,0000

PADp P3t-3 0,0162 0,6192 0,0000 0,0003

DAMP ^4t-3 0,0042 0,0009 0,0000 0,0000

F 0,0001 0,0005 0,0005 0,0000

Linear trend <0,01 0,39 0,89 <0,01

Seasonal variable <0,01 <0,01 <0,01 <0,01

Exogenous variable/volumes

2Clt,æ2t

<0,01 <0,01 BM <0.01 BM <0,01

AIC 23,6030

BIC 24,0061

HOC 23,7503

Source: Own calculations.
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Figure 6. Theoretical and empirical PADs noted on BM from 24 to 30 September 2007

Figure 7. Theoretical and empirical PADp noted on BM from 24 to 30 September 2007

Impulse response fonction shown on Figure 8 indicates that the impulses from 

PAD and PADs cause PADp to decrease on short time lag and increase on long 

time lag. PADp influences DAM in the same way.
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0 5 10 15 20 25 
time

PAD -> PAD PAD -> PADs

PADs -> PAD

0 5 10 15 20 25

PADp -> PAD

time

DAMP -> PAD

0 5 10 15 20 25

PADs -> PADS

time

0 5 10 15 20 25

PADp -> PADS

itme

DAMP -> PADS

0 5 10 15 20 25
time time

PAD -> PADp

time

PADS -> PADp

5 10 15 20 25

DAMP -> PADp

time

O 5 10 15 20 25
time

PAD -> DAMP

0 5 10 15 20 25
time

PADS -> DAMP

0 5 10 15 20 25
time

PADp -> DAMP

0 5 10 15 20 25

DAMP -> DAMP

time

Figure 8. Impulse response function

The last VAR(3) model describes the dependence between three prices noted 

on BM and prices noted on IETP (Table 3). Results of estimation resemble the 

results obtained for the second model. The price structure on PADs and PADp is 

different from the structure on IEPT, but there are significant causal relationships 

between these prices.

Impulse response function shown on Figure 9 indicates that the impulse from 

PAD and PADs causes a decrease of the PADp for short lags and the increase 

of PADp for longer lags. The impulse from IETP causes an increase of PAD and 

PADp, and the decrease of PADs.
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Table 3

The VAR(3) of prices of electric energy on BM and IETP

Endogenous variables/prices PAD ylt PADs p2t PADp yst IETPP p4t

Parameters
Mean 117,21 150,98 76,56 112,40

Standard déviation 23,30 3,07 6,96 17,51

Standard déviation of residuals 11,43 2,31 3,42 4,93

R2 0,76 0,45 0,76 0,92

D-W 1,95 1,99 1,99
p-value

PAD j/it-3 0,0000 0,5664 0,8195 0,0000

PADs r/2t—3 0,7219 0,0000 0,8511 0,0000

PADp J(3t-3 0,0310 0,7254 0,0000 0,0013

IETP P4t-3 0,0009 0,0010 0,0000 0,0000

F 0,0001 0,0004 0,0005 <0,01

Linear trend <0,01 0,26 0,66 <0,01

Seasonal variable <0,01 <0,01 <0,01 <0,01

Exogenous variable/volumes <0,01 <0,01 <0,01 <0,01

AIC 23,2578

BIC 23,6609

HQC 23,4051

Source: Own calculations.
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PAD PAD

O 5 10 15 20 25

PADS -> PAD

time
PADp -> PAD

IETPP -> PAD

time
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Figure 9. Impulse response function

Conclusions

Finally, we conclude that the time sériés on whole-day electric energy mar­

ket are correlated. Analysis of the impulse response function suggests that if the 

electric energy prices on DAM increase then prices on IETP increase for next few 

hours and the opposite. It also indicates, that changing prices on BM cause prices 

on DAM and IETP to change. If there is too little volume of energy on the market 

then participants of this market can buy it at very high PADs prices on BM. So the 

prices on DAM and IETP and the PAD price rise simultaneously. Presented results 

show that Vector Autoregressive Models are well suited for describing multivariate 

time sériés on the electric energy market. They may be applied to predict the 

futures prices on this market in short Investment horizon and to manage risk on 

the whole-day electric energy market. However, one should remember about as- 

sumptions of VAR. llnfortunately, the hypothesis that residuals of analyzed three 
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models have multivariate normal distribution is rejected. The residuals are not cor- 

related, but they are heteroscedastic. More research is needec on the properties 

of VAR models in such a situation.
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Abstract

