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A CRITICAL COMPARISON OF DISCRIMINANT 

ANALYSIS AND SVM-BASED APPROACHES  
TO CREDIT SCORING 

  
Summary: Credit scoring models are the basis for financial institutions like retail and 
consumer credit banks. The purpose of these models is to evaluate the likelihood of 
credit applicants defaulting in order to decide whether to grant them credit. The paper 
compares two methodologies for building credit scoring models: heteroscedastic discri-
minant analysis-based with the support vector machines. The real-world credit dataset is 
used for comparison.  
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Introduction 

The phenomenon of borrowing and lending has a long history associated 
with human behaviour. Credit is perhaps a phenomenon as old as trade and 
commerce. Despite the very long history of credit, the history of credit scoring is 
very short, beginning only about six decades ago. Information collected by fi-
nancial institutions of a credit applicant is used to develop a numerical score for 
each applicant [Thomas, 2000]. Credit scoring is applied at the point of applica-
tion for a loan to predict the risk of default (nonpayment) and to make the deci-
sion whether to approve, that application for credit.  

The set of decision models and their underlying methods, that serve lenders 
in granting consumer credits by assessing the risk of lending to different consu-
mers are called “credit scoring models”. Credit scoring models are the basis for 
financial institutions like retail and consumer credit banks. The purpose of these 
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models is to evaluate the likelihood of credit applicants defaulting in order to 
decide whether to grant them credit [Matuszczyk, 2012]. Credit scoring is al-
though an important area of research, that enables financial institutions to deve-
lop lending strategies to optimize profit. The use of credit scoring models is now 
a key component in retail banking.  

A range of different statistical as well as data mining techniques [e.g. Stą-
por, 2011] have been used in building credit scoring models. Discriminant ana-
lysis (AD), linear regression, logistic regression, neural networks, k-nearest ne-
ighbors, support vector machines (SVM) and classification trees cover the range 
of different surveys on credit scoring models (for an overview see: [Thomas, 
2000; Crook et al., 2007]). Most of these techniques are applicable to build an 
efficient and effective credit scoring system, that can be effectively used for 
predictive purposes.  

Advanced statistical techniques, such as support vector machines and neural 
networks provide an alternative to conventional statistical techniques, such as 
discriminant analysis, probit analysis and linear or logistic regression. The point 
of using sophisticated techniques, is their capability of modelling extremely 
complex functions, and, of course, this stands in contrast to traditional linear 
techniques, such as, linear regression and linear discriminant analysis.  

Several papers have recently been published assessing the performance of 
SVM for credit scoring. They report, that SVM perform slightly better in compa-
rison with other algorithms, buy not significantly so.  

The purpose of this paper is to compare the performance of discriminant 
analysis based methods for building credit scoring models (i.e. classical) against 
those based on the support vector machines. As we have only the one real world 
credit dataset, the German dataset – this file will be used in our comparisons. For the 
comparison, we have selected the algorithms with the best prediction accuracies 
(according to the literature). Discriminant analysis-based approach is represented 
here by the paper K. Stąpor et al. [2016], while support vector machines with the 
paper F. Chen and F. Li [2010]. For the reasons discussed later, the last algorithm 
was re-implemented and tested on the transformed German credit dataset.  

This paper is organized as follows. Section 2 and 3 give the short de-
scription of the approaches being compared: discriminant analysis and support 
vector machines, while in the section 4 the credit dataset used in the comparison 
is described (it’s detailed structure is given in the Appendix). Section 5 deals 
with the comparison and is followed by conclusions in section 6.  
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1.  Discriminant analysis 

Fisher Discriminant Analysis (FDA) [Fisher, 1936; Krzyśko, 1990] is a mul-
tivariate technique to classify study instances into groups and/or describe group 
differences. Discriminant analysis is widely used in many areas such as biome-
dical studies, banking environment (for credit evaluation), financial manage-
ment, bankruptcy prediction, marketing and many others.  

There are many formulations of FDA, a typical one for pattern recognition 
community is given below.  

FDA is concerned with the search for a linear transformation, that reduces 
the dimension of a given n-dimensional statistical model to d (d < n) dimensions, 
while maximally preserving the discriminatory information for the several clas-
ses within the model. It determines a linear mapping A, a nd ×  matrix A, that 
maximizes the so-called Fisher criterion FJ : 
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Optimizing (1) comes down to determining an eigenvalue decomposition of 

BW SS 1− , and taking the rows of A equal to d eigenvectors corresponding to d lar-
gest eigenvalues.  

