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MODELING EXTREME MORTALITY RISK 
  
Summary: The main aim of the paper is presentation some key aspects in modeling 
extreme mortality risk. We make a review and discuss measures of extreme mortality 
risk. Besides, we use approach proposed by J.M. Bravo et al. [2012], that is focused on 
using EVT to model the statistical behaviour of mortality rates over a given high 
threshold age. Insurers and reinsurers are interested in assessing the risk exposure to 
extreme mortality risk.  
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Introduction 

Over the last century, the annual number of deaths all over the world has in 
general decreased. As of 2014 the crude death rate for the whole world was 7.89 
per 1000 (down from 8.37 per 1000 in 2009) [CIA World Factbook, 2016]. Mor-
tality improvement is a clear evidence of how far society and science have come 
in improving general living conditions, promoting healthier lifestyles, offering 
better medical and healthcare services, that extent our lives [Bravo et al., 2012]. 

While mortality has been improving for many decades, life insurers still 
have to deal with the risk, that such event as a pandemic or terrorist attack could 
cause a one-time mortality shock. It is not easy to determine in advance the loss 
value from such events, and the amount of capital to hold. This makes it difficult 
for life insurers to quantify the risk and to manage their capital efficiently for the 
benefit of policyholders and shareholders. 

Measuring, modeling and managing mortality risk (and as consequence – 
longevity risk) is a huge challenge for risk managers. The financial effect of 
underestimating the life table limiting age can be substantial, not only in terms 
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of expected losses, but particularly in terms of risk measures such as VaR or 
TailVaR since these quantities heavily rely on the tail of the population survival 
distribution. 

In this paper we consider some aspects of extreme mortality risks.  
The natural tool for modeling extreme mortality risk is extreme value theo-

ry (EVT), that provides a framework to formalize the analysis of the behavior in 
the tails of a distribution. In the first part, we discuss some the most popular risk 
measures for mortality rates. In the second part, we focus on using EVT to mo-
del the behavior of mortality rates over a given high threshold level of age.  
 
 
1. (Extreme) mortality risk  

Let’s consider the underlying aggregate mortality rate q(t,x) in year t at age x, 
which is usually unobservable. What is observed depends on the way of recording 
deaths and population size by national statistical offices [Cairns et al., 2008]. 
Usually, we observe the crude death rate mc(t,x) (c symbolizes crude death rate) 
calculated as: the number of deaths, D(t,x), aged x last birthday at the date of 
death during year t, divided by the exposure, E(t,x) which is the average popula-
tion aged x last birthday during year t. The crude death rate is the simplest and 
one of the most frequently used mortality indicators in population [Cairns et al., 
2008]. Generally, the term “mortality risk” is used to cover all forms of devia-
tions in aggregate mortality rates from those anticipated at different ages and 
over different time horizons [Cairns et al., 2008].  

A key driver of capital requirements for annuity business is the uncertainty 
over the trend of future mortality rates. The uncertainty in future death rates can 
be divided into two components [Cairns et al., 2008]: 
– unsystematic mortality risk: even if the true mortality rate is known, the number 

of deaths, D(t,x), will be random; the larger is the population, the smaller is the 
unsystematic mortality risk (as a result of the pooling of offsetting risks, i.e. 
diversification), 

– systematic mortality risk: this is the undiversifiable component of mortality 
risk, that affects all individuals in the same way; specifically, forecasts of 
mortality rates in future year are uncertain. 

So far, high foreseeable of mortality rates was interrupted by HIV/AIDS 
epidemic or event of September 11, 2001, that brought additional attention to the 
risk of mortality jumps. Risk of such dramatic shocks in mortality rates caused 
by terrorist attack or pandemic has been increased and awareness of the existen-
ce of this risk has been growing (Fig. 1). As a consequence, we have to deal with 
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short-term, catastrophic, extreme mortality risk, which is referred to the risk that, 
over short periods of time, mortality rates are very much higher than would 
normally be experienced [Cairns et al., 2008]. 

 

 
Fig. 1. Timeline of the growing awareness of the extreme mortality risk  
Source: [A. Krutov, 2010, s. 238]. 

 
 
2. Extreme mortality risk measurement 

The goal of risk measurement, in general, is to use an appropriate risk mea-
sure to assign a real number to an uncertainty or a quantity with an unknown 
value, so that the risk exposure of this quantity can be represented. Value at Risk 
and Tail Value at Risk are used usually for measuring mortality risk, especially 
extreme risk (more about extreme risk in study [Trzpiot, 2015]).  