In this article the relation between three whole-day markets from Polish electric energy 

market was presented. Vector Autoregressive models of prices and volumes of electric 

energy from the Day Ahead Market (DAM), the Internet Electricity Trading Platform (IETP), 

and Balance Market (BM) were applied to describe similarities and dependence between 

them.



Grzegorz Kończak

ON THE METHOD OF DETECTION LINEAR TREND IN 
STOCHASTIC PROCESSES

Introduction

Various physical, technical, biological and économie processes can be mod- 

eled using stochastic processes. A physical example of a stochastic process is 

the brownian motion and an économie examples are production processes. The 

method of modeling stochastic processes are widely used in analysis of properties 

of Statistical quality control procedures.

M. Chao (2000) showed that Markov chains may be used to calculate perform­

ance of control charts. Author considered various quality control procedures and 

in each case indicates why such a Markov chain can be constructed. He evaluated 

exact average run of length for discrète observations and approximation of ARL 

for continuous observations. M. Chao concentrated on control charts but showed 

that Markov chain method can be applied to other quality Systems.

M.F. Ramalhoto (2000) used stochastic models to describe real-life queuing 

Systems. Author considered Poisson process and Markov chains.

G. Kończak (2004) proposed to use the Markov chains for monitoring techno- 

logical processes. The main assumptions when control chart are used are that 
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the process data are normally and independently distributed. Author presented 

the method which can be used when the process with autocorrelated data is mo­

nitoring.

The methods of analysis of stochastic processes are adapted to évaluation 

properties of acceptance sampling plans as finite Markov chains were presented 

in E.B. Wilson and A.R. Burgess (1971). They calculated characteristics of ac­

ceptance plans usïng the methods of analysis Markov chains. G. Kończak (2007) 

presented the method of analysis properties of the continuous sampling plan CSP- 

1 and the modification.

One of the most common problems in monitoring real processes in quality 

control is to test the stability of the process. The proposition of the test to verify 

the hypothesis about stability of discrète stochastic process is presented in the 

paper.

1. Process monitoring in quality control procedures

W.A. Shewhart introduced control chart in 1924. Control charts are the graphi- 

cal procedures for monitoring production processes. The control chart is a graphi- 

cal display of a quality characteristic versus the sample number or time. A point 

that plots outside of the control limits is interpreted as evidence that the process 

is out of control. There are many sets of rules which help to detect instability of 

processes. In quality control analysis programs (e.g. Ql Analyst) users can de- 

fine sets of such rules. Some of the sensitizing rules that are used in practice are 

shown in Table 1.
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Some sensitizing rules for Shewhart control charts

Source: Montgomery (1996), Hurwitz, Mathur (1996).

Table 1

A set A set of rules Source

1 One or more points outside of the control limits W.A. Shewhart

2

One or more points outside of the control limits

Two of three consecutive points outside the 2-sigma 

warning limits, but still inside the control limits 

Four of five consecutive points on one side of the center line 

A run of eight consecutive points on one side of the center line

Western Electric Rules

3

Western Electric Rules (as above)

Six point in a row steadily inereasing or decreasing 

Fifteen points in a row between m — s and m, + s lines 

Fourteen points in a row alternating up and down 

An unusual or nonrandom pattern in the data 

One or more points near a warning or control limit

D.C. Montgomery (1996)

4 One or more points outside of the control limits 

Two successive points at or beyond +/— 1.5 SD

A.M. Hurwitz, 

M. Mathur (1996)

A basie assumption in quality control procedures is that the process should be 

stationary. D.C. Montgomery (1996) présents a set ot rules for Shewhart control 

charts (see Table 1). One of these rules is "six points in a row steadily inereasing 

or decreasing". This rule can be used to detect trend in the production process. 

