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THE ANALYSIS OF ROBUST PORTFOLIOS RISK
IN THE STOCHASTIC PROGRAMMING METHOD

Summary: The paper discusses an application of stochastic programming to the portfolio
selection problem involving estimation risk. The paper focuses on problems where a portfo-
lio risk should not exceed some prespecified level with high probability. Based on the real
data on daily returns from American sector stock indices it is analyzed whether the stochas-
tic programming methods truly guarantee to reach the goal regarding portfolios risk. The re-
sults show that the discussed methods indeed lower probability of exceeding the risk level
compared to the classical approach. However in most cases the excess fractions were still
higher from the level expected by an investor.
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Introduction

In practice of the portfolio analysis, the classical assumptions behind the
quantitative methods and models often turn out to be too strong. In many cases,
that results from the nature of financial markets. Asset returns are characterized
by fat tails, leptokurtosis and strong asymmetries. Therefore, the classical theo-
ries based on normality or independence assumptions, to name but a few, should
no longer be applied. Similarly, discrepancies between theoretical and empirical
distributions of returns may lead to severe errors in estimation of their character-
istics. In such case, the term estimation risk is frequently used, which is associ-
ated with the loss possibility that stems from estimation errors. As a conse-
quence, taking into account the estimation errors, portfolios based on the
procedures involving classical estimation and Markowitz [1952] optimization
are only sub-optimal. Non-classical estimation and optimization methods offer



The Analysis of Robust Portfolios Risk... 85

a variety of tools tailored to reduce the estimation risk or its consequences.
Among them, sampling methods and stochastic programming play important
roles, as they take into account the stochastic nature of the parameter estimates
obtained from finite samples. Therefore, these methods can be treated as robust
against the estimation risk.

In the paper, we apply the stochastic programming tools for the portfolio se-
lection problem, where the portfolio risk should not exceed some predetermined
level taking into account the estimation risk. The aim of the paper is to verify to
what extent the stochastic programming allows for controlling the portfolios risk
by running a pseudo-real-time experiment with the long time series of returns.
In other words, we examine if the method is truly able to deliver the portfolios
which risk does not exceed some predefined upper bound. For solving the sto-
chastic programming problem, the sample approximation method is employed as
in Orwat-Acedanska, Acedanski [2013]. However, the current paper differs from
the cited one, because new we use real data to test the robust portfolios charac-
teristics. In particular, we utilize daily data on the sector indices from the US
stock exchanges spanning the years 1964-2014.

The paper is structured as follows. The first chapter contains a description
of the stochastic programming portfolio problem. Then, we present solution of
the stochastic programming problem. In the third chapter the verification proce-
dure is discussed. Finally, we present our pseudo-real-time investment experi-
ment and show the results.

1. Stochastic programming portfolio problem

In the paper, we maximize the expected returns of the portfolios subject to
the variance constraints taking into account the estimation risk.

The portfolio shares are defined as a solution to the classic Markowitz port-
folio problem:

macx{x'u} st VX'2Ex <. (1)

The shares are denoted with x*) and simply called classic portfolios.
In problem (1), v denotes the upper bound for the portfolio standard deviation,
C = {x:x 2 0, x1= 1} represents the set of admissible solutions, p stands for vec-
tor of the expected asset returns and X is their covariance matrix.

Stochastic programming counterpart of the Markowitz problem can be de-
fined as follows:
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where:
=, 1,,....,4,)" —random vector of the assets expected returns,

2 —random covariance matrix of the assets returns,
o — probability that the portfolio’s standard deviation exceeds the upper bound v,
E — expectations operator,
P — probability operator.

Problem (2) is the classic stochastic programming problem with probability
constraints [Shapiro, Dentcheva, Ruszczynski, 2009; Luedtke, Ahmed, 2008;
Pagoncelli, Ahmed, Shapiro, 2009; Yu, Ji, Wang, 2003].

2. Solving the stochastic programming problem

Generally, analytical solutions to problem (2) do not exist. The sample ap-
proximation is one of the possible solution methods for the discussed problem.