The most important assumption of discriminant analysis is the homogeneity 
of variance/covariance matrices (homoscedasticity). Moreover it can be applied 
only to data measured at least on the ordinal measurement scale or higher.  

For the two-class case we have:  

( )( )TB mmmmS 2121 −−=  and 122211 1, ppSpSpSW −=+=  

where , 1, 2i ip n n i= = . A limitation of FDA is that it merely tries to separate 
class means as good as possible and it does not take the discriminatory informa-
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tion, that is present in the difference of the covariance matrices into account. It is 
incapable of dealing explicitly with heteroscedastic data, i.e. data in which clas-
ses do not have equal covariance matrices.  

The two most important extensions of FDA have been given by M. Krzyśko, 
W. Wołyński [1996] and M. Loog, R. Duin [2002].  

The heteroscedastic extension in [Loog, Duin, 2002] and the one which we 
adopted, is based on the notion of Distance Directed Matrices (DDM), which 
capture not only the difference in means between two classes, but describe, in 
a certain way, their difference in covariance as well. They proposed DDM based 
on the Chernoff distance between two probability density functions 21, dd : 
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where ( )1,0∈α .  
For two normally distributed densities, the DDM is a positive semi-definite 
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where 22111, SpSpSp +==α . The trace of CS  is the Chernoff distance C∂  
between those two densities. Determining transformation A by an eigenvalue 
decomposition of CS , means that we determine a transform, which preserves as 
much of the Chernoff distance in the lower dimensional space as possible. The 
heteroscedastic two-class Chernoff criterion CJ  is defined as: 
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This is maximized by determining an eigenvalue decomposition of: 
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and taking the rows of the transform A equal to d eigenvectors (called here “di-
scriminant directions”) corresponding to the d largest eigenvalues.  

Another interesting approach to heteroscedastic linear discriminant analysis 
can be found in [Krzyśko, Wołyński, 1996], where authors proposed the optimal 
classification rules based on linear functions, which maximize probabilistic di-
stances: the Chernoff or the Morisita or the Kullback-Leibler ones. 

 
 

2.  SVM classifier 

SVM classifier [Vapnik, 1995] separates training examples from two clas-
ses by a hyperplane, such that the margin width between the hyperplane and the 
examples is maximized. In the case of nonlinear separability, training examples 
are allowed to be on the wrong side of a margin, but they are assigned a penalty 
proportional to how far they are on the wrong side. The sum of penalties is mi-
nimized, while maximizing the margin width. A parameter C controls the rela-
tive cost of each goal in the overall optimization process.  

The SVM optimization problem can be expressed algebraically as a dual 
form quadratic programming problem. Let {( , ) ,1 }i iS x y i n= ≤ ≤  where 

}1,1{ −∈iy  be a training set. The optimization problem is: 
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where iα  is a Lagrange multiplier for each training example i. The kernel func-
tion k can be used to implement non-linear models of the data. We consider here 
Gaussian kernel: 
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where σ  is a kernel parameter specified by a user.  
 
Finally, the decision function of classifying a new data point x can be writ-

ten as follows: 
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Training examples are called support vectors, if they are on the margin or 
are on the wrong side of the margin.  

 
 

3.  Real world credit data set 

The presented comparison is based on the prediction accuracies coming 
from the experiments conducted with the real world credit data set, the German 
credit dataset, available from the UCI Repository of Machine Learning Databases 
[Murphy, 1994]. The German dataset consist of 700 instances of creditworthy bor-
rowers and 300 of bad borrowers. It is composed of 20 numeric as well as nominal 
attributes containing information about credit duration, history, purpose, amount, 
savings, age, job and other personal information (see Appendix 1).  

 
 

4. Comparing algorithms 

To compare discriminant analysis and support vector machines based 
approaches to building credit scoring models we have selected two methodolo-
gies with the best prediction results.  

The first, described in [Stąpor et al., 2016], is based on the heteroscedastic 
discriminant analysis combined with feature selection. We have proved in that 
publication, that using heteroscedastic extension of the classical linear Fisher 
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Discriminant Analysis results in a better prediction accuracy than in the previous 
studies. The other reason for such a choice is that all other discriminant analysis-
based approaches [Crook et al., 2007] are based on the classical Fisher linear 
discriminant analysis in which the major assumption is the homogeneity of va-
riance/covariance matrices (homoscedasticity). None of the described in the 
literature discriminant analysis-based approaches [Crook et al., 2007] has chec-
ked the fulfillment of this important assumption. In the case of German credit 
dataset this assumption is violated. We performed permutation statistical test 
implemented based on the method described in [Zhu et al., 2002].  

