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Abstract

We present a new interactive procedure for multiobjective opti-
mization problems (MOOQO), which involves robust ordinal regres-
sion in contraction of the preference cone in the objective space.
The most preferred solution is achieved by means of a system-
atic dialogue with the decision maker (DM) during which (s)he
specifies pairwise comparisons of some non-dominated solutions
from a current sample. The origin of the cone is located at a
reference point chosen by the DM. It is formed by all directions
of isoquants of the achievement scalarizing functions compati-
ble with the pairwise comparisons of non-dominated solutions
provided by the DM. The compatibility is assured by robust
ordinal regression, i.e. the DM’s statements concerning strict
or weak preference relations for pairs of compared solutions are
represented by all compatible sets of weights of the achievement
scalarizing function. In successive iterations, when new pairwise
comparisons of solutions are provided, the cone is contracted
and gradually focused on a sub-region of the Pareto optimal set
of greatest interest. The DM is allowed to change the reference
point and the set of pairwise comparisons at any stage of the
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method. Such preference information does not need much cog-
nitive effort on the part of the DM. The phases of preference
elicitation and cone contraction alternate until the DM finds at
least one satisfactory solution, or there is no such solution for
the current problem setting.

Keywords: Multiobjective optimization, robust ordinal regression, interactive

procedure, preference elicitation, cone contraction

1 Introduction

In multiobjective optimization (MOQO), several objectives compete for the
best compromise. Identification of a small subset of non-dominated solu-
tions (sometimes reduced to a singleton) that, according to the preferences
of the decision maker (DM) yield the best compromise among the conflicting
objectives, is the main task of interactive multiple objective optimization
(IMO). IMO procedures are composed of two alternating stages: optimiza-
tion and decision making (see, e.g. Vanderpooten and Vincke, 1997). The
stage of decision making, or, more precisely, preference elicitation, con-
sists in the exchange of information between the method and the DM. The
method provides the DM with a sample of candidate solutions and the DM
returns some critiques of these solutions, which permits to generate in the
next optimization stage a new sample that better fits the DM’s preferences.
One of the major advantages of the IMO is that it aids the DM in improv-
ing her/his knowledge about the problem statement, its potential solutions,
possible tradeoffs and existing limitations.

A review of interactive procedures shows that reference point methods
(RPMs) are gaining importance. In the recent years, one has been able
to observe a growing interest in the development of theoretical foundations
of the RPMs (see, e.g. Branke et al., 2008; Ogryczak, 2001; Wierzbicki,
1999) as well as a large variety of real-world applications (see, e.g. Granat
and Guerriero, 2003)). A reference point is a vector composed of desirable
or acceptable values of the objective functions, so-called aspiration levels,
represented by a point in the objective space. Given a set of non-dominated
solutions, which, in the objective space, are called non-dominated points or
the Pareto frontier, the DM is interested in getting a non-dominated point
located either as close as possible to the reference point (when the reference
point appears infeasible) or as far as possible from the reference point (when
the reference point appears feasible). Thus, the reference point is projected
onto the set of non-dominated points with the aim of producing solutions
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which are most preferred to the DM. The result of this projection depends
on the weights of the achievement scalarizing function that measures the dis-
tance in the objective space between a reference point and non-dominated
points. The direction in which the distance is measured depends on the
weights assigned to the objective functions. As some projection directions
may lead to more desirable non-dominated points to the DM than others,
the most straightforward way for browsing interesting regions of the Pareto
frontier consists in incorporation of preference information into weights of
the achievement function. As far as interaction with the DM is concerned,
the recently proposed RPMs present to the DM a sample of non-dominated
points at each decision making stage, and expect her /him to state some cru-
cial evaluation of the proposed points, e.g., multiple objective comparisons
of some pairs of non-dominated points. Assessment of a preference model
reflecting such holistic preferences necessitates looking for the rational basis
through which the desired pairwise comparisons were made.