In this approach, we replace the random matrices [t and T with their empirical

counterparts. Similarly, the probability o that the portfolio risk exceeds the pre-
specified level is replaced by the fraction of samples ¢, where the risk constraint
is not satisfied. As a result, the solution to the stochastic optimization problem (2)
is approximated by its empirical, deterministic counterpart:
l . ! l . ( ! < )> _
n;gcx{n;xuj}p.w. n;],/xzjx_v_l q, 3)

where p; and 2, j = 1, 2, ..., n denote the characteristics of j-th subsample, and /(4)
1s the indicator function that takes the value 1 if 4 is true and 0, otherwise. The sub-
samples are drawn either from some theoretical distribution (Monte Carlo simula-
tion) or by bootstrap resampling technique. In the former case, the normal distribu-
tion is used with the parameters equal to the moments obtained from the data,
whereas in the latter approach, we simply draw the returns from the whole sample.

As far as the problem of setting the number 7 of subsamples and the frac-
tion ¢ of violated constrains is concerned, we choose ¢ = 0 and examine a few
different values of n. Our conservative choice of ¢ can be motivated by the fact,
that we primarily focus on controlling the portfolio risk. Thus we opt for the
safest parametrization. The more thorough discussion of the problem of setting n
and ¢ can be found in Orwat-Acedanska, Acedanski [2013] or particularly in
Campi, Garatti [2011].
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The portfolios obtained as solutions to (3) are called stochastic portfolios.
Their shares are denoted by x*, whereas p” and =" stand for expected returns
and covariance matrix, respectively.

3. The verification procedure

The stochastic problem approximation together with the whole verification
procedure consists of the following steps:
Step 0. (7 x k) matrix of asset returns is considered.
Step 1. The whole dataset is divided into m rolling training samples of the equal
length d, < T. The first subsample covers the periods from 1 to d,, the second
one from 1 + A to d, + A, and so on, where A represents the sample shift length.
Step 2. For the comparison purpose, for each i-th training sample with the char-
acteristics uj(kl), Z(kl)j and the upper bound for the portfolio standard deviation v,
classic portfolio x*” is constructed as a solution to problem (1).
Step 3
a) For each i-th training sample, n subsamples of equal length d,, is drawn, either
from normal distribution or via bootstrap procedure.
b) For each j-th subsample of the training sample i, given the upper bound v for
portfolio standard deviation, the stochastic portfolio x*” is constructed as
a solution to problem (3).
Step 4. Ex post characteristics (mean returns and standard deviation of returns)
of classic and stochastic portfolios are calculated on the verification periods of
length d,.,;. The verification period for the first sample contains the observations
from d, + 1 to d, + d,.s. Consequently, for the second sample the verification pe-
riod covers d, + A+ 1 do d, + A + d,. observations, and so on. The characteris-
tics are calculated using the standard formulas:

Xv(p) u;est : [Xv(p) Zi@?lx(p) , (4)

represents the portfolios (classic or stochastic) and p}™", X' are the

i

where x'?

asset characteristics calculated on the verification period for i-th sample.

The above procedure is described assuming that the upper bounds for the
portfolio standard deviation are given. However, we were shy on how these are
set, so far. Setting reasonable values for v is not a trivial task. Because of time-
variation in the market risk level, that is evident in our long time series, the
bounds on risk cannot be fixed. Instead we examine a series of sample-
dependent bounds. For each sample, the lowest bound on the portfolio risk is
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equal to the standard deviation of the minimume-risk portfolio (without any con-
straint on the portfolio return). On the other side, the highest bound corresponds
to the standard deviation of the maximum-return portfolio. The intermediate
bounds are equally distributed between the two extremes.

4. Results of the empirical analysis

Our database consists of seventeen sector indices from the US stock ex-
changes NYSE, AMEX and NASDAQ obtained from Kenneth French’s website.
The data covers the period 01.07.1964-31.12.2014. As a result, we have seven-
teen time series with 7= 12 911 observations each. The long time span of the
sample allows examining the portfolios’ performances under the very different
market conditions and assessing the discussed method from a real investor’s
point of view.

