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Abstract 

 
A fuzzy preference matrix is the result of pairwise comparison - a powerful 

method in multi-criteria optimization.  When comparing two elements, the 

decision maker assigns  a  value between 0 and 1 to any pair of alternatives 

representing the element of the fuzzy preference matrix. Here, we investigate 

relations between transitivity and consistency of fuzzy preference matrices and 

multiplicative preference ones. The results obtained are applied to decision 

situations where some elements of the fuzzy preference matrix are missing. We 

propose a new method for completing the fuzzy preference matrix with missing 

elements called the extension of the fuzzy preference matrix and investigate an 

important particular case of the fuzzy preference matrix with missing elements. 

Next, using the eigenvector of the transformed matrix we obtain the 

corresponding priority vector. Illustrative numerical examples are supplied. 

 
Keywords: pairwise comparison matrix, fuzzy preference matrix, reciprocity, 

consistency, transitivity, fuzzy preference matrix with missing elements. 

1   Introduction  

In various fields of evaluation, selection, and prioritization processes the 

decision makers (DM) try to find the best alternative(s) from a feasible set of 

alternatives. In many cases, the comparison of different alternatives according to 

their desirability in decision problems cannot be done by one person or using 

only a single criterion. In many DM problems, procedures have been established 

to combine opinions about alternatives related to different points of view. These 

procedures are often based on pairwise comparisons, in the sense that processes 
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are linked to some degree of preference of one alternative over another. 

According to the nature of the information expressed by every DM, for every 

pair of alternatives different representation formats can be used to express 

preferences, e.g. multiplicative preference relations (see Alonso et al., 2008; 

Saaty, 1980; Saaty, 1991),  fuzzy preference relations (see Fodor, Roubens, 

1994; Herrera-Viedma et al., 2004; Ramík, 2011), interval-valued preference 

relations and also linguistic preference relations (see Alonso et al., 2008). 

Usually, experts are characterized by their own personal background and 

knowledge of the problem to be solved. Expert opinions may differ substantially, 

some of them cannot efficiently express a preference degree between two or 

more of the available options. This may be true due to an imprecise or 

insufficient level of knowledge of the problem on the part of an expert, or 

because the expert is unable to determine the degree to which some options are 

better than others. In such situations the expert will provide an incomplete fuzzy 

preference relation (see Alonso et al., 2008; Herrera-Viedma et al., 2007). 

In this paper, we present a general method to estimate the missing 

information in the form of incomplete fuzzy preference relations- multiplicative 

or fuzzy. Our proposal is different to the approach described in Herrera-Viedma, 

et al., (2007) and Ma et al., (2006), where special averages of expert evaluations 

and consistency/transitivity properties are applied. In the literature (Xu and Da, 

2005), the problem is solved by the least deviation method to obtain a priority 

vector of a fuzzy preference relation. Here, we propose the classical result of 

Perron-Frobenius theory to obtain the priority vector for a transformed fuzzy 

preference matrix. Moreover, our approach enables us to obtain a priority vector 

for additive-transitive preference relations and also for additive-consistent ones, 

i.e. additive-reciprocal and multiplicative-transitive ones. It also allows for 

completing a pairwise comparison matrix with missing elements and for finding 

out the closest consistent/transitive matrix to the inconsistent/intransitive one, 

i.e. by repairing the inconsistency of fuzzy preference relations.  

2   Multiplicative and additive preferences 

The DM problem can be formulated as follows. Let X={x1, x2,...,xn} be a finite 

set of alternatives. These alternatives have to be ordered from best to worst, 

using the information given by a DM in the form of pairwise comparison matrix.

 The preferences over the set of alternatives, X, may be represented in 

two ways: multiplicative and additive (also called fuzzy preference relations). 

Let us assume that the preferences on X are described by a preference relation on 

X given by a positive n×n matrix A={aij}, where  aij > 0 for all i,j indicates the 

preference intensity for the alternative xi to that of xj. The elements of A={aij} 

satisfy the following reciprocity condition.  