We will concentrate on the procedure for detecting a trend in stochastic processes.

2. Stationary processes

Let Xt(t e T) be a stochastic process. If T is real axis then Xt is called a 

continuous-time process. If T is the set of integers, then Xt is a discrete-time 

process. Xt is a discrete-state process if its values are countable and other- 

wise it is continuous-state process. We will concentrate on the discrete-time and 

continuous-state processes. In this case we can write the stochastic process as 

X(t) where t = 1,2,... ,k or equivalently X(1),X(2),... ,X(fc).
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A stochastic process X (i) is called strict-sense-stationary if its Statistical pro- 

perties are invariant to a shift ot the origin. It can be say that X(t) and X(t + c) 

hâve the same parameters for any c. A stochastic process X(t) is called wide 

sense stationary if (Kowalenko et al. 1980):

E(X2(t)) < oo

E(X(t)) = m

R(t,s) = E(X°(t)X°(s)) = R(t - s)

where

X°(t) = X(t) - E(X(t))

In many production processes we expect that the statistic properties of the 

process will be invariant to a shift of the origin. We can test the hypothesis that 

process is stationary, thaťs mean the probability characteristic do not change in 

time. We will test the hypothesis that random variables X(1),X(2),... ,X(fc) have 

the same cumulative distributions. This hypothesis can be written as follows:

Ho : F1(x) = F2(x) = ... = Fk(x) (1)

against the alternative:

Hr : Ft(x) ± F^x)

for any j.

Let us assume that xi,a;2, - ■ ■ are the observed independent realizations 

of the stochastic process X(t). The example of the realization of the stochastic 

process is presented in Figure 1.
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Figure 1. The stochastic process - observed realization

Let us assume that the realizations of the stochastic process are independent 

then under Ho we can obtain several possible realizations of the process permu- 

ting observed realizations. The observed realization of the stochastic process and 

examples of the possible realizations are shown in the Figure 2.

Figure 2. The stochastic process - observed realizations æ(i) and examples of possible realizations 

of this process under Ho
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3. The test procedure

Let us assume that X (t) is a discrète stochastic process with continuous set of 

values. We will rest the hypothesis (1) about stability the stochastic process X(t). 

A proposed test will be based on indexes analysis As a test statistic will be con- 

sidered average index and two modifications of this index’s. The first modification 

was proposed by I. Timofiejuk (1994) and the second by G. Kończak (1995).

Let are observed values of the stochastic process X(t). The

classical average index is calculated as a geometrie mean of chain indexes. It 

can be written as follows:

The value i dépends on the first and the last values of the sériés xi, x2, ■ ■ ■, xk. 

To obtain information about changes in the middle of this time sériés can be used 

modifications of classical index (2).

I. Timofiejuk (1994) proposed an average index which dépends on ail values 

of time sériés. This index can be written as follows:

(3)

where s =

The modification of Timofiejuk’s index proposed by G. Kończak (1995) can be

written:

where
(jfe — 2)(fc — l)(fc4- 3)

6 
k-i/ił — Xk

y Xi a?2 ^k—1

!(k-2)lTl.T±. _. x.k—

y Xl X2 Xk-2 

(4)
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and generally:

,, >/æi+l r • -i n i qgi = —— ■ —— ■ . -. ---------- for I = 1,2,... k - 2
y 2?2 Œk—i

The index (4) can be used in the case when we want to describe all changes 

in the time sériés. This index measures average changes in the whole time sériés 

(Kończak 1995). Statistics (2), (3), and (4) can be used as a test statistics to verify 

the hypothesis (1). These statistics especially can be used to détermine a trend 

in time sériés.

Let us assume that xltx2, ■ ■ ■ ,xk are observed realizations of the stochastic 

process. We will use permutation test (Efron, Tibshirani 1993) introduced by 

R.A. Fisher. Having observed value of the statistic ?, the achieved significance 

level ASL is defined to be the probability of observing at least that large a value 

when the null hypothesis is true:

ASL = P(i >Î|HO)

where i is the test statistic. The smaller the value of ASL, the stronger the evi­

dence against Ho.