We consider four different stochastic portfolios: three based on the boot-
strap resampling technique with n = 100 (stoch_100 and stoch_100w) or
n = 1000 (stoch_1000) subsamples, where in the portfolio stoch 100w we em-
ploy a weighted drawing scheme with newer observations having higher weights
to account for the volatility clustering effect, and one based on Monte Carlo
simulations with n = 100 samples (stoch_100MC).

The window span for the training samples is set to d, = 240 periods, which
approximately equals one year, whereas the verification samples contain d,., = 20,
60 or 120 observations. The sample jump is set to A = 20 observations. As a re-
sult, we end up with almost 600 training samples. Later, we also analyse the
shorter training sample consisted of 120 observations. Finally, we consider
15 different bounds v on the portfolio standard deviations set as described in the
previous section.

In the first step, we analyse the average fraction of samples where the port-
folio standard deviation exceeded the bounds v. The results for the three differ-
ent verification period lengths are depicted on Figures la-1c.
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Fig. 1a. Fraction of risk bounds v violations for classic and stochastic portfolios with
d,= 240 and d,,, = 20
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Fig. 1b. Fraction of risk bounds v violations for classic and stochastic portfolios with
d,= 240 and d,.,, = 60
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Fig. 1c. Fraction of risk bounds v violations for classic and stochastic portfolios with
d,=240 and d,,;, = 120
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The results depicted on Figures la-1c clearly document that, regardless of
the verification period length, the stochastic portfolios risk exceeds the bounds
considerably less often compared to the classic portfolios for all bounds but the
highest. Moreover, the fraction of periods when the risk bound is met is more
stable throughout the different bounds v for the stochastic portfolios. However,
the differences in performance between the stochastic portfolios are less pro-
nounced. Nonetheless, one can notice that in most cases, the stochastic portfolios
based on 1000 samples generate the portfolios with the lowest fraction of the
risk bound violations. On the other hand, the Monte-Carlo-based portfolios ex-
hibit the poorest performance compared to the other stochastic portfolios. Fi-
nally, it should be acknowledged that the fraction of the verification samples
where the risk exceeds the bounds is rather high, regardless of the method, with
20% being the lowest rate attained for the shortest verification period.

In the second step, we repeat the previous exercise, but with shorter training pe-
riod d, = 120 observations, that approximately corresponds to half year. The results
for the three different verification period lengths are illustrated on Figures 2a-2c.

This exercise basically confirms the findings from the previous one. The
main difference is that for the shorter training periods the fraction of risk bound
violations for the stochastic portfolios depends stronger on the value of the
bound. For the higher risk bounds the fraction of the bound violations drops
more than before. As a consequence, the fraction of the risk bound violations for
the least demanding bounds is lower than for the training samples with 240 ob-
servations, although the difference is not particularly impressive. Interestingly,
the stochastic portfolio with weighted bootstrap performs rather poorly for the
low risk bounds, but outperforms the other portfolios as far as the loose bounds

are concerned.
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Fig. 2a. Fraction of risk bounds v violations for classic and stochastic portfolios with
d,= 120 and d,,,; = 20
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Fig. 2b. Fraction of risk bounds v violations for classic and stochastic portfolios with
d,= 240 and d,,,, = 60

60 1

—4—stoch_100
== stoch_1000
—k—stoch_100w
——stoch_100MC

20 o == classic
15 —TrrrrTrTrrTrrrrr
012345678 9101112131415

Bound number

Fraction of risk bounds viclations
[%]
LFS)
(¥,

Fig. 2c¢. Fraction of risk bounds v violations for classic and stochastic portfolios with
d,=240 and d,,, = 120

In the final step of our empirical investigation, we compare the average re-
turns and standard deviation of the daily returns of the portfolios. On Figures 3a-3c,
we present the results for the training samples with 240 observations.
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Fig. 3a. Mean daily returns of classic and stochastic portfolios with d,= 240 and d,,, = 20
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Fig. 3b. Mean daily returns of classic and stochastic portfolios with d,= 240 and d,.; = 60
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Fig. 3c. Mean daily returns of classic and stochastic portfolios with d,= 240 and d,.,, = 120

As one can expect, the classic portfolios are characterized by the highest re-
turns regardless of the risk bound and the verification period length. This, of
course, is the compensation for the excess risk of these portfolios. As far as the
stochastic portfolios are concerned, the weighted-bootstrap portfolios exhibit the
lowest returns, particularly for the higher risk bounds. On the other hand, the
portfolios constructed by the Monte-Carlo simulations are characterized be rela-
tively high returns.