A positive n×n matrix A={aij} is multiplicative-reciprocal (m-reciprocal), if: 

aij. aji =1 for all i,j{1,2,…,n}.      (1) 



116        J. Ramík 

 

A positive n×n matrix A={aij} is multiplicative-consistent (or, m-consistent), 

if: 

aij = aik. akj  for all i,j,k{1,2,…,n}.    (2) 

Note that aii = 1 for all i, and that an m-consistent matrix is m-reciprocal 

(however, not vice versa). Here, aij > 0 and m-consistency is not restricted to the 

Saaty scale. In particular, we extend this scale to the closed interval [1/σ; σ], 

where σ>1. 

Sometimes it is more natural, when comparing xi to xj, that the decision 

maker (DM) assigns nonnegative values bij to xi and bji to xj, such that bij + bji = 

1. With this interpretation, the preferences on X can be understood as a fuzzy 

preference relation, with membership function μR : X×X → [0;1], where μR (xi, xj) 

= bij denotes the preference of the alternative xi over xj. The most important 

properties of the above mentioned matrix B ={bij}, called here the fuzzy 

preference matrix, can be summarized as follows. 

An n×n matrix B ={bij} with 0 ≤ bij ≤ 1 for all i and j is additive-reciprocal 

(a-reciprocal), if: 

bij + bji = 1 for all i,j{1,2,…,n}.     (3) 

Evidently, if (3) holds, then bii = 0.5 for all i{1,2,…,n}. 

To make a coherent choice of evaluations bij (when assuming fuzzy 

preference matrix B ={bij}), a set of properties to be satisfied by such relations 

has been suggested in the literature, the terminology of properties of relations is, 

however, not established yet, compare e.g. Alonso et al. (2008); Fodor,  Roubens 

(1994); Tanino (1984). Here, we use the usual terminology which is as close as 

possible to the one used in the literature. 

Transitivity is one of the most important properties of preferences, and it 

represents the idea that the preference intensity obtained by comparing two 

alternatives directly should be equal to or greater than the preference intensity 

between those two alternatives obtained using an indirect chain of alternatives. 

Let B ={bij} be an n×n a-reciprocal matrix with 0 ≤ bij ≤ 1 for all i and j.  

We say that B ={bij} is multiplicative-transitive (m-transitive), if: 

 

    for all i,j,k{1,2,…,n}.   (4) 

 

 

Note that if B is m-consistent then B is m-transitive. Moreover, if B is m-

reciprocal, then B is m-transitive iff B is m-consistent.  

We say that B ={bij} is additive-transitive (a-transitive), if: 

(bij - 0,5) = (bik - 0,5) + (bkj - 0,5) for all i,j,k{1,2,…,n}.  (5) 

This property is also called additive consistency; here, we reserve, however, 

this name for a different notion, see below. 

Now, we shall investigate some relationships between a-reciprocal and m-

reciprocal pairwise comparison matrices. We start with an extension of the result 
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published in Herrera-Viedma et al. (2004). For this purpose, given σ > 1, we 

define the following function σ as: 
12)(  tt   for t[0;1].      (6) 

We obtain the following result, characterizing a-transitive and m-consistent 

matrices; for the proof see Ramik, Vlach (2013). 

Proposition 1. Let σ > 1, B ={bij} be an n×n matrix with 0 ≤ bij ≤ 1 for all i, 

j{1,2,…,n}. If B is a-transitive then A={ )( ijb } is m-consistent. 

Now, let us define the function   as follows: 

t

t
t




1
)(

 for 0 < t < 1.      (7) 

We obtain the following result (see Ramik, Vlach, 2013). 

Proposition 2. Let B ={bij} be an a-reciprocal n×n matrix with 0 ≤ bij ≤ 1 for 

all i,j{1,2,…,n}. If B is m-transitive then A={aij}={ )( ijb } is m- consistent. 