To obtain critical values for each statistic let us consider ail the possible per­

mutations of the set T = {1,2,..., n} .

Let Ti = (tn,ti2,.. .,tin) be the i-th permutation of the set T. Let T be the 

set of ail permutations T, of T. From each permutation we get a time sériés 

a?til, xti2xtik . For these time sériés we calculate:

a) average index ! (2),

b) Timofiejuk’s modification 1* (3),

c) index!(4).

The quantiles of statistics under IL (2), (3), and (4) we accept as critical values.
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4. Monte Carlo study

If the length of the time sériés is greater than 10, then the number of permuta­

tion is very large. In these cases we can estimate critical values. From the set r 

we take an N (B. Efron and R. Tibshirani suggest that N should be at least 1000) 

element random sample of permutations of set T. For each set T, we calculate 

indexes i, T, and i. Then we accept empirical quantiles as critical values.

The approximate values of the probabilities of rejection the hypothesis (2) in 

the case of use the statistics (2), (3), and (4) are obtained in Monte Carlo analysis. 

There were following Steps in Monte Carlo study:

1. Observations x\,x2,... ,xk (fc = 20) were generated from normal distribution 

with the following scheme

(a) X ~ 7V(100,5), for t = 1,2,..., 10

X ~ Ar(100 + b, 5), for t = 11,12,..., 20

where b = 1,2,... ,5

(b) X ~ 7V(100 + at, 5), for t = 1,2,..., 20

where a = 0.2,0.4,..., 1.

The expected values of X(t) are shown in Figure 3.

2. The values of indexes ï, T and i were calculated.

3. The sample of 10 000 elements was taken from the set of permutations of 

xi, x2,..., a;*,. For each case indexes I, T, and i were calculated and the em­

pirical quantiles of order 0.025 and 0.975 of these statistics were accepted as 

critical values for the significance level o = 0.05.
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E(.Y(O)E(.V(O)

Figure 3. Expected values of X (t) in Monte Carlo study

The results of Monte Carlo study and the probabilities for Shewhart’s limits are 

presented in tables 2, 3 and in the figures 4 and 5.

Table 2

The estimated values of probabilities of rejection the nuli hypothesis (one step shift) for significance 

level a = 0.05 and the correspondent probabilities for Shewhart’s limits

Parameter 

b

Shewhart’s 

limits

The test statistic

i

(1)

T* î

(2)

i

(3)

1 0.059 0.0443 0.0421 0.0702

2 0.090 0.0657 0.0496 0.1130

3 0.147 0.0562 0.0563 0.1765

4 0.235 0.0802 0.0678 0.2913

5 0.355 0.0760 0.0778 0.4184

Source: Monte Carlo study.



144 Grzegorz Kończak

Table 3

The eshmated values of probabilities of rejection the null hypothesis (linear trend) for significance

level a = 0.05 and the correspondent probubilines for Shewharťs limits

Parameter 

a

Shewharťs 

limits

The test statistic

(1)

i

(2)

i

(3)

0.2 0.114 0.0862 0.0693 0.1712

0.4 0.386 0.1528 0.0893 0.5103

0.6 0.805 0.2413 0.1070 0.8581

0.8 0.986 0.3152 0.1519 0.9713

1.0 1.000 0.4160 0.1555 1.000

Source Monte Carlo study

The value of the average index dépends on the first and the last observations 

from time sériés. The value of the index given by (4) dépends on all changes in 

time sériés. The results of Monte Carlo study showed that the average index (4) 

may be ušed as a statistic to test the hypothesis (1 ) especially in the case of linear 

trend detecting.

Figure 4. The estimated values of probabilities of rejection the null hypothesis (one Step shift)

for significance level a = 0.86
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Figure 5. The estimated values of probabilities of rejection the null hypothesis (linear trend) for

significance level a = 0.05

Conclusions

In quality control procedures such as control charts the main assumption is 

that the process is stationary. The methods for detecting the trend in stocha­

stic processes are proposed in the paper. There are three methods analyzed 

which are based on the average indexes. There are used classical average index, 

Timofiejuk’s modification and the modification proposed by G. Kończak (1995). 

