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Abstract

The Analytic Hierarchy Process (AHP) allows to create a final ranking for
a discrete set of decision variants on the basis of an earlier pairwise compari-
son of all the criteria and all the decision variants within each criterion. The
properties of the obtained ranking depend on the quality of pairwise compari-
sons; this quality can be evaluated on the basis of consistency measured by
means of certain measures. The paper discusses a mathematical model which
is the foundation of the AHP and a starting point for a new method which al-
lows to significantly reduce — and even eliminate — the inconsistency of pair-
wise comparisons measured by the consistency index. The proposed method
allows to reduce the consistency index well below the threshold of 0.1.

Keywords: AHP, pairwise comparison, inconsistent pairwise comparison matrices.

1 Introduction

One of the stages of analysis of discrete multicriteria problems can be pairwise
comparison. This process requires that the decision maker indicate, on a defined
scale and for each pair of objects, the object which is evaluated higher or else
that he/she state that they are evaluated identically. However, even for a small
number of criteria the number of pairwise comparisons can be fairly large. This,
in turn, may cause difficulties with expressing consistent evaluations by the de-
cision maker. This may lead to determining an inconsistent matrix of pairwise
comparisons which will therefore lack the assumed properties.
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A well-known method which heavily uses pairwise comparison is the Ana-
lytic Hierarchy Process (AHP). An essential obstacle in the application of the
AHP is the above mentioned possibility of the occurrence of an inconsistent ma-
trix of pairwise comparisons. Attempts to propose methods reducing the incon-
sistency of this matrix were made previously. In some papers it was suggested
that the AHP itself is incorrectly constructed which leads to difficulties in proper
analysis of the decision maker’s preferences. One of these papers is Bana
e Costa & Vansnick (2008), whose authors state: “we consider that the EM
[Eigenvalue Methods] has a serious fundamental weakness that makes the use of
AHP as a decision support tool very problematic”.

This statement is based on their analysis of the AHP in which an essential
role is played by the largest eigenvalue and the corresponding eigenvector of the
pairwise comparison matrix. The authors introduced the notion of the Condition
of Order Preservation (COP), which was supposed to be used to prove the weak-
ness of the EM, including the AHP. Unfortunately, the authors, in a suggestive
example, investigated a pairwise comparison matrix which, on the one hand,
does not preserve the COP, and, on the other hand, was regarded in the AHP as
consistent, with ¢, = 5% — a value not exceeding the 10% threshold proposed by
the author of the method. This example shows very well the problems encoun-
tered when analyzing an inconsistent pairwise comparison matrix, even if the
degree of inconsistency is small. One can regard the specific values used in Bana
e Costa & Vansnick (2008) as revealing the problematic definition of the consis-
tency index and, at the same time, as underscoring the importance of the pair-
wise comparison matrix. In the present paper, an alternative method of reducing
the inconsistency is proposed, which avoids the problems described above (Bana
¢ Costa & Vansnick, 2008).

An interesting proposal of eliminating inconsistency is in the paper Benitez et
al. (2011a) in the chapter “Fast computation of the consistent matrix closest to
a reciprocal matrix”, which describes, in the Matlab language, a function which
allows to reduce the inconsistency of the pairwise comparison matrix. This
method, however, is not based directly on the EM. Of extreme interest is the
mathematical formula from this chapter, since it is similar to the relationship (2),
derived in the present paper from the EM. Vector w, given by Benitez et al.
(2011a), is not based on the eigenvector of the eigenmatrix, but is determined
numerically in the above mentioned function. In the proposal described further
in the paper, the pairwise comparison matrix will be modified using values based
on the eigenvector of the original matrix.

In the paper Zeshui (2004) a variable introducing small perturbations was
added to the pairwise comparison matrix. This matrix is corrected using the val-
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ues of the arithmetic or geometric weighted mean. To improve the pairwise
comparison evaluations, the matrix elements with the largest values of the per-
turbation variables are corrected.

In the papers Saaty (2008, p. 15-16) and Saaty (2003, p. 88-90) three meth-
ods of modification of the pairwise comparison matrix have been proposed,
which allow to reduce the inconsistency index. In these methods Saaty suggests
to determine those elements in the matrix which influence the excessive value of
the inconsistency index most. Next, new values are proposed and presented to
the decision maker for his/her approval.