From Proposition 2 it is clear that the notion of m-transitivity plays a similar 

role for a-reciprocal fuzzy preference matrices as the notion of m-consistency 

does for m-reciprocal matrices. That is why it is reasonable to introduce the 

following definition:  

Any a-reciprocal m-transitive n×n matrix B ={bij} is called additively 

consistent (a-consistent).  

According to this definition Proposition 2 can be reformulated as follows: 

Proposition 2*. Let B ={bij} be an n×n matrix with 0 ≤ bij ≤ 1 for all 

i,j{1,2,…,n}. If B is a-consistent then A ={aij}={ )( ijb } is m-consistent. 

By Proposition 1, resp. Proposition 2* we can transform a-transitive, resp. a-

consistent matrices into m-consistent ones by an appropriate transformation 

functions σ, resp. Ф. 

In practice, perfect consistency/transitivity is difficult to obtain, particularly 

when measuring preferences on a set with a large number of alternatives. 

3   Inconsistency of pairwise comparison matrices, priority vectors 

If for some positive n×n matrix A ={aij} and for some i,j,k{1,2,...,n}, the 

multiplicative consistency condition (2) does not hold, then A is said to be 

multiplicative-inconsistent (or m-inconsistent). If for some n×n fuzzy preference 

matrix B ={bij} with 0 ≤ bij ≤ 1 for all i and j, and for some indices 

i,j,k{1,2,...,n}, (4) does not hold, then B is said to be additive-inconsistent (or, 

a-inconsistent). Finally, if for some n×n fuzzy matrix B ={bij} with 0 ≤ bij ≤ 1 

for all i and j, and for some indices i,j,k{1,2,...,n}, (5) does not hold, then B is 

said to be additive-intransitive (a-intransitive). In order to measure the degree of 

inconsistency/intransitivity of a given matrix several measurement methods have 
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been proposed in the literature (see e.g. Alonso et al., 2008). In AHP, 

multiplicative reciprocal matrices have been considered (Saaty, 1991). 

As far as additive-reciprocal matrices are concerned, some methods for 

measuring a-inconsistency/a-intransitivity are proposed here. We start, however, 

with measuring the inconsistency of positive matrices which is based on Perron-

Frobenius theory (see e.g. Fiedler, Nedoma, Ramík, Rohn, 2006). Later on, we 

shall deal with measuring a-inconsistent and a-intransitive matrices.  

The Perron-Frobenius theorem describes some of the remarkable properties 

enjoyed by the eigenvalues and eigenvectors of irreducible nonnegative matrices 

(e.g. positive matrices). 

Theorem (Perron-Frobenius). Let A be an irreducible nonnegative n×n 

matrix. Then the spectral radius, ρ(A), is a positive (real) eigenvalue, with 

a positive (real) eigenvector w such that Aw= ρ(A)w.  

In the decision making context the above mentioned eigenvalue ρ(A) is called 

the principal eigenvalue of A. It is a simple eigenvalue (i.e. it is not a multiple 

root of the characteristic equation), and its eigenvector, called the priority 

vector, is unique up to a multiplicative constant. 

Now, let A be a nonnegative m-reciprocal n×n matrix. The m-consistency of 

A is characterized by the m-consistency index Imc(A) defined in (Saaty, 1980) as: 

Imc(A) = 1

)(





n

nA

,       (8) 

where ρ(A) is the spectral radius of A (in particular, the principal eigenvalue 

of A). 

Moreover, we suppose that A={aij} is a pairwise comparison matrix with 

elements aij based on evaluation of alternatives xi and xj, for all i and j. For the 

purpose of decision making, the rank of the alternatives in     X={x1, x2,...,xn} is 

determined by the vector of weights w = (w1,w2,...,wn), where wi > 0, for all 

i{1,2,...,n}, such that 



n

i

iw
1

1 , satisfying the characteristic equation Aw = 

ρ(A)w. This vector w is the (normalized) priority vector of A. Since the element 

of the priority vector wi is interpreted as the relative importance of the 

alternative xi, the alternatives x1, x2,...,xn in X are ranked by their relative 

importance. The following result has been derived in Saaty (1980). 