Two cases of no stationary processes were analyzed: one step shift and linear 

trend.

The index proposed by G. Kończak (1995) measures the average changes in 

the whole time sériés. This index can be used as a test statistic for detecting a 

trend in time sériés. The proposed test is based on the permutation tests idea 

introduced by R.A. Fisher. The Monte Carlo study hâve been made. The results 

of the simulation study hâve shown that the proposed test can be used to verify 

the hypothesis about the stability of stochastic process.
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Abstract

Variaus physical, technical, biological, and économie processes can be modeled using 

stochastic processes. A physical example of a stochastic process is the brownian motion 

and an économie examples are production processes. The method of modeling stochastic 

processes are widely used in analysis of properties of Statistical quality control procedures. 

One of the most common problems in monitoring real processes in quality control is to test 

the stability of the process. The methods for detecting the trend in stochastic processes 

are presented in the paper. There are three methods analyzed which are based on the 
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average indexes. Two cases of no stationary processes were analyzed: one step shift and 

linear trend. The Monte Carlo study hâve been made. The results of the simulation study 

hâve shown that the proposed test can be used to verify the hypothesis about the stability 

of stochastic process.
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USING BAGGING AGGREGATION METHOD IN TAXO- 
NOMY

Introduction

Resampling methods such as bagging (Breiman 1996) and boosting (Freund 

1990; Freund and Schapire 1995) have been applied successfully in the area of 

supervised learning to improve prédiction accuracy in classification and régres­

sion. in order to get an aggregated model (ensemble) in first step we build many 

different single models and then we combine them by means of some aggregation 

operator. For example in bagging method we construct single models on bootstrap 

samples*  chosen from the original learning data set and then we aggregate the- 

oretical values of dependent variable gained on the basis of these models. In 

régression the most popular aggregation operator is mean of ail theoretical values 

of dependent variable and in classification we apply majority voting - we clas- 

sify the observation to the most often predicted dass. It appears that ensemble 

approach can be successfully also applied in taxonomy (unsupervised learning). 

The interest in duster ensembles has been growing in the past few years (Ayad 

and Kamel 2003; Fern and Brodley 2003; Fischer and Buhmann 2003; Fred and 

* Bootstrap sample is constructed by choosing N éléments with replacement from a set that counts

N éléments.
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Jain 2002; Monti et al. 2003; Střehl and Ghosh 2002). The aim of combining 

several partitions into a single one is to improve the quality and robustness of the 

resuit.

A new resampling method, inspired from bagging in classification and régres­

sion, was proposed to improve the accuracy of a given clustering procedure (Du- 

doid and Fridlyand 2003). The main aim of the article is to compare the right 

dass structure recognizing ability of classical and ensemble clustering methods. 

The performances of the new and existing taxonomy algorithms were compared 

using simulated and real data sets. It appears that the bagged clustering proce­

dures were in general at least as accurate and often more accurate than a single 

application of the partitioning clustering procedure.

The rest of the paper is organizeo as follows. Section 1 explains the bag­

ging algorithm in taxonomy. The chosen data sets, the experimental set-up and 

measure of clustering algorithms quality are detailed in Section 2. This section 

contains also the empirical results. Section 3 concludes the study.

1. The bagging algorithm in taxonomy

In this ensemble method, a partitioning clustering procedure is applied to bo- 

otstrap learning sets and the resulting multiple partitions are combined by voting. 

As in prédiction, the motivation behind bagging is to reduce variability in the parti­

tioning results via averaging. Partitioning methods are typically based on iterative 

optimization techniques, thus additional sources of variability in the results include 

the sensitivity to starting conditions and the possibility of convergence to local mi­

nima (or maxima, depending on the objective function). In a recent manuscript, 

Leisch (1996) proposed a bagged clustering method which is a combination of par­

titioning and hierarchical procedures. A partitioning method is applied to bootstrap 

learning sets and the resulting partitions are combined by performing hierarchical 

clustering of the cluster centers. This procedure compared favorably to existing 

partitioning methods for a variety of simulated and real data sets considered by 
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the author. A new bagging procedure proposed by Dudoid and Fridlyand (2003) 

is similar in spirit to that of Leisch (1996), however, different approach based on 

voting is proposed to combine multiple partitioning results.