To correct an inconsistent pairwise comparison matrix, the paper Ergu et al.
(2011) defines an algorithm based on the values of a new matrix containing
a certain measure of inaccuracy of the evaluations contained in the original ma-
trix. The authors propose a new method which allows to correct selected evalua-
tions on the basis of the values of the measure proposed.

Another approach, proposed in the paper Siraj et al. (2012), consists in defin-
ing a certain heuristics which allows to improve the decision maker’s evalua-
tions. This heuristics is based on the ordinal consistency (transitivity) analysis.
In this proposal, the relationships between the elements compared are expressed
in form of a directed graph, with edges expressing direction and intensity of the
decision maker’s preferences. By investigating this graph it is possible to deter-
mine the number of violations of priority and, on this basis, to correct the values
of the pairwise comparison matrix.

The authors of the paper Benitez et al. (2011b) propose to apply a lineariza-
tion which is supposed to lead to the determination of a consistent pairwise
comparison matrix whose distance from the original matrix is small. For this
purpose, they define a certain measure based on Frobenius’ norm. The paper
contains a function in the MatLab language which allows to determine a cor-
rected pairwise comparison matrix.

Among the existing methods of correcting inconsistent evaluations in the
pairwise comparison matrix, none is based to a large extent on the eigenvector
corresponding to the largest eigenvalue of the original matrix. The present paper
attempts to fill this gap.

The purpose of the present paper is to propose a new method of reducing the
inconsistency of the pairwise comparison matrix, which is measured with the
consistency index c,. The proposal is based on selected numerical properties of
the AHP, which will be described in the next subsection of the paper. Addition-
ally, a new scale is proposed, for the comparison of those elements which differ
from each other only slightly. The proposal is based on Saaty’s original scale,
which introduces two different values (namely 1 and 1.1) for identical objects.
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2 Basic properties of the pairwise comparison matrix in the AHP

An essential role in the AHP is played by the scale used for pairwise compari-
sons. Saaty (2008, p. 257) proposed two versions of the scale, described in Table 1.
The first one is used for objects which are clearly different and uses values from
1 to 9. The other one is used for only slightly different objects, for which most
evaluations would concentrate between 1 and 2. In this situation Saaty suggested
to use values from the interval 1.1-1.9. Unfortunately, undistinguishable objects
obtain different values on the two scales, namely 1 and 1.1. The reciprocals of

these two values are also different, namely 1 and 1—11, respectively. To solve this
problem, in the present paper we use a different form of the second scale, with
values smaller by 0.1 as compared with those in the paper Saaty (2008, p. 257),
that is, from the interval 1.0-1.8. Thanks to this, identical objects are evaluated
as 1, and the reciprocal of this value is also equal to 1.

Table 1: Saaty’s Fundamental Scale of Absolute Numbers

Intensity Definition X
Explanation
of Importance of Importance
1 Equal Both activities contribute equally to the objective
2 Weak or slight Intermediate importance between 1 and 3
Experience and judgment slightly favor
3 Moderate . .
activity i over j
4 Moderate plus Intermediate importance between 3 and 5
Experience and judgment strongly favor
5 Strong p o . Juce &y
activity 7 overj
6 Strong plus Intermediate importance between S and 7
Activity i is favored very strongly over j;
7 Very strong or demonstrated . y Y . &y . /
its dominance demonstrated in practice
8 Very, very strong Intermediate importance between 7 and 9
The evidence favoring activity i over j is of the
9 Extreme . . .
highest possible order of affirmation
A better alternative way of assigning small
When all compared activities are decimals is to compare two close activities with
1.1-1.9 very close: a decimal is added to 1 to | other widely contrasting ones, favoring the larger
show their difference as appropriate” | one a little over the smaller one when using the 1-9
values
If activity i has one of the above
Reciprocals nonzero numbers assigned to it when
of compared with activity j, then j has A logical assumption
above the reciprocal value when compared
with 7

* Because of different properties of the first degree and its reciprocal in both scales, it is justified to use the
range of degrees from the interval 1.0-1.8.

Source: Saaty (2008, p. 257).
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In the consecutive subsections of the paper we propose a method supporting
the process of correcting inconsistent evaluations of the decision maker. This
proposal is based on numerical properties of the AHP, which will be described in
the consecutive sections of the paper.