Proposition 3. If A ={aij} is an n×n positive m-reciprocal matrix, then Imc(A) 

≥ 0. Moreover, A is m-consistent if and only if Imc(A) = 0. 

To provide a consistency measure independently of the dimension n of the 

matrix A, T. Saaty (1980) proposed the consistency ratio. To distinguish it here 

from the other consistency measures, we shall call it m-consistency ratio. This is 

obtained by taking the ratio of Imc to its mean value Rmc, estimated by an 

arithmetic average over a large number of positive m-reciprocal matrices of 

dimension n, whose entries are randomly and uniformly generated (see Saaty, 

1980), i.e.: 
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CRmc = Imc/Rmc.       (9) 

It was proposed that a pairwise comparison matrix could be accepted (in a 

DM process) if its m-consistency ratio does not exceed 0.1 (see Saaty, T.L., 

1980). The m-consistency index Imc has been defined for m-reciprocal matrices; 

here, we investigate the inconsistency/intransitivity of a-reciprocal matrices. For 

this purpose we use relations between m-consistent and a-transitive/a-consistent 

matrices derived in Propositions 1 and 2*.  

Let B ={bij} be an m-reciprocal matrix with 0 ≤ bij ≤ 1 for all i and j. We 

define the a-consistency index Iac(B) of B ={bij} as: 

Iac(B) = Imc(A), where A={ )( ijb }.    (10) 

From (10) we easily obtain the following result, which is parallel to 

Proposition 3.  

Proposition 4. If B ={bij} is an a-reciprocal n×n fuzzy matrix with           0 ≤ 

bij ≤ 1 for all i and j, then Iac (B) ≥ 0. Moreover, B is a-consistent if and only if  

Iac(B) = 0.  

Now, we shall deal with measuring a-intransitivity of a-reciprocal matrices. 

Let σ > 1 be a given value characterizing the scale. Let B ={bij} be an a-

reciprocal n×n fuzzy matrix with 0 ≤ bij ≤ 1 for all i and j. We define the a-

transitivity index 

atI (B) of B ={bij} as: 


atI (B) = Imc (A

σ
),       (11) 

where: 

A
σ
 ={

)( ijb }.       (12) 

By applying (8) and (12) we obtain the following results corresponding to 

Propositions 3 and 4. 

Proposition 5. If B ={bij} is an a-reciprocal n×n matrix with 0 ≤ bij ≤ 1 for all 

i and j, then 

atI (B) ≥ 0. Moreover, B is a-transitive if and only if 


atI (B) = 0. 

Let A ={aij} be an a-reciprocal n×n matrix. In (12), the m-consistency ratio of 

A denoted by CRmc(A) is obtained by taking the ratio of Imc(A)  to its mean value 

Rmc(n), i.e.: 

CRmc(A) = Imc(A)/Rmc(n).       

The values of Rmc(n) for n=3,4,…, can be found in Saaty (1980). Similarly, 

we define the a-consistency ratio CRac(A) and the a-transitivity ratio 

atCR (A). 

Denote )}({)( ijbB  , then the corresponding priority vector w
ac

 is given 

by the characteristic equation )(B w
ac

 =ρ( )(B )w
ac

. 

Given  > 1, let us denote )}({)( ijbB    , then the priority vector w
at
 is 

defined by the characteristic equation )(B w
at
 =ρ( )(B )w

at
. 

In practice, a-inconsistency of a positive a-reciprocal fuzzy priority matrix B 

is “acceptable” if CRac(B) < 0.1. Also, a-intransitivity of a positive a-reciprocal 
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pairwise comparison matrix B is “acceptable” if  

atCR (B) < 0.1. The final 

ranking of alternatives is given by the corresponding priority vector, see 

Example 1. 