VaR is one of the most widely used risk measures by insurers and banks in 
quantitative risk management. The VaR is the maximum loss not exceeded with 
a given level of confidence over a given time horizon. Formally, we write 

})(|inf{)( αα ≥= xFxxVaR x , where )(xFx  is the distribution function of       
x and α is the tolerance level α ∈ (0,1). A loss distribution has to be specified 
first and the VaR is a quantile of that distribution. VaR has become the ben-
chmark risk measure. The VaR does also not consider the shape of the tail bey-
ond the confidence level. Besides, VaR is not sub-additive, which makes it not 
very suitable to use for a capital requirement calculation. 

Tail VaR (TVaR) overcomes this problem. TVaR is the expected loss con-
ditional on the loss exceeding VaR. If VaR is determined using a confidence 
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level of α, then tail VaR is the expected loss over the other 1-α  part of the loss 

distribution. Formally, TVaR is defined as: λ
α α

λα dxVaRxTVaR )(
1

1)(
1

∫−
=  

Tail VaR satisfies all coherence requirements.  
VaR is the risk measure of Solvency II1 with a confidence level of 99,5% 

for the calculation of the Solvency Capital Requirement and 85% for the Mini-
mum Capital Requirement. In the case of the SCR, the confidence level of 
99,5% tells us, that the company can expect to lose no more than VaR in the 
next year with 99,5% confidence, so, on average, only once every 200 years the 
VaR loss level will be exceeded. Assuming VaR equals 100, the probability for 
capital to become negative (ruin) in the x following years will amount to (1 – α)%, 
provided the company holds 100 of initial capital [CEIOPS, 2006].  

TVaR is the risk measure used for the Swiss Solvency Test (SST)2 with 
a confidence level of 99%. Assuming TVaR equals 115, it means that in the 
worst cases (the (1 – α)% situations in which capital becomes negative in the       
x following years), the company will lose 115 in the average. If the company 
holds 115 of capital, it should therefore survive these worst-case scenarios (very) 
roughly half of the time [CEIOPS, 2006].  

The figure 2 illustrates the difference between the VaR risk measure (used 
by Solvency II) and the Tail VaR risk measures (used by SST). 

                                                            
1  Solvency II is a new supervisory framework, which is in force from 2016 for insurers and rein-

surers in Europe. It puts demands on the required economic capital, risk management and repor-
ting standards of insurance companies. Solvency II focuses on an enterprise risk management 
approach towards required capital standards. Its main objective is to ensure, that insurance 
companies hold sufficient economic capital to protect the policyholder as it aims to reduce the 
risk, that an insurance company is unable to meet its financial claims. The capital is adjusted to 
the risks, that the insurance company incurs. In this way, Solvency II describes the quantitative 
requirements. This capital requirement is called the Solvency Capital Requirement (SCR) and 
covers all the risks, that an insurer faces.  

2  The Swiss Solvency Test (SST) is a risk based capital standard for insurance companies in 
Switzerland in use since 2006. The SST was developed by the Swiss Federal Office of Private 
Insurance in cooperation with the Swiss insurance industry. 
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Fig. 2. Comparison of VaR and Tail VaR  
Source: [M. Eves, 2013, s. 3]. 

 
In 2006 the European Insurance and Occupational Pensions Authority 

(EIOPA)3 generally acknowledged the theoretical advantages of using the TVaR 
to calculate the SCR. However, there were concerns about the utility of an SCR 
measurement based on TVaR, since there was seen to be scarcity of data about 
the tails, which can easily lead to an increase in modeling errors. J. Yamai and   
T. Yoshiba [2004] argue, that the estimation errors of TVaR are much greater 
than those of VaR. This is a potential drawback of the TVaR. These estimation 
errors can however be reduced by increasing the sample size of the simulation or 
by making assumptions on the shape of the tail. Another disadvantage is that the 
TVaR does not exist for distributions with an in finite mean, these distributions 
are however seldom associated with profit loss distributions and therefore this 
disadvantage is not relevant in this case. 

The SCR is defined as the 99,5% VaR of the Available Capital over one 
year. The Available Capital at time t, ACt, is the difference between market va-
lue of assets and market value of liabilities at time t. Thus, it is a measure of the 
amount of capital that is available to cover future losses, i.e. the smallest amount 
x for which [Bauer et al., 2009]:  

                                                            
3  EIOPA’s core responsibilities are to support the stability of the financial system, transparency 

of markets and financial products as well as the protection of insurance policyholders, pension 
scheme members and beneficiaries. 
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However, since this implicit definition is rather unpractical in numerical 
computations, one often uses the following approximately equal definition [Bauer 

et al., 2009]: 
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In general, we can write SCR definition as: 

)|( 1 ttt FACAC −+ρ  

where tF  denotes a filtration representing today's information and ρ  denotes 
a risk measure (VaR at 99,5%, Tail VaR at 99%).  