A method that would combine the aforementioned features, i.e. inter-
active elicitation of preferences consisting of co-ordinates of a reference
point, pairwise comparisons of some non-dominated points from a current
sample, and incorporation of the DM’s preferences into the weights in the
achievement scalarizing function, would have many desirable properties of
MOO techniques. This motivation has driven our work on a new inter-
active method designed for the exploitation of the Pareto frontier (PF) in
view of searching for the best compromise non-dominated point (Pareto-
optimal solution in the decision space). The first version of our method
has appeared recently (see Kadzinski and Stowiriski, 2012). In this method,
the identification of the most preferred solution is achieved by means of
a systematic dialogue with the DM during which (s)he specifies pairwise
comparisons of some non-dominated points from a current sample. Within
the method, statements concerning strict or weak preference relations for
pairs of points are represented by a compatible form of the achievement
scalarizing function (ASF). The preferences are translated into inequalities
between distances of compared points from the current reference point. Sub-
sequently, a corresponding set of constraints on the weights of objectives in
the ASF is formulated, which ensures that points compared by the DM are
compared by the function in the same way. The directions of the isoquants
of all compatible ASFs create a cone in the objective space. The origin
of the cone is located at the current reference point specified by the DM.
Consequently, the preference model used in the method is a set of ASFs
compatible with the currently available preference information, rather than
only a single compatible ASF. Since we are considering all ASFs compatible
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with the pairwise comparisons provided, and not just a single ASF as in the
traditional methods, our approach can be seen as an inherent part of the
robust ordinal regression paradigm (see, e.g. Greco et al., 2008, 2011). In
successive iterations, when still new pairwise comparisons of non-dominated
points are provided, the cone is contracted and gradually focused on a sub-
region of the Pareto frontier of greatest interest. The DM is allowed to
change the reference point at any decision making stage of the method.
The phases of preference elicitation and cone contraction alternate until the
DM is satisfied by the compromise yielded by the values of objective func-
tions of at least one non-dominated solution, or until the DM states that
there is no such compromise solution for the current problem setting, or un-
til some other stopping criterion is satisfied. The idea of “cone contraction”
comes from IMO procedures originally proposed by Steuer (1978), Steuer
and Choo (1983), Jaszkiewicz and Slowinski (1992), and Kaliszewski (1994),
however, in our method, the preference information provided by the DM,
and the way of translating it into constraints contracting the cone, are very
different from the previous methods — the preference information has the
form of holistic pairwise comparisons of some non-dominated points, and
the cone contraction proceeds via robust ordinal regression.

This paper adapts the original proposal of Kadzinski and Stowinski
(2012) to the conference presentation, omitting many technical details and
focusing on the methodological aspect of the procedure. The paper is or-
ganized as follows. In Section 2, we introduce notation and concepts used
in the paper, including a formal statement of the problem, definition of the
non-dominated solutions and points, and characteristics of the ASF. In Sec-
tion 3, we describe the IMO procedure based on cone contraction via robust
ordinal regression. In Section 4, we illustrate this procedure using an ex-
emplary three-objective optimization problem. The final section contains
conclusions.

2 Concepts: Definitions and Notation

The general multiple-objective programming problem is formulated as:
Minimize {f1(x), fa(x),..., fr(z)}, subject to x € S,

where x = [z1,...,x,] is a vector of decision variables from the nonempty
feasible region S C R", and fi,..., fx, with & > 2 are conflicting objec-
tive functions f; : R® — R, that we want to minimize simultaneously. We
assume, without loss of generality, that all objective functions are character-
ized by decreasing directions of preference, i.e., less is preferred to more. Let
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us denote the set of indices of the considered objectives by I = {1,2,... k}.
This problem can also be formulated as:

Minimize : z, subject to z € Z,

where z = [z21 = fi(z),...,2r = fr(z)] is a vector of objective function
values, and Z is an image of the set S in the objective space R*, Z = f(95),
f:R* = Rk,

To avoid switching between x and z when speaking about solutions
of a MOO problem, we will use z to design a solution (non-dominated,
dominated, feasible, etc.) understood either as a vector in the decision space,
or as its image vector (point) in the objective space. The context in which x
is used makes it clear whether we mean a solution in the decision space or a
point in the objective space; e.g., when speaking about a distance between
a non-dominated solution x and the reference point z, we mean a distance
in the objective space, or when speaking about preferential comparison of
non-dominated solutions 2! and 22, we mean comparison of their images in
the objective space, as ASFs and the preference cone are considered in this
space.

Non-dominated solutions

In multiple objective optimization no unique optimal solution usually
exists, but a set of options with different trade-offs, i.e. such that none
of their components can be improved without deterioration of some other
components. Formally, a decision vector x € S is called non-dominated
(Pareto-optimal, efficient) if and only if there is no other y € S such that
y is at least as good as x with respect to all objectives, and strictly better
for at least one objective, i.e. fi(y) < fi(x), for all ¢ € I, and there exists
j € I, for which f;(y) < fj(x). The set of all non-dominated solutions is
called the non-dominated set and denoted by P(S). In the objective space,
P(S) is also called Pareto frontier.