The following two results give a characterization of a m-consistent matrix as 

well as an a-consistent matrix by vectors of weights, i.e. positive vectors with 

the sum of their elements equal to one. The proofs are straightforward and can 

be found in Ramik, Vlach (2013). 

Proposition 6. Let A ={aij} be a positive n×n matrix. A is m-consistent if and 

only if there exists a vector w = (w1, w2,...,wn) with wi > 0 for all i{1,2,...,n}, 

and 1
1




n

i

iw  such that: 

j

i
ij

w

w
a    for all i,j {1,2,...,n}.    (13) 

Proposition 7. Let A ={aij} be an a-reciprocal n×n matrix with 0 < aij < 1 for 

all i,j{1,2,...,n}. A is a-consistent if and only if there exists a vector                   

v = (v1, v2,...,vn) with vi > 0 for all i{1,2,...,n}, and 1
1




n

i

iv  such that: 

ji

i
ij

vv

v
a


   for all i,j {1,2,...,n}.     (14) 

An associated result can be derived also for a-transitive matrices. 

Proposition 8. Let A ={aij} be an a-reciprocal n×n matrix with 0 < aij < 1 for 

all i,j {1,2,...,n}. A is a-transitive if and only if there exists a vector               u 

= (u1, u2,...,un) with ui > 0 for all i {1,2,...,n}, and 1
1




n

i

iu  such that: 

aij = 2
1 (1+nui – nuj)  for all i,j{1,2,...,n}.    (15) 

The proof of this proposition is based on the observation that for a-transitive 

matrix A ={aij} we have: 

  

Setting  for all i {1,2,...,n}, we obtain the required result. 

Example 1 

Let X={x1, x2, x3, x4} be a set of 4 alternatives. The preferences on X are 

described by a positive matrix B = {bij}: 

B = 




















5.05.03.01.0

5.05.04.04.0

7.06.05.04.0

9.06.06.05.0

 .    (16) 
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Here, B is a-reciprocal and a-inconsistent, which may be directly verified by 

(7), e.g. b12.b23.b31 ≠ b21.b32.b13. At the same time, B is a-intransitive as 

b12+b23+b31 =1.9 ≠ 1.5. We consider σ = 9 and calculate: 

E = )(B  = 





















1143.011.0

1167.067.0

33.250.1167.0

0.950.150.11

,  

F = 
)(B  = 





















1142.017.0

1164.064.0

41.255.1164.0

80.555.155.11

.  

We calculate ρ(E) = 4.29, ρ(F) = 4.15, then we obtain CRac(B) = 0.11>0.1 

with the priority vector w
ac

 = (0.47; 0.25; 0.18; 0.10), which gives the ranking of 

alternatives: x1 > x2 > x3 > x4. Similarly, 
9

atCR (B) = 0.056 < 0.1 with the priority 

vector w
at
 =(0.44;0.27;0.18;0.12), with the same ranking of alternatives: x1 > x2 > 

x3 > x4. 

As it is evident, a-consistency ratio CRac(B) is too high for the matrix B to be 

considered a-consistent. On the other hand, a-transitivity ratio 
9

atCR (B) is 

sufficiently low for the matrix B to be considered a-transitive. The ranking of the 

alternatives given by both methods remains, however, the same. 

In this example we can see that the values of consistency ratio and transitivity 

ratio can be different for an a-reciprocal matrix. In order to investigate a possible 

relationship between the inconsistency/in-transitivity indices, we performed a 

simulation experiment with randomly generated 1000 a-reciprocal matrices, 

(n=4 and n=15). Then we calculated the corresponding consistency and 

transitivity indexes. Numerical experiments show that there is no strong 

relationship between a-consistency and a-transitivity. 

4   Fuzzy preference matrix with missing elements 

In many decision-making procedures we assume that experts are capable of 

providing preference degrees between any pair of possible alternatives. 

