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COMPARISON OF MARKET RISK OF AN EQUITY  
ASSET CLASS MEASURED BY VALUE AT RISK AND 
MAXIMAL LOSS ACCORDING TO MONTE CARLO 

METHOD WITH FRACTIONAL BROWNIAN MOTION 
EVOLUTION OF THE PRICE AND HISTORICAL  

SIMULATION APPROACH 
 
Summary: In this paper, author provides a comparison of market risk of the six equities 
from the Polish stock exchange. In order to calculate the risk, quantile-based risk 
measures have been used: Value at Risk and Maximal Loss. Two common approaches to 
calculate quantile-based measures have been used: Monte Carlo simulation and historical 
simulation. However, for the simulation of the future paths in the Monte Carlo approach, 
the fractional Brownian motion has been used instead of geometric Brownian motion. 
 
Keywords: fractional Brownian motion, Monte Carlo, Value at Risk, Maximal Loss, 
Hurst exponent. 
 
 
Introduction 
 

Last events in the world economy show how important risk measurement 
and risk management are. There are several widely used risk measures, such as 
variance, standard deviation, entropic risk measure, superhedging price, Value at 
Risk and its different types, expected shortfall or conditional VaR, maximal loss, 
Greeks or Sharpe and Sortino ratios. None of them are perfect, but each of the 
above is used in order to evaluate different types of risks or evaluate the risk 
from a different perspective. 
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Author decided to use Value at Risk (VaR) and Maximal Loss (ML). VaR is 
commonly used market risk measure, but its disadvantage is that it is not a co-
herent risk measure (VaR fails to satisfy the second axiom – subadditivity [Jorion, 
2007]), which has been introduced by Artzner et al. [1999]. On the other hand 
ML might be perceived as a weakly coherent risk measure [Studer, 1997]. They 
are both quantile-based measures, which might be a premise that the analysis 
based on them will be consistent and will not be contradictory with each other. 

In contrast, other market risk measures, for example standard deviation or 
variance are not truly risk measures, but measures of dispersion around the 
mean. On the other hand ratios like Sharpe or Sortino ratios might be perceived 
as a good indicator or measure of risk, but only when we compare the results 
with other ratios from the stocks from the same sector of the economy, market 
capitalization or business model. Duration and convexity are measures used to 
evaluate risk involved in fixed income securities. 

In order to calculate VaR and ML, the historical simulation and Monte Car-
lo simulation with a fractional Brownian motion evolution of the price have been 
performed. Fractional Brownian motion assumes that the underlying process is 
not random (i.e. is not a Markovian process) as opposed to the geometric Brown-
ian motion. In order to show that the processes (equity prices) used in this re-
search are not random, but have long range dependence, Hurst exponent has 
been calculated (see Table 1). Contrary to Monte Carlo simulation approach to 
calculate VaR and ML, historical simulation approach has been performed, as  
a common method to calculate market risk used in financial sector. 

Main aim of this paper is to show the advantageous of using in market risk 
analysis Monte Carlo approach, in which the equity price evolution has the frac-
tional Brownian motion features over the historical simulation approach. The 
analysis has been performed prior the 2007/2008 global financial crisis and after 
it. Author used price history starting since 2001 in simulation and parameter es-
timation and provided risk measure for the next 1 year ahead. 
 
 
1. Value at Risk 
 

“VaR is a summary measure of downside risk expressed in dollars, or in the 
reference currency” [Jorion, GARP, 2003, p. 250] (absolute VaR) or in the per-
centage (relative VaR). VaR is the maximum loss over a target horizon, such that 
there is a low probability that the actual loss will be larger (by loss in the equity 
asset class, the author means a decrease in the equity price). To evaluate the loss, 
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which can occur and be bigger than calculated VaR, there is a different risk 
measure called expected shortfall, which is a mean of the α% of the worst case 
losses. 

VaR (VaR(α,t)) at fixed time t and probability α is defined as follows: 

 αα =≥−Ρ )),(( 0 tVaRSS t , (1) 

where: 
 S0 and St are the initial value (price) and final value (price) of the financial in-

strument, respectively, 
 α is a tolerance level. 

VaR describes quantile of the projected distribution of losses over the target 
horizon. This measure shows how big losses can be at the given confidence level, 
but it is expressed as a positive number. 