Reference point

To measure the quality of non-dominated points, the DM may define
some desired objective function values, which constitute a reference point
denoted by z = {z1,...,2r}. Most often, reference points correspond to
objective values that the DM would like to achieve (aspiration levels), or
that should at least be achieved, according to the DM (reservation levels).
The reference point may be feasible or not.
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Achievement scalarizing function

Achievement scalarizing function is used to project a reference point onto
the set of non-dominated solutions. ASF is often defined as (see Wierzbicki,
1982):

k
s(a, A, f) = mazi{Ni(fi(w) = 2)} +p Y _(fiz) — 2), (1)
i=1

where A = [A\1,..., A\;] is a weighting vector, \; >0, i =1,...,k,and p > 0
is an augmentation multiplier (sufficiently small positive number). By giving
a slight slope to the contours of the scalarizing function, one avoids weakly
non-dominated solutions. Without this slope, the contours (isoquants of
the scalarizing function) have the shape of orthogonal cones (see Figure 1).
Note that if the scales of objectives differ substantially, to avoid problems
with significantly different weights A;, ¢ = 1,...,k, one should use ASF
defined as (see Wierzbicki, 1986):

k
s(a, A, f) = mazid Ni(fi(w) = 20} +p Y Nl filx) — 7). (2)
=1

Note that in RPMs, an ASF is switching from minimization to maximization
of the distance between non-dominated solutions and the reference point
when the reference point changes from an infeasible one to a feasible one.
Thus, e.g., for a infeasible reference point, the smaller the value of the ASF
for a given weighting vector, the smaller the distance between a feasible
solution and the reference point, i.e. the more this solution is preferred to
the DM.

3 Interactive Robust Cone Contraction Method

In this section, we present the IMO procedure based on cone contraction via
robust ordinal regression. It is designed for preference-driven exploration of
the non-dominated set P(S) of the MOO problem. Thus, we assume that
this set, its proper representation or approximation, is generated prior to
the right procedure, using some non-interactive parametric or evolutionary
(EMO) technique.

In the course of the interactive procedure, the DM specifies pairwise
comparisons of some non-dominated solutions from a current sample. More
precisely, in the g-th iteration the preference information concerns the di-
rection of a strict = or weak >~ preference relation between two solutions z*
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Figure 1. Direction of the isoquant of an achievement scalarizing function

and z? chosen from the subset P(S), C P(S) delimited in the previous step
(P(S)q C P(S)g—1)- In this way, the DM specifies some examples of holistic
judgments, which requires a relatively small cognitive effort from her/him.

Within the method, the preference information provided is represented
by a compatible form of the ASF. The incorporation of the DM’s prefer-
ences into weights in the achievement scalarizing function is achieved by the
formulation of the suitable inequalities. The directions of the isoquants of
all compatible ASFs create a convex polyhedral cone in the objective space,
with the origin at the current reference point. When new pairwise com-
parisons are performed in the subsequent iterations, the cone is contracted,
and, consequently, the region of the non-dominated solutions which are sup-
posed to better fit the DM’s preferences is constrained. The desired effect
is to reduce the set of compatible ASFs with each new piece of preference
information, and in this way to focus on a subregion of the non-dominated
set that better corresponds to the DM’s preferences. The phases of pref-
erence elicitation and contraction of the cone alternate until the DM has
found the most preferred solution, or until (s)he concludes that there is no
satisfactory solution for the current problem setting.

The steps of the proposed interactive robust cone contraction method
are summarized below:
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S1

S2.
S3.

S4.
S5.

S6.

S7T.

S8.

S9.

S10.

S11.

S12.

Compute a representation of the non-dominated set P(.S)o of the con-
sidered multiple objective optimization problem.

Ask the DM to specify the starting reference point Zj.

Update the index of the current step ¢ := ¢ + 1 (at the beginning
q=0).

Present the set P(S5), to the DM.

If the DM feels satisfied with at least one solution found in the set
P(S),, then the procedure stops. If (s)he concludes that no compro-
mise point exists, or some other stopping criteria are satisfied, then
the procedure stops without finding the satisfactory solution. Other-
wise, continue.

If the DM wants to backtrack to one of the previous iterations and
continue from this point, then go to S4 of the chosen iteration.