However, this may not always be true, which creates a missing information 

problem. A missing value in a fuzzy preference matrix is not equivalent to a lack 

of preference of one alternative over another. A missing value can be the result 

of the incapacity of an expert to quantify the degree of preference of one 

alternative over another. In this case he/she may decide not to guess the 

preference degree between some pairs of alternatives. It must be clear that when 

an expert is not able to express a particular value aij, because he/she does not 
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have a clear idea of how the alternative xi is better than the alternative xj, this 

does not mean that he/she prefers both options with the same intensity. The DM 

could be also bored by evaluating too many pairs of alternatives. To model these 

situations, in the following we introduce the incomplete preference relation 

matrix. Here, we use a different approach and different notation than Alonso 

(2008). 

Let n > 2, I ={1,2,...,n} be  a set of indices, I²=I×I the Cartesian product of I, 

i.e. I²={(i,j)|i,jI}. Here, we assume that the reciprocity condition is satisfied. 

Therefore, we shall consider only a-reciprocal fuzzy preference matrices.  

Let L  I², L={(i1,j1),(i2,j2),...,(iq,jq)} be the set of pairs (i,j) of indices such 

that there exists a pairwise comparison value aij, 0 ≤ aij ≤ 1. By L′ we denote the 

symmetric subset to L, i.e. L’ = {(j1,i1),(j2,i2),...,(jq,iq)}. By reciprocity, each 

subset K I² of the given elements can be expressed as follows 

K = LL′D,        (17) 

where L is a set of pairs of indices (i,j) of the evaluated elements aij and D is 

the diagonal of the fuzzy preference matrix, D = {(1,1),(2,2),...,(n,n)}, here aii = 

0.5 for all i. The elements aij with (i,j)I²-K are called missing elements. 

Now we define the fuzzy preference matrix B(K) = {bij}K with missing 

elements by: 

bij = 







.),(if

,),(if

Kji

Kjiaij

      

Here, the missing elements of the matrix B(K) are denoted by  a  dash “-“. On 

the other hand, the elements evaluated by the experts are denoted by aij where 

(i,j)K. By a-reciprocity, it is sufficient that the expert quantifies only elements 

aij where (i,j)L, such that K = LL′D; the other elements are calculated 

automatically by (3). In what follows we shall investigate a particular important 

case of L, namely, L={(1,2);(2,3);...,(n-1,n)}. 

5   Extension of fuzzy preference matrix with missing elements and 

its consistency/transitivity 

In this section we shall deal with the problem of finding the values of missing 

elements of a given fuzzy preference matrix so that the extended matrix is as 

much a-consistent/a-transitive as possible. In the ideal case the extended matrix 

will become a-consistent/a-transitive. We start with the a-consistency property.  

Let K  I², let B(K) = {bij}K  be a fuzzy preference matrix with missing 

elements. The matrix B
ac

(K)={
ac

ijb }K called an ac-extension of B(K) is defined 

as follows: 
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ac

ijb  = 














.),(if

,),(if

**

*

Kji
vv

v

Kjib

ji

i

ij

    (18) 

Here, ),...,,( **

2

*

1

*

nvvvv   , called the ac-priority vector with respect to K, is 

the optimal solution of the following optimization problem: 

(Pac)   dac(v,K) = min;)(
),(

2 



Kji ji

i
ij

vv

v
b   

 ( 19) 

subject to: 





n

j

jv
1

1 , vi ≥ ε > 0 for all i=1,2,...,n 

(ε > 0 is a given sufficiently small number). 

Note that the a-consistency index of the matrix B
ac

(K) = {
ac

ijb }K is defined by 

(15) as Iac(B
ac

(K)). The following proposition follows directly from Proposition 

7. 

Proposition 9. B
ac

(K) = {
ac

ijb }K is a-consistent, i.e. Iac(B
ac

(K)) = 0 if and only 

if dac(v,K) = 0. 