There are three core approaches for calculating VaR: 
 historical simulation, 
 Monte Carlo simulation, 
 VaR calculated from assumed probability distribution (parametric VaR). 

Only first and second methods are interesting from the point of view of this 
research. 

To compute VaR for longer than 1 day period, it is a need to scale 1 day 
VaR by multiplying it by the factor of t . This solution is derived from the 

2/1T rule, but at this point, it is explained that it could be used when data are 
normally distributed. For the purpose of this research we assume that logarith-
mic rates of return are normally distributed. 
 
 
2. Maximal Loss 
 

ML is strictly connected with the ruin theory and it is commonly used in in-
surance business, but ML can be easily applied in risk measurement of equity. 
ML has one main advantage comparing to VaR. Namely, value of ML is not 
strictly determined for a particular moment of time. 

Moment of ultimate ruin is given by [Chrzan, 2006]: 

 { }0)(:inf <= tUtT , (2) 

where: 
 )(tU  is a level of financial surplus at 0≥t moment, 
 probability of ruin is a function given by: 
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 ,0)({)( <= tUPuψ  for }0 ∞<< t . (3) 

Ruin could occur in the situation presented below (Fig. 1). 
 

Fig. 1. Ruin 
 

Source: Chrzan [2006, p. 326]. 
 

Ruin theory is not a core aspect of this research, that is why author avoided 
describing it in a more detail and focused only on ML. “ML is principally  
a methodology to determine the worst case scenario under normal market condi-
tions, without ignoring the correlations among the risk factors” [Studer, 1997, p. 22]. 

ML, like VaR belongs to quantile-based measures of risk. ML, similar to 
VaR, is defined: 
 over a given significant level (α), 
 for some holding period t. 

This definition looks similar to the VaR definition. However, there is one 
important difference: whereas for calculating VAR, the distribution of Profit and 
Loss (P&L) has to be known, ML is defined directly in the risk factor space Ω  
[Studer, 1995]. 

ML could be also defined as [Czernik, 2010]: 

 
[ ]

( ) ( ) αα −=⎟
⎠
⎞⎜

⎝
⎛ <−

∈
1,'inf

,0'0 tMLtSSP
tt

.
 

(4) 

Graphical illustration of ML is presented on the Fig. 2. 
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Fig. 2. Maximum loss for exemplary time series 
 

Source: Czernik [2010, p. 38]. 
 
 
3. Fractional Brownian motion 
 

It has been empirically proved that equity price moves are persistent process-
es [Mandelbrot, 1997; Peters, 1994; Barkoulas, Baum, Shiryaev, 1999; Cajueiro, 
Barbachan, 2003; Mastalerz-Kodzis, 2003], so author decided to use Fractional 
Brownian motion (fBm) to model future realizations of the price of an equity. 

fBm is a generalization of the Brownian motion. A Gaussian process 
{ }0, ≥= tBB H

t
H  is called fBm if it has zero mean and covariance function 

given by [Czernik, 2010]: 
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(5) 

Covariance function can be as well described as follows [Czernik, 2010]: 
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where: 
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This process was firstly research by A.N. Kolmogorov in Wienersche Spiralen 
und einige andere interessante Kurven im Hilbertschen Raum in the context of 
modelling turbulences and then studied by Mandelbrot and van Ness in Frac-
tional Brownian motions, fractional noises and applications. Fractional Browni-
an motion is a process, which has the following properties: 
 Self-similarity, for any constant a > 0, the processes { }0, ≥− tBa H

at
H  and 

{ }0, ≥tB H
t  have the same probability distribution [Nualart, 2006]. 

 Stationary increments, i.e. )0()()()( HH

d

HH BtBhBhtB −=−+  for all h > 0 

[Choi, 2008]. 
 Long range dependence [www 1]. Let { }0),( ≥ttX  be a self-similarity process 

with stationary increments with 0 < H < 1, with [ ] ∞<2)1(XE  and define. 

 )()1()( nXnXn −+=ξ . 

 [ ] { } [ ]2222 )1()1(2)1(
2
1)()0()( Xnnnnnr HHH Ε−+−+=Ε= ξξ . 

Then for 0.5 < H < 1: 
 [ ]222 )1()12(~)( XnHHnr H

n
Ε− −

∞→
 

and: 

 ∞=∑
∞

=0
)(

n
nr . 

Fractional Brownian motion is not a Markovian process and is not a semi-
martingale, unless H = 0.5 [Czernik, 2010]. 
 