If the DM wants to change the reference point, then ask her/him to
provide a new one, z;. Otherwise z, = z,_1

Ask the DM to provide preference information in the form of pairwise
comparisons of two solutions chosen from P(5), (let us assume that in
each iteration 2! will represent a solution preferred to z2, i.e., z! > 2
or zt = z?).

Formulate constraints on the weights of the compatible ASFs, which

compare the solutions 2! and z? in the same way as the DM.

Form a set P(S)q41 by leaving only those solutions from P(S), that
are inside the area delimited by the cone formed by all the directions
of isoquants of the compatible achievement scalarizing functions.

If P(S)y41 is empty, or ' ¢ P(S)g41, or 22 € P(S),41 (in case
x! = 22), then inform the DM about inconsistency and go back to
S4.

Go to S3.

Three points of the procedure need to be commented in more detail.
The first point concerns some restrictions on the location of the reference
point (for discussion of S7, see Subsection 3.1). The second point concerns
the way we obtain the weights of the compatible ASFs (for a discussion of
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S9, see Subsection 3.2). The third one deals with checking which solutions
should still be considered as potential “best choices” in the next iteration
(for discussion of S10, see Subsection 3.3).

3.1 Location of a Reference Point

In each iteration, the DM may specify the reference point which constitutes
the origin of the cone indicating the non-dominated solutions that corre-
spond to the DM’s preferences. However, its location is subject to some
restrictions. In particular, at the initial stages of the interaction, when
the DM’s knowledge about the shape of the Pareto frontier is rather poor,
the reference point should be at least as good as the utopia point. This
guarantees that all solutions are included within the considered cone, and
thus, each of them can become the best compromise. This is reasonable
because all non-dominated solutions are incomparable when no preference
information is provided.

In the subsequent stages, when the DM’s knowledge about the existing
solutions improves, the DM may move the reference point. In this way,
(s)he could indicate a more promising subregion and eliminate from further
consideration the non-dominated solutions situated outside the new cone.
Hence, the desired aspiration or reference objective levels which form the
reference point should be selected so that a subregion of non-dominated set
covered by the new cone is non-empty. In fact, when considering a finite
set of non-dominated solutions representing the Pareto frontier, a rational
DM needs to indicate the reference point which is not worse than some
non-dominated solutions. Thus, the specified levels should correspond to
the best objective values in the promising subregion.

3.2 Inferring Achievement Scalarizing Functions
Compatible with Preference Information

Consider the pairwise comparison of solutions ! > x2. In this section, we
will show how to represent this comparison by constraints on the weights of
the compatible ASFs. These constraints contract the cone, which represents
the currently available preference information. In this way, we are able to
indicate a subset of non-dominated solutions which satisfy the preferences
expressed by the DM.

Pairwise comparison z! >~ 22 implicates that the distance from the ref-
erence point Z to the solution ! is not greater than the distance from Zz to
the solution 22, i.e., s(z!, A, f) < s(2?, A, f). Considering ASF in form (2),
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this inequality leads to the following alternative of k systems of linear in-
equalities:

k

Mi(file!) =20 +p Y Nlfilz!) = fi(e?) < M(fia®) —21) v

i=1

k
Va(fala!) = 22) +p ) Nilfile!) = fia®) < M(fia?) —2) V.

=1

k

SV N(frl(@h) = 2) 4 p Y Nl fileh) = fi(@?) < M(fa(a?) = 21)] A

i=1

k
A (Fi(Y) = 2) + p ) il filah) = fil@?)) < Xa(fo(a?) — 22),
i=1
for some j =1,...,k] A ...
K

AN = 2) 4 0 Y Nlfilah) = fil@?) < M(fi(@?) = 2),
=1
for some j =1,...,k].

Knowing f;(z'), fi(2?), %, i = 1,...,k, and p, we obtain the set of con-
straints on the weights that contract the cone. Note that weights which
satisfy the above set of constraints need to be nonnegative, i.e. A; >0, ¢ =
1,...,k. For the strict preference (z' = 2?), we replace weak inequalities
with strict inequalities. Since all weights A\;, i = 1,...,k, are used in each
inequality, it is impossible, in general, to reduce the system above by indi-
cating that some inequalities hold for all possible vectors of weights or none
of them. Such an analysis is possible for the ASF having the form (1). In
this case, the considered alternative of k systems of linear inequalities has
the following form:

k

N(fi(@h) = 2) +p D (filz") = fi(@?) < Ap(fol2?) — ),
=1

for some j =1,...,k,

forall p=1,...,kand \; > 0, ¢ = 1,...,k. Thus, unlike the case of an
ASF in the form (2), here each inequality involves only one pair of weights
since the augmentation factor (p Zle(fi(xl) — fi(2?))) is constant.
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3.3 Passing Solutions to the Next Iteration