The algorithm works as follow. For a fixed number of clusters K:

1. Apply the partitioning clustering procedure C to the original learning set S 

to obtain duster labels C(xz; S) = ýt for each observation xit i = 1,..., n.

2. Forrr the fc-th bootstrap sample Sb = (xj,..., 4)-

3. Apply the clustering procedure C to the bootstrap learning set Sb and obtain 

cluster labels C(æb; Lb) for each observation in Sb.

4. Permute the cluster labels assigned to the bootstrap learning set Sb so 

that there is maximum overlap with the original clustering of these observations. 

Specifically, let PK dénoté the set of all permutations of the integers 1,..., K. Find 

the permutation rb e Pk that maximizes:

n
£z(T(C(^;Sb)) = C(^;S)) (1)
i=l

where Z() is the indicator function, equal 1 if the condition in parenthèses is true 

and 0 otherwise.

5. Repeat Steps 2-4 B times and assign a bagged cluster label for each ob­

servation i by majority vote, that is, the cluster label corresponding to xí is:

argmax!<fc<K I(-rb(C(xi;Sb)) = k) (2)
b:xi£Sb

Also, it is possible to record a cluster vote, which is the proportion of votes in favor 

of the winning cluster assignment, that is:

max^k^K^b- sbI(Tb(C(xi-,Sb)) = k)
CV(X‘} ------------- |i,,x, ----------- (3)

2. Empirical results
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In empirical part of the research I wanted to compare the right dass structure 

recognizing ability of classical and ensemble clustering methods. Among classi- 

cal taxonomy algorithms I used popular fc-means method and c-means method 

which is fuzzy version of the fc-means method introduced by Bezdek (1981 ). In an 

aggregated approach as base algorithms I used the same methods and the num- 

ber of bootstrap samples (B) was equal 50. AH computations were madę in R*, 

using fc-means algorithm from stats library, c-means algorithm from e!071 library; 

the aggregated approach is implemented in clue library as cZ-bagg function.

As a measure of the correctness of the algorithm I used popular Silhouette 

Index (Kaufman, Rousseeuw 1990). This measure is included in the [-1,1] inte­

rval and the higher value it takés the stronger dass structure was found by the 

algorithm. It is computed as:

SżZ(fc) = £ Sil (i) 
nk

(4)

where:

(5)s.-«;) = ~ 3,,max[a(î);

and: a(i) is mean distance of the ith object from other objects in fcth cluster,*)- E
je[fe\ź] v ’

b(i) = min [djfc'],
k^k'

dik' - mean distance of the ith object from objects in fc'th cluster:

= 52 ÿ-
jEk1 *

k, k' = 1,2,...,K,

K - number of clusters,

i = 1,2, .. . , Tlfc,

nk - number of observations in Zcth cluster.

In my research I used artificial data sets that are commonly used in taxonomy“.

Their structure is illustrated on Figure 1, Figure 2, and Figure 3.

’This program is free available in Internet on website: www.r-project.org.
**These data sets are in mlbench library in R.

http://www.r-project.org
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figure 1. The Cassini and Shapes data sets

Figure 2. The Smiley and Threenorm data sets

-2 0 2



154 Dorota Rozmus

Figure 3. The 2dnormals data set

Moreover I used real data sets that are used in classification (supervised 

learning) for model construction and its évaluation; so these are data sets where 

the adhérence of objects to right dass is known in advance. This information is 

used as a priori information about number of groups. Such solution is also often 

used by researchers in taxonomy. Among real data sets I used Boston*  that is wi- 

dely used in comparative researches; this data set is made available by Uruversity 

of Cal ’ornia (Blake, Keogh, Merz 1988] The next two data sets were prepared on 

the basis of household income research and are used for classification of observa­

tions from the po’nt of view of their income rating and material situation valuation.