 
4. Fractional dynamics of the stock prices 
 

Estimation of the VaR under Monte Carlo simulation is almost identical to 
estimation under historical simulation method with one core exception. In Monte 
Carlo simulation instead of calculating distribution from historical data, it is 
needed to conduct simulation of a distribution for available data. 

Comparing to historical simulation approach, in Monte Carlo method there 
are no restriction concern sample size. This method is more flexible than histori-
cal simulation approach. It is available to generate complicated distribution and 
taking into account changes in data over time. As an example, it has been pre-
sented a simple construction of Monte Carlo simulation for a financial instru-
ment described by geometric Brownian motion given by: 
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tttt dWSdtSdS σμ += , 

(9) 

where: 
 St is a price of the instrument at time t, 
 μ is the drift, 
 σ is a volatility, 
 Wt is a Wiener process. 

In this paper, author considered a model based on fBm, which is given by 
[Iskra, 2010]: 

 HSdBSdtdS σμ += , 
(10) 

where: BH is a fractional Brownian motion. 
In the literature, there are plenty of the methods, how to simulate fBm, but 

author in this research used equation proposed by Czernik [2010]: 
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where: 
 increment of the Wiener process are approximated by: tdB Δ≈ ε , 
 ε  is a standard normal distribution random variable. 

Author used pathwise integration model [Biagini et al., 2008], in which fu-
ture realization of price with fBm evolution is given by: 

 )()(
0

)(

)( ttB
t

H

eStS μσ +⋅= . (12) 

 
 
5. Parameter estimation 
 

Before going through the core part of this thesis, it is needed to estimate the 
parameters: H, μ and σ for a purpose of simulation future realization of the prices 
given by fBm. Author used Peters’ methodology of estimation Hurst exponent, 
which looks as follows [1997]: 

 
)2/log(
)/log(

N
SRH = , (13) 
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where: 
 R / S is rescaled range, 
 N number of observations. 

And maximum likelihood estimators proposed by Hu, Xia and Zhang [2009], 
which look as follows:  
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(14) 
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where: 
 t is a vector of time from 1 to the length of Y, 
 Y is a vector of annualized logarithmic rates of return, 
 [ ][ ][ ]

Nji
H
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H
ihH BBCov

,...,2,1,
,

=
=Γ . 

In the table below there is a list of calculated parameters: μ, σ and H. 
 
Table 1. Drift parameter, sigma parameter and Hurst exponent for equities used in research 
 

Equity/Parameter Drift Sigma Hurst exponent 
Apator 0.083206% 50.32% 0.576452 
Indykpol -0.033696% 62.33% 0.602660 
ING BŚ 0.013271% 22.05% 0.626872 
PKN Orlen -0.015897% 46.91% 0.562522 
Wawel 0.091011% 24.34% 0.664060 
Żywiec 0.038622% 34.65% 0.558025 

 

Source: Own elaboration based on [www 2]. 
 

The estimated values of the Hurst exponent given in Table 1, show the per-
sistency of the financial equity markets. Returns of the equity prices are per-
ceived to be the random processes if the Hurst exponent is equal to 0.5. Estimat-
ed Hurst exponents for all the firms, which were the subject to this research are 
grater then 0.55. In estimating the parameters given in the Table 1, the time se-
ries’ length of 7 years has been used in order to grasp the long range dependence. 
Based on that, it is concluded, that the returns of equity prices are persistent. 
 
 
6. Risk analysis 
 

In this section, the results of the loss estimation by means of a downturn in 
the equity prices has been presented. VaR and ML have been computed for the 
one year period ahead. The time series’ length used in the calculation of VaR and 
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ML according to historical simulation approach is four years. Significant levels, 
which have been used are: 0.95, 0.975 and 0.99. Risk analysis has been per-
formed in two different periods of time (before the global financial crisis − 2007 
and after it − 2012). Results of those computations are presented in Table 2 for 
the year 2007 and in Table 3 for the year 2012. 
 
