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THE ANALYSIS OF ROBUST PORTFOLIOS RISK 
IN THE STOCHASTIC PROGRAMMING METHOD  

 
Summary: The paper discusses an application of stochastic programming to the portfolio 
selection problem involving estimation risk. The paper focuses on problems where a portfo-
lio risk should not exceed some prespecified level with high probability. Based on the real 
data on daily returns from American sector stock indices it is analyzed whether the stochas-
tic programming methods truly guarantee to reach the goal regarding portfolios risk. The re-
sults show that the discussed methods indeed lower probability of exceeding the risk level 
compared to the classical approach. However in most cases the excess fractions were still 
higher from the level expected by an investor. 
 
Keywords: robust portfolios, stochastic programming, sampling, Monte Carlo method. 
 
 
Introduction 
 

In practice of the portfolio analysis, the classical assumptions behind the 
quantitative methods and models often turn out to be too strong. In many cases, 
that results from the nature of financial markets. Asset returns are characterized 
by fat tails, leptokurtosis and strong asymmetries. Therefore, the classical theo-
ries based on normality or independence assumptions, to name but a few, should 
no longer be applied. Similarly, discrepancies between theoretical and empirical 
distributions of returns may lead to severe errors in estimation of their character-
istics. In such case, the term estimation risk is frequently used, which is associ-
ated with the loss possibility that stems from estimation errors. As a conse-
quence, taking into account the estimation errors, portfolios based on the 
procedures involving classical estimation and Markowitz [1952] optimization 
are only sub-optimal. Non-classical estimation and optimization methods offer  
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a variety of tools tailored to reduce the estimation risk or its consequences. 
Among them, sampling methods and stochastic programming play important 
roles, as they take into account the stochastic nature of the parameter estimates 
obtained from finite samples. Therefore, these methods can be treated as robust 
against the estimation risk. 

In the paper, we apply the stochastic programming tools for the portfolio se-
lection problem, where the portfolio risk should not exceed some predetermined 
level taking into account the estimation risk. The aim of the paper is to verify to 
what extent the stochastic programming allows for controlling the portfolios risk 
by running a pseudo-real-time experiment with the long time series of returns.  
In other words, we examine if the method is truly able to deliver the portfolios 
which risk does not exceed some predefined upper bound. For solving the sto-
chastic programming problem, the sample approximation method is employed as 
in Orwat-Acedańska, Acedański [2013]. However, the current paper differs from 
the cited one, because new we use real data to test the robust portfolios charac-
teristics. In particular, we utilize daily data on the sector indices from the US 
stock exchanges spanning the years 1964-2014. 

The paper is structured as follows. The first chapter contains a description 
of the stochastic programming portfolio problem. Then, we present solution of 
the stochastic programming problem. In the third chapter the verification proce-
dure is discussed. Finally, we present our pseudo-real-time investment experi-
ment and show the results. 
 
 
1. Stochastic programming portfolio problem 
 

In the paper, we maximize the expected returns of the portfolios subject to 
the variance constraints taking into account the estimation risk. 

The portfolio shares are defined as a solution to the classic Markowitz port-
folio problem: 
                                         { }μx

x
'max

C∈
 s.t. v≤Σxx' .                                       (1) 

The shares are denoted with x(kl) and simply called classic portfolios.  
In problem (1), v denotes the upper bound for the portfolio standard deviation,  
C = {x:x ≥ 0, x1= 1} represents the set of admissible solutions, μ stands for vec-
tor of the expected asset returns and Σ  is their covariance matrix. 

Stochastic programming counterpart of the Markowitz problem can be de-
fined as follows: 
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where:  
)~,,~,~(~

21 ′= kμμμ …μ  − random vector of the assets expected returns,  

Σ~  − random covariance matrix of the assets returns,  
α – probability that the portfolio’s standard deviation exceeds the upper bound v,  
E – expectations operator,  
P – probability operator.  

Problem (2) is the classic stochastic programming problem with probability 
constraints [Shapiro, Dentcheva, Ruszczyński, 2009; Luedtke, Ahmed, 2008; 
Pagoncelli, Ahmed, Shapiro, 2009; Yu, Ji, Wang, 2003].  
 