Now, we look for the values of missing elements of a given fuzzy preference 

matrix so that the extended matrix is as much a-transitive as possible. In the 

ideal case the extended matrix will become a-transitive. 

Again, let K I², B(K) = {bij}K  be a fuzzy preference matrix with missing 

elements. 

The matrix B
at

(K) = {
at

ijb }K called an at-extension of B(K) is defined as 

follows: 
at

ijb  = 









.),(if)}1(1min{0max{

,),(if
**

2
1 Kji-nu+nu,,

Kjib

ji

ij
  (20) 

Here, ),...,,( **
2

*
1

*
nuuuu  called the at-priority vector with respect to K is 

the optimal solution of the following optimization problem: 

(Pat)   dat(u,K) = min;))1((
),(

2

2
1 

Kji

jiij nunub  

 ( 21) 

subject to: 

     



n

j

ju
1

1 , ui ≥ ε > 0 for all i=1,2,...,n 

(ε > 0 is a given sufficiently small number). 
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In general, the optimal solution ),...,,( **
2

*
1

*
nuuuu of (Pat) does not satisfy 

the following condition: 

,1)1(0 **

2
1  ji nunu

     (22) 

i.e. B = )}1({}{ 2
1

jiij nunub  fails to be a fuzzy preference matrix. That 

is why in the definition of the at-extension of B(K) we use formula (20) ensuring 

that all the elements bij belong to the unit interval [0;1]. In the next section we 

shall derive the necessary and sufficient conditions for (22) to be satisfied. 

Note that the a-transitivity index (for a given σ > 1) of the matrix   B
at
(K) = 

{ 
at

ijb }K is defined by (11) as 

atI (B

at
(K)). The next proposition follows directly 

from Proposition 8. 

Proposition 10. Let σ > 1. If B
at
(K) = {

at

ijb }K is a-transitive, i.e.             

atI

(B
ac

(K)) = 0, then dat(v,K) = 0. 

6   A particular case of fuzzy preference matrix with missing 

elements 

For a complete definition of a reciprocal fuzzy preference n×n matrix we need 

2

)1( 


nn
N  pairs of elements to be evaluated by an expert. For example, if 

n=10, then N=45, which is a considerable number of pairwise comparisons. In 

practice we ask that the expert evaluates only around n pairwise comparisons of 

alternatives which seems a reasonable number. In this section we shall deal with 

an important particular case of fuzzy preference matrix with missing elements 

where the expert should evaluate only n-1 pairwise comparisons of elements.  

Let K I² be a set of indexes given by an expert, B(K) = {bij}K be a fuzzy 

preference matrix with missing elements. Moreover, let                   K = 

LL′D. In fact, it is sufficient that the expert evaluates matrix elements only 

from L. 

Here, we assume that the expert evaluates the following n-1 elements of the 

fuzzy preference matrix B(K): b12, b23,...,bn-1,n. 

First, we investigate the ac-extension of B(K). We obtain the following result. 

Proposition 11. Let L={(1,2);(2,3);...,(n-1,n)}, 0 < bij < 1 with bij + bji = 1 for 

all (i,j)  L, let K = LL′D, and L’ = {(2,1);(3,2);...,(n, n-1)},          D = 

{(1,1),...,(n,n)}.  Then the ac-priority vector ),...,,( **

2

*

1

*

nvvvv   with respect to K 

is given as: 

 S
v

1*

1 
,       (23) 

 
*

1,

*

1 iiii vav   , for i=1,2,..,n-1,     (24) 
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where: 

ij

ij

ij
b

b
a




1
 for all (i,j)  L and:    (25) 






 
1

1

,12,11, ...1
n

i

nniiii aaaS

.    (26) 

Remark. The proof of Proposition 11 is straightforward by using (25), (26) 

and the optimal solution of (19). By Proposition 7 it follows that the ac-

extension of B(K), i.e. the matrix B
ac

(K)={
ac

ijb }K is a-consistent. 