Table 2.  Absolute and relative Value at Risk and Maximal Loss under Monte Carlo  

approach, historical simulation approach and real occurred loses in 2007 
 

Quantile 

REAL LOSSES 
HISTORICAL  
SIMULATION  
APPROACH 

MONTE CARLO  
SIMULATION  
APPROACH 

Apator 
Quantile 
loss (%)1 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% 14.6 23.7 37.3 99.5 21.7 22.4 
2.5% 17.3 23.7 45.8 99.5 25.4 25.9 
1% 19.2 23.7 59.6 99.5 29.4 29.7 

  Indykpol 
Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% 11.7 15.0 61.7 99.4 31.7 32.5 
2.5% 12.2 15.0 74.1 99.4 36.7 37.2 
1% 14.5 15.0 81.0 99.4 41.9 42.2 

  ING BŚ 
Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% 2.3 4.6 24.9 63.9 14.0 14.4 
2.5% 3.3 4.6 33.2 63.9 16.6 16.9 
1% 3.7 4.6 41.1 63.9 19.5 19.7 

  PKN Orlen 
Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% 3.9 17.4 36.4 67.9 17.6 18.2 
2.5% 11.2 17.4 41.8 67.9 20.7 21.1 
1% 14.3 17.4 48.8 67.9 24.0 24.3 

  Wawel 
Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% 9.5 15.2 37.2 87.3 17.3 17.8 
2.5% 11.8 15.2 46.3 87.3 20.6 20.9 
1% 13.2 15.2 54.2 87.3 24.1 24.3 

  Żywiec 
Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% 2.0 2.5 27.2 63.4 12.4 12.8 
2.5% 2.4 2.5 34.5 63.4 14.7 15.0 
1% 2.4 2.5 44.7 63.44 17.2 17.4 

 

Source: Own elaboration based on [www 2]. 
 

                                                 
1  Loss by means of a downturn of an equity price at the respective quantile. 
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What is common for the risk estimation of the equities used in this paper 
(measured by VaR or ML) based on historical simulation approach is that this 
methodology in all cases overestimate the loss due to downturn in equity prices. 
The overestimation of the losses is mainly seen in the period after the financial 
crisis, as the data used as an input for the computation is very spiky. 

On the other hand, risk measured by the Monte Carlo approach with the 
fBm features both overestimates and underestimates risk. For example in case of 
Apator, real losses at 97.5% percentile were 17%, while under the Monte Carlo 
simulation approach estimated losses at the same confidence interval were equal 
to 25%. Historical simulation approach estimates VaR at 46%. ML was equal to 
24% in real world, while Monte Carlo simulation’s ML were 26%. Historical 
simulation significantly overestimate risk: ML under this method was equal to 
99.5% (more information has been presented on the Table 2). 
 

 
 
Fig. 3. Monte Carlo simulation and real equity price path (bold black line) for Apator 
 

Source: Own elaboration based on [www 2]. 
 

Another example would be PKN Orlen equity. Differences between real 
losses and losses estimated from Monte Carlo approach are much smaller (14% 
and 1% for VaR and ML respectively) comparing to differences between real 
losses and historical simulation approach (34% (VaR) and 61% (ML)). Detailed 
information is in Table 2. 
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Fig. 4. Monte Carlo simulation and real equity price path (bold black line) for PKN Orlen 
 

Source: Own elaboration based on [www 2]. 
 

In the Table 3, there is the same analysis for the same basket of equities, but 
a starting point of time was changed (after the world financial crisis). Time hori-
zon for which risk have been estimated is year 2012. 
 
Table 3.  Absolute and relative Value at Risk and Maximal Loss under Monte Carlo  

approach, historical simulation approach and real occurred loses in 2012 
 

Quantile REAL LOSSES 
HISTORICAL  
SIMULATION  
APPROACH 

MONTE CARLO  
SIMULATION  
APPROACH 

Apator 
1 2 3 4 5 6 7 

 
Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5%   -5.3* 0.0 42.5 93.1 22.6 23.2 
2.5% -4.5 0.0 51.5 93.1 26.2 26.7 
1% -1.4 0.0 62.0 93.1 30.1 30.4 

  Indykpol 
Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% 9.6 16.8 56.4 90.6 32.9 33.7 
2.5% 12.1 16.8 67.8 90.6 37.8 38.3 
1% 15.1 16.8 76.4 90.6 43.2 45.0 

  ING BŚ 
Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% 21.6 25.5 34.5 84.2 14.6 15.0 
2.5% 22.6 25.5 46.6 84.2 17.2 17.5 
1% 23.7 25.5 55.4 84.2 20.1 20.3 

 

 