 
2. Solving the stochastic programming problem  
 

Generally, analytical solutions to problem (2) do not exist. The sample ap-
proximation is one of the possible solution methods for the discussed problem. 
In this approach, we replace the random matrices μ~  and Σ~  with their empirical 
counterparts. Similarly, the probability α that the portfolio risk exceeds the pre-
specified level is replaced by the fraction of samples q, where the risk constraint 
is not satisfied. As a result, the solution to the stochastic optimization problem (2) 
is approximated by its empirical, deterministic counterpart:  
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=

1'1
1

xΣx ,           (3) 

where μj and Σj, j = 1, 2, …, n denote the characteristics of j-th subsample, and I(A) 
is the indicator function that takes the value 1 if A is true and 0, otherwise. The sub-
samples are drawn either from some theoretical distribution (Monte Carlo simula-
tion) or by bootstrap resampling technique. In the former case, the normal distribu-
tion is used with the parameters equal to the moments obtained from the data, 
whereas in the latter approach, we simply draw the returns from the whole sample. 

As far as the problem of setting the number n of subsamples and the frac-
tion q of violated constrains is concerned, we choose q = 0 and examine a few 
different values of n. Our conservative choice of q can be motivated by the fact, 
that we primarily focus on controlling the portfolio risk. Thus we opt for the 
safest parametrization. The more thorough discussion of the problem of setting n 
and q can be found in Orwat-Acedańska, Acedański [2013] or particularly in 
Campi, Garatti [2011]. 
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The portfolios obtained as solutions to (3) are called stochastic portfolios. 
Their shares are denoted by x(st), whereas μ(st) and Σ(st) stand for expected returns 
and covariance matrix, respectively. 
 
 
3. The verification procedure 
 

The stochastic problem approximation together with the whole verification 
procedure consists of the following steps: 
Step 0. (T × k) matrix of asset returns is considered. 
Step 1. The whole dataset is divided into m rolling training samples of the equal 
length du < T. The first subsample covers the periods from 1 to du, the second 
one from 1 + Δ to du + Δ, and so on, where Δ represents the sample shift length. 
Step 2. For the comparison purpose, for each i-th training sample with the char-
acteristics μj

(kl), Σ(kl)
j and the upper bound for the portfolio standard deviation v, 

classic portfolio xi
(kl) is constructed as a solution to problem (1). 

Step 3 
a) For each i-th training sample, n subsamples of equal length du is drawn, either 

from normal distribution or via bootstrap procedure. 
b) For each j-th subsample of the training sample i, given the upper bound v for 

portfolio standard deviation, the stochastic portfolio x(st) is constructed as  
a solution to problem (3). 

Step 4. Ex post characteristics (mean returns and standard deviation of returns) 
of classic and stochastic portfolios are calculated on the verification periods of 
length dtest. The verification period for the first sample contains the observations 
from du + 1 to du + dtest. Consequently, for the second sample the verification pe-
riod covers du + Δ + 1 do du + Δ + dtest observations, and so on. The characteris-
tics are calculated using the standard formulas: 

                                        test
i

p μx )('  ; )()(' ptest
i

p xΣx ,                                      (4) 

where x′(p) represents the portfolios (classic or stochastic) and test
iμ , test

iΣ  are the 
asset characteristics calculated on the verification period for i-th sample. 

The above procedure is described assuming that the upper bounds for the 
portfolio standard deviation are given. However, we were shy on how these are 
set, so far. Setting reasonable values for v is not a trivial task. Because of time-
variation in the market risk level, that is evident in our long time series, the 
bounds on risk cannot be fixed. Instead we examine a series of sample-
dependent bounds. For each sample, the lowest bound on the portfolio risk is 



Agnieszka Orwat-Acedańska 

 

88 

equal to the standard deviation of the minimum-risk portfolio (without any con-
straint on the portfolio return). On the other side, the highest bound corresponds 
to the standard deviation of the maximum-return portfolio. The intermediate 
bounds are equally distributed between the two extremes.  
 
 
4. Results of the empirical analysis 
 

Our database consists of seventeen sector indices from the US stock ex-
changes NYSE, AMEX and NASDAQ obtained from Kenneth French’s website. 
The data covers the period 01.07.1964-31.12.2014. As a result, we have seven-
teen time series with T = 12 911 observations each. The long time span of the 
sample allows examining the portfolios’ performances under the very different 
market conditions and assessing the discussed method from a real investor’s 
point of view. 