2.1 Analysis of the pairwise comparison matrix in the AHP

The AHP method uses pairwise comparisons of the individual criteria and deci-
sion variants. The results of the comparisons are saved in an n by n square ma-
trix, which has ones on the main diagonal, and in which the symmetrical ele-
ments are mutually reciprocal. The number of those comparisons is a quadratic
function of the number of the elements. The number of the necessary compari-
sons is expressed by the following formula:

n n! nn—1) n®*—n
(2)_2!(n—2)!_ 2 2 M

Comparison of two objects results in a consistent pairwise comparison ma-

trix, since only one of the following three cases occurs:

e both objects are identical,

o the first one is evaluated higher than the second one, or
o the second one is evaluated higher than the first one.

Inconsistency of evaluations can occur already in the case of three objects. If
the first object is evaluated higher than the second one, and the second one
higher than the third one, then the third object cannot be evaluated higher than
the first one. If this condition is not satisfied, we obtain an inconsistent pairwise
comparison matrix. When investigating the random index described below, we
have to generate random pairwise comparison matrices. In simulation experi-
ments with 3x3 matrices, consistent matrices have been obtained in about 20%
of cases. For larger matrices, the probability of drawing a consistent pairwise
comparison matrix was extremely low. One can observe, therefore, that as the
size of the pairwise comparison matrix increases, the problem with the inconsis-
tency of evaluations can grow, too.

A certain inconsistency level was in a sense assumed in the AHP, since the
decision maker’s evaluations are expressed on a 9-degree scale. This number re-
sults from the natural limit of information processing by humans, described by
the “seven plus or minus two” rule in Miller (1956).

In the AHP we aim at ordering the discrete decision variants, taking into ac-
count a certain hierarchy of criteria. For this purpose, a certain ranking is cre-
ated, expressed by means of weight coefficients, contained in vector w. This vec-
tor is normalized, hence the sum of its components is equal to 1.

2
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To describe the AHP, as it was done in Saaty (2008), let us assume that at the
beginning the values of vector w are known. An example is the problem of or-
dering companies with respect to their trade turnover volume. Knowing the val-
ues of W, we can analytically create the pairwise comparison matrix by dividing
the appropriate components of vector w. If the turnover volumes are equal, then
the quotient of the turnover volumes of the pair of businesses is 1. If the turnover
of the first company is greater than that of the second one, the value of this quo-
tient is larger than 1. Otherwise, it is smaller than 1. The results can be written in
the form of a pairwise comparison matrix W, as in (2) below:

W, Wi W, Wy
wi w, ws Wy,
Wy W Wp W3
1 Wi Wz W3 Wn
W=w-—p=|Ws W3 wg W @)
Wi Wy W3 Wn
Wn M}Tl Wn . V‘}n
wy w, wy wy

From the process of constructing W it follows that its main diagonal consists
1
—. On

of ones only, and the symmetric elements are mutually reciprocal: w;; = —
Jt

the basis of (2) we can state that the order of W is exactly 1. Therefore, this ma-

trix has only one non-zero eigenvalue. Additionally, on the basis of calculations

in (3), we can see that W is an eigenvector of W:

W1 W1 Wy W11
wi w, ws Wy,
Wo W2 W2 W2 wr
wy W, W3 Wn| [W2
W-w=w-ﬁ-w=@ Wi W3 Wial- (W3
wy W, W3 Wn :
: : w
Wa Wa Wa o Wa| )
lw;, w, ws Wy,

W1+W1+W1+"'+W1]
W2+W2+W2+"'+W2
= W3+W3+W3+"'+W3 =w-'n

Wp+wy, +w, + -+ wy,
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Usually we do not know the components of vector w, only the values of ma-
trix W. To determine the values of W we analyze the eigenproblem of the form
W -w =n-w, where n is the eigenvalue corresponding to eigenvector w. This
relationship is described by formula (3).

From the relationship (3) one can conclude that the order of matrix W is ex-
actly 1. Moreover, from this it follows that all the eigenvalues of W, except one,
are equal to 0. Since the main diagonal of matrix W contains only 1s, its trace is:
tr(W) = n. On the other hand, the trace of W is the sum of its eigenvalues,
tr(W) = Y; 4;, and therefore the largest eigenvalue of W is equal to n, and the
remaining ones are equal to 0. The problem of constructing the scale vector W is
therefore reduced to determining the eigenvector corresponding to the largest ei-
genvalue of the pairwise comparison matrix W.