The second approach we have chosen, based on the support vector machi-
nes, is represented by the article [Chen, Li, 2010] with the best prediction accuracy 
obtained so far on the German credit dataset. Unfortunatelly, there is methodological 
error in the publication – the authors made an unallowed transformation from the 
nominal to the ratio measurement scales on the German credit dataset – some attri-
butes are qualitative, not numeric [see: Appendix 1]. This strengthening of the 
nominal scale adds a new information, which is methodologically not allowed.  

Thus, to be able to compare the results, we re-implemented the algorithm 
from F. Chen and F. Li [2010] and tested it on the German credit dataset conver-
ted as described below.  

According to the recommendations from M. Walesiak [2003], the conver-
sion from the weaker to the stronger measurement scale, for example from the 
nominal to the ratio one is methodologically unallowed strengthening of the 
nominal scale, because one cannot have more information from the less amount.  

Thus, we propose the following transformation, namely, all the nominal fea-
tures were transformed to the “binary” features, each one representing one of its 
possible states/labels (1/0value if the object is/is not assigned a given label). After 
such conversion, each attribute is transformed to as many new attributes as there are 
different labels/states. Preprocessed German dataset contained 59 attributes.  

 
Heteroscedastic discriminant analysis based approach 

The whole methodology for building the credit scoring model based on the 
heteroscedastic extension of Fisher linear discriminant analysis was described by 
K. Stąpor et al. [2016] and will not be described here. The best result using this 
proposed methodology was achieved by using the combination of filter-based 
feature selection based on F-score with feature extraction by heteroscedastic 
discriminant analysis. The F-score [Duda et al., 2001] is defined as: 
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where |.| is a determinant. The larger the F-score is, the more likely this fea-
ture is more discriminative. F-score was calculated for each feature and they 
were then sorted in increasing order.  

The proposed model was able to achieve 75.10% ± 3.38% accuracy rate 
with 18 features selected and 3 discriminant directions (as described in section 
2) [Stąpor et al., 2016]. 

 
SVM based approach 

For the reasons described above, we have re-implemented the algorithm for 
building the credit scoring model based on SVM classifier with nonlinear kernel 
(Gaussian) proposed by F. Chen anf F. Li [2010].  

This methodology is a based on setting two SVM parameters using grid-
search and selecting input features using F-score. In the grid-search approach, 
pairs of ( , )C σ  are tried and the one with the best cross-validation accuracy is 
chosen. After identifying a “better” region on the grid, a finer grid search on that 
region can be conducted. To get good generalization ability, grid search appro-
ach uses a validation process to decide parameters. That is, for each of the l subsets 

iD  (i=1,…,l) of the data set D, create a training set \l lT D D= , then run a cross-
validation process. Overall accuracy is averaged across all k partitions. These l accu-
racy values also give an estimate of the accuracy variance of the algorithm. Using    
5-fold cross-validation in the iterative procedure described by F. Chen and F. Li 
[2010], only the best first f features were passed to the finite model.  

Using this methodology on the transformed German dataset, the classifica-
tion accuracy achieved 76.10% ± 6.10% and the average number of selected 
features was 20.  

According to the above described results – SVM performs slightly better, al-
though the method based on the heteroscedastic discriminant analysis gives the mo-
del with less number of features. Bearing in mind the standard error of prediction 
rule – the classification accuracies of the two approaches are almost identical.  

Moreover, using nonlinear SVM classifier (with Gaussian kernel), makes 
the learning process more complex – one should estimate the parameters of the 
SVM classifier in the separate validation procedure, the grid search, which 
requires the additional dataset and is computationally intensive process. Addi-
tionally, such complex learning procedure is prone to overtraining. We found 
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that, unlike many other learning tasks, a large number of support vectors are requi-
red to achieve the best performance. This is due to the nature of the credit data for 
which the available application data can only be broadly indicative of default.  

 
 

Conclusion 

SVMs are a relatively new technique for application in credit scoring. We 
test them on the German credit dataset used in the previous studies. We find, that 
SVMs are successful in building credit scoring models, but a the cost of inten-
sive learning procedure, which require separate validation set to avoid overtai-
ning. SVMs with non-linear kernel does not give the significant improvement 
over the simpler models like (properly conducted) discriminant analysis.  