Mortality trend risk in then the one-year view of the SCR definition is the 
potential deviation of next year’s best estimates from today’s best estimates. In 
other words, mortality trend risk can be defined as the risk of unexpected chan-
ges in the (long-term) trend underlying the future mortality evolution [Börger et 
al., 2013]. This risk is relevant for insurance products, which pay upon death of 
the insured person as well as products, which pay upon survival.  

A comprehensive risk model for mortality (or longevity) meeting the 
Solvency II and SST criteria requires an adequate stochastic mortality model. In 
particular the one-year time horizon and focus on extreme mortality trend devia-
tions deserve special attention. Moreover, an adequate stochastic model needs to 
be efficient and sufficiently simple to maintain. A wide range of different models 
has been proposed in the literature (an overview of different types of models see: 
[Cairns et al., 2008]). But only very few of the existing models are directly appli-
cable for the calculation of capital requirements under Solvency II or the SST.  
 
 
3. Modeling extreme mortality risk using extreme value theory 

Traditional actuarial approaches to modeling mortality risk are not usable in 
the context of analyzing extreme mortality. These approaches have been develo-
ped to use historical data for quantifying stable mortality rates and identifying 
and incorporating in the rates the trends of slowly shrinking mortality. A stan-
dard mortality table is of little use in trying to quantify the risk of a sudden jump 
in mortality rates due to an event such as pandemic or large-scale terrorist attack.  

A challenge in mortality risk modeling is the knowledge about rare mortali-
ty events. The statistical methods for evaluating extreme events require an accu-
rate measure of the tail of the distribution.  
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Extreme value theory (EVT) can be used not only to model the given sam-
ple of observations in the tail, but also to extrapolate the probability of even 
more extreme, out-of-sample events. Broadly speaking, there are two types of 
models for extreme values. Block maxima models apply to maxima of a sequen-
ce of observations and the Peaks-Over-Threshold models deal with exceedances 
over a given high threshold4. In case of mortality rates we are rather interested in 
the exceedences in the tail of the distribution, because the payoff of the mortality 
indexed bond occurs, when mortality exceeds or falls below a certain level. 

Suppose we have a sequence of i.i.d. random variables X1,...,Xn, represen-
ting risks or losses, from an unknown common distribution function F and let 
Mn = max {X1,..., Xn}. A natural measure of extreme events are the values of Xi, 
that exceed a high threshold u. Let x0 be the finite or infinite right endpoint of 
the distribution: 

F: ∞≤<∈= }1)(:sup{0 xFRxx  

We define the excess distribution above the threshold u as the conditio-
nal probability: 
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for uxx −<≤ 00 .  
Fu(x) is the probability that X exceeds the threshold u by no more than an 

amount x, given that the threshold is exceeded. 
According to the Pickand-Balkema-de Haan Theorem [Balkema, de Haan, 

1974], for a sufficiently high threshold u, the excess distribution function Fu(x) 
may be approximated by the generalized Pareto distribution (GDP), Gξ,θ(x), for 
some value of ξ and θ. The GPD is defined as: 
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where θ > 0, and the support is x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ -θ/ξ when ξ < 0.       
ξ represents the shape parameter of the distribution or tail index and θ is an addi-

                                                            
4  For a detailed review of this subject see: [e.g. Embrechts, Klüppelberg, Mikosch, 2008]. 
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tional scaling parameter. For ξ > 0 we get a reparameterized version of the ordi-
nary Pareto distribution. The case ξ = 0 corresponds to the exponential distribu-
tion and ξ < 0 is known as a type II Pareto distribution. 

There is possibility to add location parameter γ to the GPD family. The GPD 
Gξ,γ,θ(x) is then defined to be Gξ,θ(x-γ). Therefore, for x ≥ u, the distribution function 
of the exceedances Fu(x-u) may be approximated by Gξ,θ(x − u) = Gξ,u,θ(x). 

When we focus on the behaviour of mortality rates over a given high 
threshold age u then Gξ,u,θ(x) can be interpreted as below (the approach was pro-
posed by [Bravo et. al., 2012]). 