To determine the eigenvector W it is convenient to use von Mises’s exponen-
tial method. For a pairwise comparison matrix this method converges, since the
difference between the two largest eigenvalues is significantly greater than 0,
sincen — 0 > 0.

It is convenient to start the calculations with the assumptions that the initial vec-
tor consists of 1s only: w?o) =[1 1 1 - 1]. We obtain the consecutive ap-
proximations of the sought eigenvector from the formula: w1y = W - w(y.

Saaty proposed to normalize matrix W prior to the application of the expo-
nential method, so that the sum of the elements in each column is equal to 1. In
a sense this is consistent with the exponential method, since in the consecutive
iterations of this method it is necessary to normalize the obtained approxima-
tions of the eigenvector. This operation is supposed to prevent a sudden growth
of the components of vector w. Calculations in (4) show the method of determin-
ing the sum in each column of matrix W. At the same time, we assume that the
sum of the components of vector w is equal to s, = X,; w;:

Wy Wy wy Wit Swit
Wi Wz W3 Wn wy
w2 w2 w2 Wl |sw
1 Wy Wy Wz Wy, Wy
se=e’-w=|1] |ws ws ws  wsl=s, “)
: Wy w, ws Wy, W3
1 : .o :
WTL Wn Wn Wn SW
LWy Wy W3 Wp LW, |

By dividing the columns of matrix W by the sums S we obtain the normal-
ized matrix W whose structure is shown in (5):
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1
Wy =W -diag (s_) =
k

Wn

sy,

Wn

Sw

wp W
Wy W3
wy W
Wy  Ws
w3 W3
Wy  Ws
Wn WTl
Wy W3
Wy Wi
SW S w
W3 w»
SW S w
W3 w3
SW S w
Wn Wn
Sw Sw

- diag

)

By performing only one iteration of the exponential method, we obtain the

result shown in (6):

W(l) = WN . W(o) =|W3

_W1

Wn

LSy

Wy

Wn

Sw

wq

Wn

Sw

W11

Wn

Sw

S
[ERGNN
S — |

_n . Wl_

Sw

n'Wz

Sw

n'W3

Sw

n

L Sy

. Wn

(6)

Moreover, it is easy to see that when we divide the resulting vector w4y by n,
we obtain the normalized scale vector wy, since ); wy,; = 1. The relevant calcu-

lations are in formula (7):

Sw
w2

Sw

—=| W3

Sw

Wn

W1

L Sy, -

(7
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As mentioned before, in general we do not know the scale vector w, only the
pairwise comparison matrix W. However, by performing the calculations shown
in formulas (4) through (7), we can determine the scale vector w on the basis of
matrix W.

2.2 The occurrence of inconsistency in the AHP

The method of determining the scale vector w described in the previous subsec-
tion is correct as long as the order of the pairwise comparison matrix W is equal
to 1. This is because the pairwise comparisons led to a consistent matrix W. Un-
fortunately, in general, matrix W is not always consistent and therefore it is nec-
essary to find out by how much the eigenvalue obtained exceeds n. In the case of
a consistent matrix, the relationships in (8) and (9) are true. On the basis of their
construction it is possible to determine the extent to which the maximal eigen-
value differs from the theoretical quantity #:

W-w,=n-w, ()
wy w; w; W17 Wq- n - Wy
Wi Wz W3 Wn g Sw
Wy, Wy, Wy wal| |w, n-w,
Wi Wz W3 Wn g Sw
Wewy =|Ws Ws W5 Wsl|\ws|=n ws ©)
Wi W Wws Wnl |Sw Sw
wy, V\}n Wy, . M}n & n-‘wn
W_l W_z W_3 W_n LSwd LSy

For this purpose, we divide the obtained vector (the right-hand side of (9)) by
the consecutive components of w,,. In the case of a consistent matrix we obtain
vector [n n n - n]T, for which the average of the elements A4, is 7. In
general, this average can have another value, and therefore we determine the

yl . . . . .