We consider four different stochastic portfolios: three based on the boot-
strap resampling technique with n = 100 (stoch_100 and stoch_100w) or  
n = 1000 (stoch_1000) subsamples, where in the portfolio stoch_100w we em-
ploy a weighted drawing scheme with newer observations having higher weights 
to account for the volatility clustering effect, and one based on Monte Carlo 
simulations with n = 100 samples (stoch_100MC). 

The window span for the training samples is set to du = 240 periods, which 
approximately equals one year, whereas the verification samples contain dtest = 20, 
60 or 120 observations. The sample jump is set to Δ = 20 observations. As a re-
sult, we end up with almost 600 training samples. Later, we also analyse the 
shorter training sample consisted of 120 observations. Finally, we consider  
15 different bounds v on the portfolio standard deviations set as described in the 
previous section. 

In the first step, we analyse the average fraction of samples where the port-
folio standard deviation exceeded the bounds v. The results for the three differ-
ent verification period lengths are depicted on Figures 1a-1c. 
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Summary 
 

The problems concerning portfolios that account for the estimation risk and 
ensure that the portfolio risk does not exceed some predefined level are the cen-
tral topic of the modern financial statistics, operational research as well as eve-
ryday practice of investors. They are crucial for the asset allocation decisions 
taken by both individual and, in particular, institutional investors, like pension or 
investment funds. 

In the paper, we studied the application of the stochastic programming tools 
for the portfolio selection problem that accounts for the estimation risk. The 
problems were solved using the sample approximation method. We focused on 
problems of maximizing expected returns provided that the portfolio risk does 
not exceed the predefined level. Three particular sampling methods were inves-
tigated: ordinary bootstrap, weighted bootstrap and Monte Carlo. For each 
method, we considered different lengths of the training as well as verification 
rolling samples. 

Our simulation experiments showed that the portfolio risk can exceed the 
predefined bounds quite often. The stochastic programming tools were able to 
mitigate the problem, but only partially. The fraction of samples where the risk 
constraint is violated was lower compared to the classic portfolios, but still 
higher than expected. The fraction dropped as the number of subsamples was in-
creased, although the differences were not very pronounced. Of course in all 
cases, the stochastic portfolios were characterized by lower average returns as it 
is a normal price for the better control over the portfolio riskiness. 

In some cases the weighted bootstrap sampling generated the portfolios 
with low level of risk. This probably results from the fact that the method can 
partially account for the time-variation of returns risk. Nonetheless, the approach 
cannot provide a completely satisfactory solution of the risk nonstationarity 
problem. Instead, employing the multivariate GARCH models can improve the 
performance of the stochastic programming methods, which is left for further 
investigation. 

Although the stochastic programming methods are not able to completely 
mitigate the negative impact of the estimation risk in the portfolio selection 
process, we believe that they are useful tools that allow for better control over 
the portfolio riskiness. Therefore, in our opinion, they should especially suite the 
needs of investors characterized by high degree of risk aversion. 
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ANALIZA RYZYKA PORTFELI ODPORNYCH W METODZIE  
PROGRAMOWANIA STOCHASTYCZNEGO 

 
Streszczenie: W artykule rozważano zastosowanie metod programowania stochastycz-
nego w problemach wyboru portfela uwzględniających ryzyko estymacji. Koncentrowano się 
na zadaniach, które miały na celu zapewnienie, że ryzyko portfela z dużym prawdopo-
dobieństwem nie przekroczy zadanego poziomu. Bazując na rzeczywistych danych do-
tyczących dziennych stóp zwrotu amerykańskich indeksów sektorowych, analizowano, 
czy rozważane metody programowania stochastycznego pozwalają osiągnąć zakładany 
cel odnośnie do ryzyka portfela. Wyniki wskazują, że w porównaniu do klasycznego po-
dejścia analizowane metody pozwalają zmniejszyć prawdopodobieństwo przekroczenia 
zadanego poziomu ryzyka. Niemniej jednak w większości przypadków odsetek przekro-
czeń w dalszym ciągu był wyższy od zakładanego. 
 
Słowa kluczowe: portfele odporne, programowanie stochastyczne, próbkowanie, metoda 
Monte Carlo. 