Let X represent the time-to-death random variable for a person aged 0. 
Then, for some high age u, Gξ,u,θ(x) represents the probability, that the person 
will die before age u + x, given survival to age u. The GPD distribution provides 
us with closed expressions for yearly death probabilities qx and mortality forces 
μ

x
. For a given high age x ≥ u, we can derive: 
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As J.M. Bravo et al. [2012] underlined the above results have been given in 
terms of stationary sequences of random variables. But they can be adapted for use 
with data from non-stationary sequences, in which characteristics of the stochastic 
process change with modifications in some related random variable. For instance, 
the distribution of life spans might shift upward/downward over time due to medical 
breakthroughs, pandemic episodes or cohort specific covariates. In this case, the 
GPD parameters can be expressed as functions of time and that information can be 
used to project the evolution of extreme life spans over time. 

The one of the biggest problem in application of EVT is the choice of the 
threshold above, which observations are accepted as extremes. In this case it is 
the choice of the threshold age u. The choice of the threshold age u is called in 
the literature a trade-off between the bias and the variance of parameter estima-
tes. On the one hand, we need to choose a high enough u, so that the GPD can be 
applied asymptotically to mortality data (which means reducing bias). Too high 
threshold means not enough observations to obtain efficient estimates. On the 
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other hand, if u is determined too low many ordinary data are taken as extreme 
ones, thus yielding biased estimates. In both cases, the resulting estimates may 
lead to misleading conclusions when assessing risk. To identify the optimal 
threshold value different methods are used in the literature:  
– graphical tools, namely to an empirical mean excess function plot or to a plot 

of the index maximum likelihood estimators resulting from using increasing 
thresholds,  

– common sense-based choices of the cut-off (e.g. choose u in such a way, that 
about 5%-15% of the data are thought of as extreme observations),  

– Monte Carlo simulation methods, 
– algorithms (based for instance on the bootstrap method), that endogenously 

determine the cut-off, the most suited to the data. 
The threshold life table model developed by S.H. Li et al. [2008] addresses 

this issue by adopting a piecewise approach in which the threshold age is chosen in a 
statistical way without the need of any subjective decision and in which the fitted 
statistical distribution determines, if exists, the appropriate end point of the life table. 
It means, that in a threshold life table death rates at earlier adult ages are graduated 
by means of a parametric function (the classical B. Gompertz [1825] mortality law), 
and at advanced ages the threshold life table model assumes a given extreme value 
statistical distribution, here the GPD [Bravo et al., 2012]. 

Let z = {X − u| X > u} be the conditional exceedances of the age at death    
X over a given threshold age u. Based on the EVT the threshold life table model 
is defined as [Bravo et al., 2012; Li et al., 2008]: 
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In conclusion, model (5) assumes, that the survival distribution is Gompert-
zian before the threshold age, and the exceedances over the threshold age u fol-
low a GPD. To ensure that F(x) is a proper distribution function, the following 
constraints must be satisfied: B > 0, C > 1 and θ < 0. 

The model (5) guarantees, that F(x) is continuous at the threshold age u, but 
that the smoothness of F(x) around u is not guaranteed what makes this step very 
sensitive part in empirical applications. However, parametric or non-parametric 
graduation methods may be needed to smooth the mortality curve around the 
threshold age u. 
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S.H. Li et al. [2008] proposed two methods for choosing the threshold age: 
a maximum likelihood estimation method and a weighted least-squares estima-
tion method. Maximum likelihood estimation method is described below (details 
of this method and weighted least-squares estimation method are described in 
details in [Li et al., 2008]). 

Let lx denote the number of survivors to age x, the number of deaths betwe-
en ages x and x + 1 is dx= lx − lx+1. The likelihood contribution for each age         
x = xmin, xmin+1,..., xmax− 1 is the probability of dying between age x and age x + 1, 
raised to the number of deaths or: 

xd
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xsxs
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where s(x) = 1 − F(x) is the survival function in (5). The likelihood contribution 
for the survivors to age xmax is the probability of survival to age xmax, raised to 
the number of survivors or: 
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The logarithm of L(B,C, ξ, θ, u) can be decomposed into the sum of two 

components, l1(B,C, u) + l2(ξ, θ, u), where: 
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where: 

ξ

θ
ξ /1))(1(
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For a fixed age u, parameter estimation for the parametric [Gompertz, 1825] 
modelling part and the generalized Pareto part can be done separately by maxi-
mizing l1 and l2, respectively. The choice of u depends on the maximization of 
the profile log-likelihood function lp: 

)),(ˆ),(ˆ),(ˆ),(ˆ()( uuuuCuBlul p θξ=  

where )(ˆ),(ˆ),(ˆ),(ˆ),ln( uuuCuBLl θξ=  are the maximum likelihood estimates 
of B, C, ξ and θ for a fixed u, respectively. 