Now, we investigate the at-extension B
at
(K) of B(K). We obtain the following 

result. 

Proposition 12. Let L={(1,2);(2,3);...,(n-1,n)}, 0 < bij < 1 with bij + bji = 1 for 

all (i,j)  L, let K = LL′D.  Then the at-priority vector ),...,,( **
2

*
1

*
nuuuu  

with respect to K is given as: 

 
n

in

nn
u i

n

j

ji

122
1

1

1
2

* 
 





 

 for i=1,2,...,n,  (27) 

where: 

 ,00  



j

i

iij b
1

1,   for j=1,2,...,n-1.   (28) 

 

Remark. The proof of Proposition 12 is straightforward by using (27), (28) 

and the optimal solution of (21). In general, the optimal solution 

),...,,( **
2

*
1

*
nuuuu of (Pat) does not satisfy the condition: 

1)1(0 **

2
1  ji nunu , for all i,j=1,2,...,n,   (29)                           

i.e. B = )}1({}{ 2
1

jiij nunub  is not a fuzzy preference matrix. We can easily 

prove the necessary and sufficient condition for satisfying (29) based on 

evaluations bi,i+1.  

Proposition 13. Let L={(1,2);(2,3);...,(n-1,n)}, 0 ≤ bij ≤ 1 with bij + bji = 1 for 

all (i,j)  L, let K = LL′D.  Then the at-extension B
at
(K)={

at

ijb }K is a-

transitive if and only if: 

 
2

1

2

1

1, 









ij
b

j

ik

kk  for i=1,2,...,n-1, j=i+1,...,n.  (30) 

The proof of Proposition 13 follows directly from Proposition 8 and 

Proposition 12. 
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Example 2  

Let L={(1,2);(2,3);(3,4)}, let expert evaluations be b12=0.9, b23=0.8, b34=0.6, 

with bij+bji=1 for all (i,j)  L, K = LL′D.  Then B(K) = {bij}K  is a fuzzy 

preference matrix with missing elements as follows: 

 B(K) =




























5.04.0

6.05.02.0

8.05.01.0

9.05.0

. 

Solving (Pac) we obtain the ac-priority vector v* with respect to K, in 

particular, )0,016 0,024; 0,096; 0,864;(* v . By (20) we obtain B
ac

(K) - the ac-

extension of B(K) as follows: 

B
ac

(K) =




















5.04.014.002.0

6.05.02.003.0

86.08.05.01.0

98.097.09.05.0

. 

By Proposition 9, B
ac

(K) is a-consistent, hence Iac(B
ac

(K)) = 0. Solving (Pat) 

we obtain the at-priority vector u* with respect to K as follows: 

 )0,088 0,137; 0,287; 0,487;(* u . By (27) we obtain B
at
(K) – the at-

extension of B(K) as follows: 

B
at
(K) =





















5.04.01.00.0

6.05.02.00.0

9.08.05.01.0

0.10.19.05.0

, 

where, by Proposition 10, B
at
(K) is a-intransitive, as dac(v,K) > 0. In 

particular, 
9

atI (B
ac

(K))= 0.057. 

7   Conclusions 

In this paper we have dealt with some properties of fuzzy preference relations, in 

particular with reciprocity, consistency and transitivity of relations given in the 

form of square nonnegative matrices. We have shown how to measure the 

degree of consistency and/or transitivity, and also how to extend crisp 

comparisons to fuzzy ones, i.e. how to evaluate pairs of elements by fuzzy 

values. Also, we have proposed a new method for measuring inconsistency 

based on Saaty´s principal eigenvector method. Moreover, we have dealt with 

the problem of the incomplete fuzzy preference matrix, where some elements of 

pairwise comparison are missing. We have proposed a special method for 
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dealing with that case. Some illustrating examples have been presented to clarify 

the theory proposed. 
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