Marek Baca 18 

Table 3 cont. 
1 2 3 4 5 6 7 
  PKN Orlen 

Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% 27.7 31.7 47.1 85.4 19.6 20.2 
2.5% 28.6 31.7 54.5 85.4 22.6 23.0 
1% 29.3 31.7 63.3 85.4 25.9 26.1 

  Wawel 
Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% -2.9 0.0 38.9 87.3 19.6 20.0 
2.5% -1.4 0.0 47.9 87.3 22.7 23.0 
1% -0.6 0.0 59.2 87.3 26.2 26.3 

  Żywiec 
Quantile 
loss (%) 

Max Loss 
(%) VaR (%) ML (%) VaR (%) ML (%) 

5% 15.1 18.9 32.7 71.4 13.8 14.2 
2.5% 16.2 18.9 41.0 71.4 16.0 16.3 
1% 17.0 18.9 50.3 71.4 18.5 18.7 

 

* Negative values mean that during the period, no losses have been experienced. 
 

Source: Own elaboration based on [www 2]. 
 

Real losses in 2012 calculated for the 99% percentile and maximal possible 
losses for ING BŚ equity were 24% and 25.5% respectively. Losses under Monte 
Carlo simulation estimated VaR and ML to be equal to 20% both (at the 99% sig-
nificant level). For the same equity and the same significant level, losses under 
historical simulation approach were estimated at 78% (VaR) and at 84% (ML). 
This is significant overestimating the risk by the historical simulation approach. 
 

 
 
Fig. 5. Monte Carlo simulation and real equity price path (bold black line) for ING BŚ 
 

Source: Own elaboration based on [www 2]. 
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Losses for Żywiec for 99% quantile in 2012 were 17% (VaR) and 19% 
(ML). Monte Carlo simulation estimated both, VaR and ML at 19%, while his-
torical simulation method highly overestimates risk − 50% and 71% for VaR and 
ML respectively. 
 

 
 
Fig. 6. Monte Carlo simulation and real equity price path (bold black line) for Żywiec 
 

Source: Own elaboration based on [www 2]. 
 
 
Conclusion 
 

This paper shows that the equity prices are persistent processes (i.e. all eq-
uities used in the paper have Hurst exponent bigger than 0.5). That makes Monte 
Carlo simulation with fBm evolution of the price a reliable approximation of the 
future price movements, due to the fact that this process is able to exhibit long 
range dependence. As well as, the analysis under the Monte Carlo approach is 
more precise tool in estimating the risk comparing with the historical simulation 
method − in all investigated equities, historical simulation method gives inaccu-
rate results (i.e. risk has been overestimated). The conservatism of the estimates 
is especially seen in the estimates followed by the period of financial stress. 

Monte Carlo approach with a fractional Brownian evolution of the price is 
time consuming and complex method, but it is worth including in the risk analy-
sis of the equity markets, especially those, which exhibit long range dependence 
(i.e. those, which have been found not to satisfy the Markov property). 
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PORÓWNANIE RYZYKA INWESTYCJI W UDZIAŁOWY INSTRUMENT 
MIERZONEGO ZA POMOCĄ MIARY VALUE AT RISK ORAZ  

MAKSYMALNA STRATA ZGODNIE Z METODĄ MONTE CARLO,  
GDZIE EWOLUCJA CENY JEST DANA UŁAMKOWYM RUCHEM BROWNA 

ORAZ SYMULACJĄ HISTORYCZNĄ 
 
Streszczenie: W niniejszym artykule autor dokonuje analizy ryzyka rynkowego akcji 
giełdowych sześciu spółek z Warszawskiej Giełdy Papierów Wartościowych. Dla celów 
analizy zostały wybrane dwie kwantylowe miary ryzyka: wartość zagrożona ryzykiem 
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(ang. Value at Risk, VaR) oraz maksymalna strata (ang. Maximal Loss). Analizę prze-
prowadzono na podstawie metody Monte Carlo oraz symulacji historycznej. Jednakże  
w metodzie Monte Carlo przyszłe wartości cen są dane ułamkowym ruchem Browna,  
a nie − jak podpowiada praktyka rynkowa − geometrycznym ruchem Browna. 
 
Słowa kluczowe: ułamkowy ruch Browna, symulacja Monte Carlo, wartość zagrożona 
ryzykiem (ang. Value at Risk, VaR), maksymalna strata (ang. Maximal Loss), eksponent 
Hursta. 