 
The process of threshold age and model parameter estimation can be sum-

marized by the following algorithm (example for age u = 98) [Li et al., 2008]: 
 

Step 1: 
A. Find the values of B and C that maximize l1. 
B. Find the values of ξ and θ that maximize l2. 
C. Compute the value of the profile likelihood lp. 
Step 2: Repeat Step 1 for u = 97, 96,..., 85. 
Step 3: Find the value of u that gives the maximum profile log-likelihood. 
 

The value of u obtained in step 3 is the optimal threshold age. The maxi-
mum likelihood estimates of B, C, ξ, and θ under the optimal threshold age are 
the ultimate model parameter estimates. 

In the threshold life table model, the form of the tail is determined by the 
model parameters, and hence, the data. If ξ < 0, then qx = 1 when to ω = u−θ/ξ; if 
ξ > 0, then qx tends asymptotically to 1, and that if ξ = 0, then the tail is exponen-
tial, implying that qx tends to a limit that is less than 1. 
 
 
4. Illustration of modeling extreme mortality risk using EVT 

We use the threshold life table to model mortality rates for the total popula-
tion of Poland. The data are period life table functions (deaths, number of 
survivors etc.) by single years of age up to 110+ provided by the Human Morta-
lity Database [2016]. All calculations are made in R environment.  
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In Figure 3 we take a look at the evolution of death rates by age and year 
(1989-2009) in the overall population of Poland. On the left years are plotted 
using a rainbow palette, so the earliest years are red, followed by orange, yellow, 
green, blue and indigo with the most recent years plotted in violet. On the right 
each age is shown as a separate time series in a time plot. 

We observe, that in the last thirty years the death rates have been declining 
steadily at all ages, with greater speed at ages between 65 and 85.  

 

 
Fig. 3. Death rates qx by year and age for Poland (total population) 
Source: Calculation in R, package demography.  

 
Table 1 exhibits the parameter estimates and corresponding standard errors for 

the Gompertz and GPD components of the optimal threshold life table, the optimal 
threshold age and the mean excess life time at the optimal threshold age in 2009. 

 
Table 1.  Parameter estimates, standard errors and p-values for the Gompertz  

and GPD parameters, optimal threshold age and mean excess life time  
(total Polish population, for year 2009) 

Parameter estimates Male Female Total 
lnB (SE) -12735 (0,135) -11836 (0,128) -14398 (0,139) 
p-value < 0,0001 < 0,0001 < 0,0001 
lnC(SE) 0,1375 (0,001) 0,1163 (0,001) 0,1273 (0,001) 
p-value < 0,0001 < 0,0001 < 0,0001 
ξ (SE) -0,1635 (0,002) -0,1735 (0,001) -0,1563 (0,001) 
p-value < 0,0001 < 0,0001 < 0,0001 
θ (SE) 3,783 (0,067) 3,534 (0,046) 3,429 (0,063) 
p-value < 0,0001 < 0,0001 < 0,0001 
u 93 96 94 
e(u) < 0,0001 < 0,0001 < 0,0001 

Source: Own calculations in R. 

 

1990 1995 2000 2005

-1
0

-8
-6

-4
-2

0
2

Poland: female death rates  (1989-2009)

Age

Lo
g 

de
at

h 
ra

te

0 20 40 60 80 100

-1
0

-8
-6

-4
-2

0
2

Poland: female death rates  (1989-2009)

Age

Lo
g 

de
at

h 
ra

te



Modeling extreme mortality risk 

 

45 

We observe that the parameter estimates of the Gompertz mortality law and 
of the GPD function are all statistically significant at the optimal threshold age.  

The same empirical analysis was done by J.M. Bravo et al. [2012]. They 
used mortality data for the total, male and female populations of Portugal, Spain 
and France. They also observe a good fit of the model in all populations and 
subperiods analysed and on the whole life span considered. 
 
 
Conclusions 

This paper addresses the problem of extreme mortality risk – which is refer-
red to the risk that, over short periods of time, mortality rates are very much 
higher than would normally be experienced – and discusses the ways in which 
life assurers, annuity providers and pension plans can model this kind of risk. 
 