1;”_“1". This index is the arithmetic mean of the eigenval-
ues of matrix W, calculated omitting the largest eigenvalue. If the pairwise com-
parison matrix is consistent, then ¢; = 0. Since this index depends on the size of
matrix W, Saaty proposed to correct the value of ¢; by a certain random index
which takes into account the size of the matrix under discussion. The consis-

tency index ¢, = r—l, where 7; is a certain random index, allows to check if matrix
i

consistency index ¢; =

W is inconsistent. We assume that the pairwise comparison matrix is consistent
if ¢, < 10%.
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3 A proposal to eliminate the inconsistency in pairwise comparisons

An essential obstacle in applying the AHP are frequently occurring problems
with inconsistency of pairwise comparisons. In many problems, especially those
related to large-size matrices, the value of the consistency index ¢, significantly
exceeds the acceptable threshold of 10%. To obtain a consistent matrix, we have
to correct the results of pairwise comparisons. Since matrix W reflects the deci-
sion maker’s preferences, it is justified to allow him/her to participate in the cor-
rection of its contents. This approach requires additional activity from the deci-
sion maker. The proposed method analyzes the pairwise comparison matrix and
points out the elements to be corrected to the decision maker. Moreover, the
method suggests to him/her the values of the evaluations of the elements being
corrected.

The proposed algorithm for eliminating inconsistency consists of the follow-
ing steps:

1. Determine the scale vector W, using the AHP method and check
the consistency index c,.

2. If ¢, <0.1, end the calculations, otherwise go to the next step.

Determine the new pairwise comparison matrix W from formula (11).

4. On the basis of matrix Ws and Saaty’s scale determine the new proposals
of pairwise comparisons.

5. Ask the decision maker to accept the proposed pairwise comparisons or to
present the new evaluations of pairwise comparisons from matrix W
(in particular, those values which differ most from the proposal).

6. If the decision maker accepts the new comparisons, end the calculations,
otherwise go to Step 3.

98]

4 Examples of applications

In the next two subsections we present examples illustrating applications of the
proposed algorithm. The first example describes a problem in which the decision
maker supplied exceptionally inconsistent evaluations of the individual variants,
revealing in the consecutive iterations that according to his/her preferences, the
variants compared differ only slightly from each other. During this process
a transition from the classic Saaty scale 1-9 to the scale 1.0-1.8 is effected; this
scale is proposed in the present paper. The next example deals with a problem
described in Saaty (2003, p. 88).
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4.1 The problem of an inconsistent pairwise comparison matrix

Let us consider three decision variants: a, b and ¢, which were evaluated by the
decision maker as follows: a > b, b > ¢ and ¢ > a (sic!). The pairwise comparison
matrix reflecting these preferences is shown in (10):

_1 9 1_
9
1
W=|- 1 9 (10)
9
9 ! 1
7 9 7
. . 1 1 177
Using the AHP we obtain a scale vector of the form w,, = [§ 3 5] and

¢ =6.84 > 0,1 (for »; = 0.52). In our calculations we used the fact that the

sums of the elements in the consecutive rows and columns were identical. Since

¢, indicates that matrix W is strongly inconsistent, we propose the corrected ma-

trix Ws to the decision maker. Our proposal consists in reconstructing the pair-

wise comparison matrix on the basis of Wy, according to formula (11), which in
turn is based on the relationship described in (2):
18T

wo=wa- () (1)

By performing the calculations we obtain the corrected pairwise comparison

matrix, for which ¢, = 0:

11 1
w,=|=[[3 3 3]=[1 1 1] (12)

Wik W~ W~

It is easy to see that this proposal consists in assuming that all three variants
are equivalent: a = b =c.

We assume that the decision maker, knowing the new matrix Ws modifies
his/her evaluations and expresses them in a new matrix, shown in (13):

[ 1
15 2
1
w=|z 15 (13)
2 1
5
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For this pairwise comparison matrix, the scale vector is
w, =[04 0.33 0.27]7 and the consistency index is ¢, = 1.72 » 0.1. Un-
fortunately, we have again obtained an inconsistent matrix W. The corrected pair-
wise comparison matrix, shown in (14), has been determined from formula (11):

1 1.204 1.474
Wg = [0.830 1 1.224]
0.678 0.817 1

Using the 1.0-1.8 scale, we obtain the matrix shown in (15), which we pre-
sent to the decision maker for evaluation. The consistency index of this matrix is
¢ =0:

(14)

1 1.2 1.5
W = [0.833 1 1.2] (15)
0.667 0.833 1
The decision maker finds that the proposed matrix correctly reflects his/her
preferences.

4.2 An example from Saaty’s paper

The next example is related to the problem of buying a house, with eight criteria
taken into account. The decision maker expressed his/her preferences in the form
of a pairwise comparison matrix, shown in Table 2.