There are two equivalent ways of checking whether a solution z from P(S5),
should be left in P(S)441 and still considered to be the potential best com-
promise. One of them consists in checking whether the weights of the ASF
corresponding to the direction determined by x satisfy the set of conditions
defined in Subsection 3.2. These conditions delimit the cone so that ASF's
with the isoquants going in the directions of the solutions which are in-
side the cone compare reference solutions in the same way as the DM does.
The other way consists in a direct verification that an ASF with the set of
weights A compares solutions in the same way as the DM does. Thus, it is
sufficient to check whether s(x!, \?, f) < s(x2, A, f), if the DM stated that
ol = 2% or s(z!, M7, f) < s(a2, A%, f), if (s)he claimed z! = 22. If it is the
case, z € P(S), is left in P(S)4+1. Otherwise, = is excluded from the set of
solutions which are still considered to be the potential best compromise.

4 Illustrative Example

In this section, we illustrate the way our method supports the DM in solving
a MOO problem, and we give examples of possible interactions. We consider
a MOO problem that involves three objectives to be minimized. The non-
dominated solutions satisfy the following condition fi(x) + fa(z) + f3(x) =
0.5 (like in Three-Objective Test Problem DTLZ1 (Zitzler et al., 2000)).
We consider the subset P(S)y composed of 66 non-dominated solutions (see
Table 1 and Figure 2). The initial reference point is situated at the point
[0.0,0.0,0.0]. Since the scales of the objectives are the same, we will use the
ASF in the form (1).

Obviously, solutions in P(S)g are incomparable, unless preference infor-
mation is expressed by the DM. In this perspective, (s)he provides a first
comparison: %3 = [0.15,0.10,0.25] = 2% = [0.30,0.15,0.05]. Note that 23
is evaluated better than z°° on objectives fi; and fs, whereas it is worse
on the third objective f3. Therefore, the cone formed by the directions of
isoquants of all ASFs compatible with the statement z3% > 2°°, is a sum
of the following two cones. The first is formed by the directions of ASF's
which ensure that solutions included in this cone would be evaluated better
on objective f; to recompense for weakness on objective f3, whereas the
other cone is formed by the directions of ASFs which guarantee that the
advantage of evaluation on fs would allow to recompense for a relatively
worse evaluation on f3. To be precise, the constraints on the weights of
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Table 1
The representative set of non-dominated solutions P(.S)g

f1(@) f2(x) f3(x) f1(z) f2(z) fs(x)
x! 0.00 0.00 0.50 Z3 0.15 0.15 0.20
z2 0.00 0.05 0.45 2%° 0.15 0.20 0.15
x3 0.00 0.10 0.40 236 0.15 0.25 0.10
z* 0.00 0.15 0.35 %7 0.15 0.30 0.05
z° 0.00 0.20 0.30 238 0.15 0.35 0.00
28 0.00 0.25 0.25 230 0.20 0.00 0.30
x’ 0.00 0.30 0.20 z*0 0.20 0.05 0.25
z8 0.00 0.35 0.15 %! 0.20 0.10 0.20
z° 0.00 0.40 0.10 z4? 0.20 0.15 0.15
210 0.00 0.45 0.05 z*8 0.20 0.20 0.10
ztt 0.00 0.50 0.00 z 0.20 0.25 0.05
zt2 0.05 0.00 0.45 x*° 0.20 0.30 0.00
zt3 0.05 0.05 0.40 z*0 0.25 0.00 0.25
ztt 0.05 0.10 0.35 47 0.25 0.05 0.20
xt? 0.05 0.15 0.30 48 0.25 0.10 0.15
x1t6 0.05 0.20 0.25 z*° 0.25 0.15 0.10
27 0.05 0.25 0.20 20 0.25 0.20 0.05
xt8 0.05 0.30 0.15 z51 0.25 0.25 0.00
zt° 0.05 0.35 0.10 252 0.30 0.00 0.20
z2° 0.05 0.40 0.05 z%3 0.30 0.05 0.15
2! 0.05 0.45 0.00 % 0.30 0.10 0.10
%2 0.10 0.00 0.40 2%° 0.30 0.15 0.05
% 0.10 0.05 0.35 z°¢ 0.30 0.20 0.00
2 0.10 0.10 0.30 257 0.35 0.00 0.15
% 0.10 0.15 0.25 28 0.35 0.05 0.10
226 0.10 0.20 0.20 20 0.35 0.10 0.05
%7 0.10 0.25 0.15 280 0.35 0.15 0.00
z%8 0.10 0.30 0.10 261 0.40 0.00 0.10
% 0.10 0.35 0.05 252 0.40 0.05 0.05
230 0.10 0.40 0.00 253 0.40 0.10 0.00
3! 0.15 0.00 0.35 Z% 0.45 0.00 0.05
232 0.15 0.05 0.30 2%° 0.45 0.05 0.00
33 0.15 0.10 0.25 26 0.50 0.00 0.00