 
References 

Balkema A., Haan L. de (1974), Residual Life Times at Great Age, “Annals of Probability”, 
No. 2, s. 792-804. 

Bauer D., Bergmann D., Reuß A. (2009), Solvency II and Nested Simulations – a Least-
Squares Monte Carlo Approach, Working Paper, Georgia State University and Ulm 
University. 

Börger M., Fleischer D., Kuksin N. (2013), Modeling the Mortality Trend Under Mo-
dern Solvency Regimes, “ASTIN Bulletin“, Vol. 44(1), s. 1-38. 

Bravo J.M., Real P.C., Freitas P.M. (2012), Modeling and Forecasting Longevity Risk 
using Extreme Value Theory, http://www.ifd.dauphine.fr/fileadmin/mediatheque/ 
IFD/Cahiers_de_recherche/Bravo_ElMekkaoui_Corte_Modeling_Longevity_Risks
ept2012.pdf (access: 25.05.2016).  

Cairns A.J.G., Blake D., Dowd K., Coughlan G., Epstein D., Khallaf-Allah M. (2008), 
The Plausibility of Mortality Density Forecasts: An Analysis of Six Stochastic Mor-
tality Models, Working paper, Heriot-Watt University and Pensions Institute Di-
scussion Paper PI-0801. 

CEIOPS, Choice of a Risk Measure for Supervisory Purposes: Possible Amendments to 
the Framework for Consultation, http://ec.europa.eu/internal_market/insurance/ 
docs/2006-markt-docs/2534-06-risk-measure_en.pdf (access: 1.06.2016).  

CIA Factbook, https://www.cia.gov/library/publications/the-world-factbook/rankorder/ 
2066rank.html (access: 26.05.2016). 

Embrechts P., Klüppelberg C., Mikosch T. (2008), Modelling Extremal Events for Insu-
rance and Finance, Springer, Berlin. 



Justyna Majewska 

 

46 

Eves M. (2013), How Swiss Re Manages Mortality Uncertainty, http://www.actuaries.org/ 
CTTEES_TFM/Documents/MWG_Singapore_Item12_SwissRe_Mortality_Uncer-
tainty.pdf (access: 9.06.2016). 

Gompertz B. (1825), On the Nature of the Function Expressive of the Law of Human 
Mortality and on a New Mode of Determining Life Contingencies. Royal Society of 
London, Philosophical Transactions, Series A 115, s. 513-585. 

Human Mortality Database (2016), University of California, Berkeley and Max Planck 
Institute for Demographic Research (Germany), http://www.mortality.org/ (access: 
16.06.2016).  

Krotov A. (2010), Investing in Insurance Risk: Insurance-linked Securities: A Practitio-
ner’s Perspective, Risk Books, London. 

Li S.H., Hardy M.R., Tan K.S. (2008), Threshold Life Tables and Their Applications, 
“North American Actuarial Journal”, Vol. 12(2), s. 99-115. 

R Development Core Team (2011), R: A Language and Environment for Statistical 
Computing, R Foundation for Statistical Computing, Vienna, Austria, 
http://www.R-project.org/ (access: 01.06.2016) 

Trzpiot G. (2015), Modeling Extreme Risk [w:] Modeling Multivariate Data Structures 
and Risk Analysis, G. Trzpiot (red.),Wydawnictwo Uniwersytetu Ekonomicznego 
w Katowicach, Katowice. 

Yamai J., Yoshiba T. (2004), Value-at-risk Versus Expected Shortfall: A Practical Per-
spective, “Journal of Banking and Finance”, No. 29, s. 997-1015. 

 
 

MODELOWANIE EKSTREMALNEGO RYZYKA UMIERALNOŚCI 

Streszczenie: Celem niniejszej pracy jest przedstawienie kluczowych aspektów w mo-
delowaniu ekstremalnego ryzyka umieralności. Przedstawiamy dwa podejścia pomiaru 
ryzyka. Po pierwsze, dyskutujemy miary ryzyka ekstremalnego, które są wykorzystywa-
ne w pomiarze ryzyka umieralności. Po drugie, przedstawiamy podejście zaproponowa-
ne przez J.M. Bravo i innych [2012], polegające na wykorzystaniu EVT do modelowania 
umieralności powyżej pewnego wieku. Oceną ekstremalnego ryzyka umieralności są 
zainteresowani ubezpieczyciele i reasekuratorzy. 
 
Słowa kluczowe: ekstremalne ryzyko, umieralność, teoria wartości ekstremalnych. 