*This data set is used for real estate valuation; for the need of this research one nominal variable 

was deleted.

Results are shown in Table 1 and Table 2.
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Table 1

Silhouette index for classical and bagged taxonomy algorithms (aritficial data sets)

Data set kmeans kmeans_bagg cmeans cmeans_bagg
Cassini 0,41 0,44 0,39 0,40

Shapes 0,59 0,70 0,70 0,71

Smiley 0,55 0,60 0,56 0,59

Threenorm 0,36 0,37 0,36 0,39

2dnormals 0,44 0,47 0,44 0,47

Table 2

Silhouette index for classical and bagged taxonomy algorithms (real data sets)

Data set kmeans kmeans_bagg cmeans cmeans.bagg
Boston 0,42 0,49 0,43 0,56

Material situation 0,30 0,31 0,21 0,24

Income rating 0,30 0,32 0,21 0,24

In the case of most data sets A:-means method gives better results than c- 

means method in both - classical and aggregated approach. Exeption are only 

Shapes and Boston data sets (in classical and aggregated approach), Smiley in 

classical approach and Threenorm in aggregated approach. The highest différen­

ces between fc-means and c-means method we observe in the case of data sets 

based on household income research. Generally, we can notice advantage from 

using aggregated approach because the Silhouette Index is higher for ensembles

Summary

Resampling methods such as bagging and boosting have been applied suc- 

cessfully in a supervised learning context to improve prédiction accuracy. An idea 

of bagging method is used to generate and aggregate multiple clusterings. The 

bagged clustering procedure was proposed by Dudoid and Fridlyand (2003) where 

the clustering procedure is repeatedly applied to each bootstrap sample and the 
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final partition is obtained by plurality voting. For the real and simulated data sets 

considered in this study, the clusterings produced by bagging procedure was in ge­

neral at least as accurate, and often more accurate, than the clusterings resulting 

from a single application of classical taxonomy algorithms. Although the bagging 

was illustrated using A:-means and c-means it is applicable to any clustering pro­

cedure and it would be worthwhile to evaluate the improvement in accuracy for 

methods such as e.g. fc-medoids or self-organizing maps. It is suspected that, 

as in prédiction, the increase in accuracy observed with-used classical algorithms 

is due to a decrease in variability achieved by aggregating multiple clusterings. It 

would be interesting to carry out a more thorough study of the bias and variance 

properties of different clustering methods, as was done for classifiers in Breiman 

(1998). Other ongoing research directions include the investigation of different 

resampling schemes, similar in spirit to the adaptive resampling schemes used in 

boosting.

It is also worth to add that selecting a good clustering algorithm is more difficult 

than selecting a good classifier. The difficulty cornes from the fact that in cluste­

ring there is no supervision, i.e. data hâve no labels against which to match the 

partition obtained through the clustering algorithm. Therefore, instead of running 

the risk of picking an unsuitable clustering algorithm, a cluster ensemble can be 

used (Střehl and Ghosh 2002). The presumption is that even a basie off-the-shelf 

cluster ensemble will outperform a randomly chosen clustering algorithm.
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Abstract

Ensemble approach based on aggregated models has been successfully applied in the 

context of supervised learning in order to increase the accuracy and stability of classifica­

tion. Recently, analogous techniques for cluster analysis hâve been suggested. Research 

has proved that, by combining a set of different clusterings, an improved solution can be 

obtained.

In the literaturę a resamplimg method, inspired from bagging in classification, was pro- 

posed to improve the accuracy and stability of clustering procedures. In the ensemble 

method, a partitioning clustering method is applied to bootstrap learning sets and the re- 

sulting different partitions are combined by majority voting. Similarly as in prédiction, the 

motivation behind bagging is to reduce variability in the partitioning results via averaging. 

The performances of the new and existing methods were compared using real and artificial 

data sets. Generally the bagged clustering procedure was at least as accurate and öfter 

even much more accurate than a single application of the partitioning clustering method.
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