compatible ASF's in the first iteration are the following:
{[)\1 > 5/6 . )\3] V [/\2 > 5/3 . )\3}} A {)\1 >0, 1= 1,2,3}.

The transition from the formulated inequalities to the cone formed by
the directions of all compatible ASFs in the three-dimensional objective
space is presented in Figure 3. The set of solutions which are inside the
cone is:

1 20 22 28 31 35 39 _40 41
P(S) ={a,...,z7x%, ... 2™ x7, x a a at
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1‘46, x47, 1‘52, .Z'53, .T57, .1'58, (1361, 1.64}.

Thus, in the second iteration, the DM needs to consider 43 solutions out of
the initial 66 ones.

To make the remaining solutions more comparable, the DM states that
x4 = [0.20,0.10,0.20] = 2'3 = [0.05,0.05,0.40]. Note that x*! is better
than ' only on the third objective, while being worse on the other two.
Consequently, the constraints on the weights of the ASFs compatible with
the pairwise comparison provided in the second iteration are the following:

{Ps>1/2-M] A [Ag>1/4- 2]} A {N >0, i=1,2,3).

Taking into account the outcomes of the previous iteration, we could
present the cone formed by the directions of compatible ASFs which guar-
antee that 233 = 2% and z*! = 23 as in Figure 4. The set of non-dominated
solutions situated inside the contracted cone consists of 10 solutions:

1 .20 .27 .28 .33 .34 .35 41 _53 58
P(S)Qz{x L, e, L, L, e, T, T, }
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S

0.1 -

Figure 3. The directions of ASF's compatible with a pairwise comparison provided
in the first iteration

Knowing the evaluations of the solutions which are still perceived as
the potential best compromise solutions, the DM decides to change the
reference point to z = [0.15,0.10,0.10]. Consequently, the set of considered
solutions is limited to {x33, 234, 3% 24!} (see Figure 5). The DM states that
23 = [0.15,0.20,0.15] = x3* = [0.15,0.15,0.20]. In this way, (s)he prefers
a solution with a slightly better evaluation on f3 than a solution with a
slightly better evaluation on fs. Since within the contracted cone there is
only one solution (see Figure 5), it is presented to the DM as the one that
best satisfies her/his indirectly provided preferences.

5 Conclusions

The major advantage of the presented interactive robust cone contraction
method is the organization of the search over the non-dominated set through
pairwise comparisons of solutions from the current sample and suitable
moving of the reference point by the DM, which may be inspired by the
knowledge gained by her/him in the course of the interactive process. The
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Figure 4. The directions of ASF's compatible with a pairwise comparison provided
in the second iteration

motivation for employing the achievement scalarizing function came from
its suitability for producing different solutions by weighting the marginal
differences between attainable values of objective functions and respective
co-ordinates of the current reference point. This permits to get control over
the process of solving a MOO problem through an appropriate formulation
of constraints on the weights.

Within the presented procedure, the DM is required to provide prefer-
ences composed of understandable and not very demanding holistic judg-
ments. According to psychologists, people feel more confident exercising
their decisions rather than explaining them directly in terms of values of
some preference model parameters. Since the process of selecting a single,
most preferred solution is organized by contraction of a cone in the objec-
tive space, the DM can easily observe the consequences of one’s decisions
and learn about the nature of the problem. Moreover, as in every iteration
the set of still considered solutions is being delimited and its intuitive rep-
resentation is presented to the DM, (s)he is able to build a conviction about
what is possible in this psychologically convergent process.
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i) -7

Figure 5. The directions of compatible ASFs after changing the reference point to
z = [0.15,0.10,0.10] and accounting for a pairwise comparison provided
in the third iteration
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