Table 2: Pairwise comparison matrix W for the problem of buying a single family home
for the given criteria

Size Trans. Nbrhd Age Yard Modern Cond. Finance
Size 5 3 7 6 6
Trans. 5 3 3
Nbrhd. 3 6 3 4 6
Age
Yard 3
Modern 4
Cond. 3 5 7 5
Finance 4 7 5 8 6 2

* Amax = 9.618, ¢;=0.231,r;=1.4, ¢, =0.165.
Source: Saaty (2003, p. 88).

Using the AHP we conclude that the matrix in Table 2 is not consistent. From
formula (11) we determine the corrected matrix, shown in Table 3.

Using Saaty’s scale for the matrix from Table 3, we obtain a new pairwise
comparison matrix, shown in Table 4. We assume that the decision maker accepts
the proposed corrections. The consistency index decreased from 23.1% to 1%.
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Table 3: Pairwise comparison matrix reconstructed from (11)

Size Trans. Nbrhd Age Yard Modern | Cond. | Finance W,
Size 1.000 2.639 1.025 9.227 4.947 3.922 0.977 0.558 1.000
Trans. 0.379 1.000 0.388 3.497 1.875 1.486 0.370 0.212 0.379
Nbrhd. 0.976 2.575 1.000 9.003 4.827 3.827 0.953 0.545 0.976
Age 0.108 0.286 0.111 1.000 0.536 0.425 0.106 0.061 0.108
Yard 0.202 0.533 0.207 1.865 1.000 0.793 0.197 0.113 0.202
Modern 0.255 0.673 0.261 2.352 1.261 1.000 0.249 0.142 0.255
Cond. 1.024 2.701 1.049 9.444 5.063 4.015 1.000 0.572 1.024
Finance 1.791 4.726 1.835 16.524 8.859 7.025 1.750 1.000 1.791

Source: Author’s own calculations.

Table 4: A correct pairwise comparison matrix, based on Table 3 and after
the application of Saaty’s scale

Size Trans. | Nbrhd Age Yard | Modern | Cond. | Finance Wi
Size 3 1 9 5 4 0.151
Trans. 3 2 1 0.052
Nbrhd. 3 9 5 4 0.151
Age 0.019
Yard 2 0.032
Modern 2 0.038
Cond. 1 3 9 5 4 0.151
Finance 2 5 2 9 2 0.259

* Amax = 8.068, ¢;=0.010, ;= 1.4, ¢, = 0.007.

Source: Author’s own calculations.

Analyzing the data from Table 4 we can see that three categories are regarded
by the decision maker as equivalent. Table 5 shows the matrix corrected accord-
ing to Saaty’s proposal. For this matrix the consistency index is equal to 8.1%
and is significantly higher than that for the matrix from Table 4.

Table 5: The corrected pairwise comparison matrix W for the problem of buying a family home

Size Trans. | Nbrhd Age Yard | Modern | Cond. | Finance Wi
Size 5 3 7 6 6 0.175
Trans. 5 3 3 0.062
Nbrhd. 3 6 3 4 0.103
Age 0.019
Yard 3 0.034
Modern 4 0.041
Cond. 3 5 2 7 5 5 0.221
Finance 4 7 5 8 6 2 0.345

* Amax = 8.811,¢,=0.083.
Source: Saaty (2003, p. 90).
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S Summary

In this paper the author presented an iterative method of eliminating inconsistency of
pairwise comparison matrices. The proposal allows to determine a consistent matrix in
a single iteration. By applying the assumed scale of pairwise comparison evaluations
we determine the corrected pairwise comparison matrix and present it to the decision
maker for acceptance. If the decision maker does not accept the proposed changes,
he/she can add necessary corrections of the pairwise comparison matrix, on the basis of
the corrections proposed. This process, in which the decision maker plays an active
role, lasts until a consistent matrix W is obtained. The proposed method facilitates find-
ing out consistent preferences of the decision maker, especially in large-size problems.

This proposal removes one of the obstacles encountered by users of the AHP
in complex problems. Another obstacle is the determination of random indices 7;
for matrices of sizes larger than 30. For smaller matrix sizes, these indices are
published, but unfortunately various authors give various lists of values for
them. Another research direction will be related to the investigation of random
indices used in research on consistency of pairwise comparison matrices and on
a new construction of the consistency index.
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