As far as the portfolios risk, depicted on Figures 4a-4c, is concerned, we
observe the opposite results. For example, the classic portfolios are characterized
by the highest standard deviations of the daily returns, whereas the lower risk is
usually associated with the portfolios based on the bootstrap with 1000 subsam-
ples or the weighted bootstrap.
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Fig. 4a. Average standard deviations of daily returns of classic and stochastic portfolios
with d,= 240 and d,,,, = 20
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Fig. 4b. Average standard deviations of daily returns of classic and stochastic portfolios
with d,= 240 and d,,,, = 60
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Summary

The problems concerning portfolios that account for the estimation risk and
ensure that the portfolio risk does not exceed some predefined level are the cen-
tral topic of the modern financial statistics, operational research as well as eve-
ryday practice of investors. They are crucial for the asset allocation decisions
taken by both individual and, in particular, institutional investors, like pension or
investment funds.

In the paper, we studied the application of the stochastic programming tools
for the portfolio selection problem that accounts for the estimation risk. The
problems were solved using the sample approximation method. We focused on
problems of maximizing expected returns provided that the portfolio risk does
not exceed the predefined level. Three particular sampling methods were inves-
tigated: ordinary bootstrap, weighted bootstrap and Monte Carlo. For each
method, we considered different lengths of the training as well as verification
rolling samples.

Our simulation experiments showed that the portfolio risk can exceed the
predefined bounds quite often. The stochastic programming tools were able to
mitigate the problem, but only partially. The fraction of samples where the risk
constraint is violated was lower compared to the classic portfolios, but still
higher than expected. The fraction dropped as the number of subsamples was in-
creased, although the differences were not very pronounced. Of course in all
cases, the stochastic portfolios were characterized by lower average returns as it
is a normal price for the better control over the portfolio riskiness.

In some cases the weighted bootstrap sampling generated the portfolios
with low level of risk. This probably results from the fact that the method can
partially account for the time-variation of returns risk. Nonetheless, the approach
cannot provide a completely satisfactory solution of the risk nonstationarity
problem. Instead, employing the multivariate GARCH models can improve the
performance of the stochastic programming methods, which is left for further
investigation.

Although the stochastic programming methods are not able to completely
mitigate the negative impact of the estimation risk in the portfolio selection
process, we believe that they are useful tools that allow for better control over
the portfolio riskiness. Therefore, in our opinion, they should especially suite the
needs of investors characterized by high degree of risk aversion.
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ANALIZA RYZYKA PORTFELI ODPORNYCH W METODZIE
PROGRAMOWANIA STOCHASTYCZNEGO

Streszczenie: W artykule rozwazano zastosowanie metod programowania stochastycz-
nego w problemach wyboru portfela uwzgledniajacych ryzyko estymacji. Koncentrowano si¢
na zadaniach, ktére miaty na celu zapewnienie, ze ryzyko portfela z duzym prawdopo-
dobienstwem nie przekroczy zadanego poziomu. Bazujac na rzeczywistych danych do-
tyczacych dziennych stop zwrotu amerykanskich indeksow sektorowych, analizowano,
czy rozwazane metody programowania stochastycznego pozwalaja osiagna¢ zaktadany
cel odnosnie do ryzyka portfela. Wyniki wskazuja, ze w porownaniu do klasycznego po-
dejscia analizowane metody pozwalaja zmniejszy¢ prawdopodobienstwo przekroczenia
zadanego poziomu ryzyka. Niemniej jednak w wigkszo$ci przypadkéw odsetek przekro-
czen w dalszym ciagu byl wyzszy od zakladanego.

Stowa kluczowe: portfele odporne, programowanie stochastyczne, probkowanie, metoda
Monte Carlo.