This indicates, that the data is broadly linearly separable [Gayler, 2006].  
In credit scoring, more important than the goodness of fit to the deve-

lopmental sample is the anticipation of possible changes in the operational sys-
tems and data. Practitioners in credit scoring achieve this aim by biasing their 
models towards simple models. Such models yield most of the predictive power 
of more complex models and, which is more important, are more likely to gene-
ralize across potential data sets.  

However, techniques enabling better generalization to the distribution of 
possible data sets would be welcome. 
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Appendix 1 

The structure of the German credit data set 
Attribute Description Values 

1 

Status of existing checking account 
(qualitative) 

A11 :... < 0 DM 
A12 : 0 <=... < 200 DM 
A13 :... >= 200 DM /salary assignments for at least  
1 year 
A14 : no checking account 

2 Duration in month 
(numerical) 

 

3 

Credit history 
(qualitative) 

A30 : no credits granted/all credits paid back duly 
A31 : all credits at this bank paid back duly 
A32 : existing credits paid back duly until now 
A33 : delay in paying off in the past 
A34 : critical account/other credits existing (not at this 
bank) 

4 

Purpose 
(qualitative) 

A40 : car (new) 
A41 : car (used) 
A42 : furniture/equipment 
A43 : radio/television 
A44 : domestic appliances 
A45 : repairs 
A46 : education 
A47 : (vacation – does not exist?) 
A48 : retraining 
A49 : business 
A410 : others 

5 Credit amount 
(numerical) 

 

6 

Savings account/bonds 
(qualitative) 

A61 :... < 100 DM 
A62 : 100 <=... < 500 DM 
A63 : 500 <=... < 1000 DM 
A64 :.. >= 1000 DM 
A65 : unknown/ no savings account 

7 

Present employment since 
(qualitative) 

A71 : unemployed 
A72 :... < 1 year 
A73 : 1 <=... < 4 years  
A74 : 4 <=... < 7 years 
A75 :.. >= 7 years 

8 
Instalment rate in percentage of 
disposable income 
(numerical) 

 

9 

Personal status and sex 
(qualitative) 

A91 : male : divorced/separated 
A92 : female : divorced/separated/married 
A93 : male : single 
A94 : male : married/widowed 
A95 : female : single 

10 
Other debtors/guarantors 
(qualitative) 

A101 : none 
A102 : co-applicant 
A103 : guarantor 

11 Present residence since 
(numerical)  

 



Katarzyna Stąpor 70 

12 

Property 
(qualitative) 

A121 : real estate 
A122 : if not A121 : building society savings agree-
ment/life insurance 
A123 : if not A121/A122 : car or other, not in attribute 
6 
A124 : unknown/no property 

13 Age in years 
(numerical) 

 

14 
Other instalment plans 
(qualitative) 

A141 : bank 
A142 : stores 
A143 : none 

15 
Housing 
(qualitative) 
 

A151 : rent 
A152 : own 
A153 : for free 

16 
Number of existing credits at this 
bank 
(numerical)  

 

17 

Job 
(qualitative)  
 

A171 : unemployed/unskilled - non-resident 
A172 : unskilled – resident 
A173 : skilled employee/official 
A174 : management/self-employed/highly qualified 
employee/officer 

18 
Number of people being liable to 
provide maintenance  
(numerical) 

 

19 Telephone 
(qualitative)   

A191 : none 
A192 : yes, registered under the customer’s name 

20 Foreign worker 
(qualitative) 

A201 : yes 
A202 : no 

 
 
PORÓWNANIE ANALIZY DYSKRYMINACYJNEJ I MASZYN WEKTORÓW 

PODPIERAJĄCYCH W ANALIZIE RYZYKA KREDYTOWEGO 

Streszczenie: Modele oceny ryzyka kredytowego stanowią podstawę działalności więk-
szości instytucji finansowych, zajmujących się udzielaniem kredytów. Celem takich 
modeli jest ewaluacja prawdopodobieństwa zaprzestania przez kredytobiorcę spłaty 
udzielonego mu kredytu. W artykule dokonano porównania dwóch modeli oceny ryzyka 
kredytowego, które wykorzystują nowe metody statystyczne, a także metody uczenia 
maszynowego do ich konstrukcji: heteroscedastyczną analizę dyskryminacyjną oraz 
maszyny wektorów podpierających. Dla dokonania porównania tych metod wykorzysta-
ny został ogólnie dostępny, niemiecki zbiór kredytowy.  
 
Słowa kluczowe: analiza dyskryminacyjna, maszyny wektorów podpierających, model 
oceny ryzyka kredytowego.  
 
 


