
 
Petr Fiala 

DESIGN OF OPTIMAL LINEAR SYSTEMS  
BY MULTIPLE OBJECTIVES 

Abstract 

Traditional concepts of optimality focus on valuation of already given systems. 
A new concept of designing optimal systems is proposed. Multi-objective linear 
programming (MOLP) is a model of optimizing a given system by multiple objectives. 
In MOLP problems it is usually impossible to optimize all objectives simultaneously in 
a given system. An optimal system should be tradeoff-free. As a methodology  
of optimal system design, De Novo programming for reshaping feasible sets in linear 
systems can be used. Basic concepts of the De Novo optimization are summarized. 
Possible extensions, methodological and actual applications are presented. The supply 
chain design problem is formulated and solved by De Novo approach. 
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Introduction 

Traditional concepts of optimality focus on valuation of already given 
systems. A new concept of designing optimal systems was proposed [Zeleny 
1990 and others]. Mathematical programming under multiple objectives has 
emerged as a powerful tool to assist in the process of searching for decisions 
which satisfy best a multitude of conflicting objectives. Multi-objective linear 
programming (MOLP) is a model of optimizing a given system by multiple 
objectives. As a methodology of optimal system design, De Novo programming 
for reshaping feasible sets in linear systems can be used. The goal of this paper 
is to popularize the De Novo concept and present the literature review on it. The 
De Novo concept has been introduced by Milan Zeleny [see Zeleny 1990]. 
Basic concepts of the De Novo optimization are summarized. The paper 
presents approaches for solving the Multi-objective De Novo linear pro-
gramming (MODNLP) problem, its possible extensions, methodological and 
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actual applications, and an illustrative example. The approach is based on  
a reformulation of the MOLP problem by given prices of resources and a given 
budget. Searching for meta-optimum with a minimal budget is used. The 
instrument of optimum-path ratio is used for achieving the best performance  
for a given budget. Searching for a better portfolio of resources leads to  
a continuous reconfiguration and reshaping of system boundaries. Innovations 
bring improvements to the desired objectives and result in a better utilization  
of available resources. These changes can lead to beyond tradeoff-free 
solutions. Multi-objective optimization can be taken as a dynamic process. 
Possible extensions, methodological and real applications are presented.  
A supply chain design is formulated and solved by the De Novo approach. 

1. Optimization of given systems 

Multi-objective linear programming (MOLP) is a model of optimizing  
a given system by multiple objectives. In MOLP problems it is usually 
impossible to optimize all objectives simultaneously in a given system.  
Trade-off means that one cannot increase the level of satisfaction for  
an objective without decreasing it for another one. Trade-offs are properties  
of an inadequately designed system and thus can be eliminated through 
designing a better one. The purpose is not to measure and evaluate tradeoffs, but 
to minimize or even eliminate them. An optimal system should be tradeoff-free. 

 
The multi-objective linear programming (MOLP) problem can be 

described as follows 

“Max”    z = Cx 

s.t.   Ax ≤ b 

x ≥ 0 

(1)

where C is a (k, n)-matrix of objective coefficients, A is a (m, n)-matrix  
of structural coefficients, b is an m-vector of known resource restrictions,  
x is an n-vector of decision variables. In MOLP problems it is usually 
impossible to optimize all objectives in a given system. For multi-objective 
programming problems the concept of non-dominated solutions is used [see for 
example Steuer 1986]. A compromise solution is selected from the set of non- 
-dominated solutions.  
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Two subjects, the Decision Maker and the Analyst, have been introduced 
due to classification of methods for solving MOLP problems by information 
mode:  

– Methods with a priori information. 
The Decision Maker provides global preference information (weights, 

utility, goal values,…). The Analyst solves a single objective problem. 
– Methods with progressive information – interactive methods. 
The Decision Maker provides local preference information. The Analyst 

solves local problems and provides current solutions. 
– Methods with a posteriori information. 
The Analyst provides a non-dominated set. The Decision Maker provides 

global preference information on the non-dominated set. The Analyst solves  
a single objective problem. 

Many methods from these categories have been proposed. Most of them 
are based on trade-offs. The next part is devoted to the trade-off free approach. 

2. Designing optimal systems 

Multi-objective De Novo linear programming (MODNLP) is a problem 
for designing an optimal system by reshaping the feasible set. By given prices 
of resources and a given budget, the MOLP problem (1) can be reformulated  
as a MODNLP problem (2). 

“Max”        z = Cx 

s.t.  Ax − b ≤  0 

pb ≤ B 

x ≥ 0 

(2)

where b is an m-vector of unknown resource restrictions, p is an m-vector  
of resource prices, and B is the given total available budget.  

 
From (2) follows  

pAx  ≤  pb  ≤ B 

By defining an n-vector of unit costs v = pA  we can rewrite the problem (2) as 

“Max”      z = Cx 

s.t.        vx  ≤ B 

x  ≥ 0 

(3)
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Solving single objective problems  

Max  z i   = c i x    i = 1, 2,…, k 

s.t.   vx ≤ B  

x ≥ 0 

(4)

z* is a k-vector of objective values for the ideal system with respect to B. 
 

The problems (4) are continuous “knapsack” problems, the solutions are  
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The meta-optimum problem can be formulated as follows 

Min    f = vx 

s.t.     Cx ≥ z* 

x  ≥ 0 

(5)

Solving the problem (5) provides the solution: 

x*  

B* = vx* 

b* = Ax* 

The value B* identifies the minimum budget to achieve z* through solutions x* 
and b*.  

 
The given budget level B ≤ B*. The optimum-path ratio for achieving  

the best performance for a given budget B is defined as 

*1 B
Br =  

The optimum-path ratio provides an effective and fast tool for the 
efficient optimal redesign of large-scale linear systems. Optimal system design 
for the budget B:   

x = r1 x* ,  b = r1 b* ,  z = r1 z*  
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If the number of criteria k is less than that of variables n, we can individually 
solve the problem individually and obtain synthetic solutions. Shi [1995] 
defined the synthetic optimal solution as follows: nk

jj Rxxx
k

∈= )0,..,0,,...,(** 1
1

, 

where q
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x is the optimal solution of [1995]. For the synthetic optimal solution  

a budget **B is used. One can define six types of optimum-path ratios [Shi 
1995]: 
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Optimum-path ratios are different. It is possible to establish different optimal 
system designs as options for the decision maker. 

3. Extensions  

The following extensions of De Novo programming (DNP) are possible: 
– Fuzzy DNP. 
– Interval DNP. 
– Complex types of objective functions. 
– Continuous innovations. 

Fuzzy De Novo Programming (FDNP) uses instruments as fuzzy 
parameters, fuzzy goals, fuzzy relations, and fuzzy approaches [Li and Lee 
1990].  

Interval De Novo programming (IDNP) combines the interval pro-
gramming and De Novo programming, allowing uncertainties represented  
as intervals within the optimization framework. The IDNP approach has  
the advantages in constructing an optimal system design via an ideal system  
by introducing the flexibility toward the available resources in the system 
constraints [Zhang et al. 2009].  

Complex types of objective functions are defined. The generalization  
of the single objective Max (cx − pb) to the multi-objective form appears to be 
the right function to be maximized in a globally competitive economy [Zeleny 
2010].  
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The search for a better portfolio of resources leads to continuous 
reconfiguration and “reshaping” of system boundaries. Innovations bring 
improvements to the desired objectives and the better utilization of available 
resources. The technological innovation matrix T = (tij) is introduced.  
The elements in the structural matrix A should be reduced by a technological 
progress. The matrix T should be continuously explored. The problem (2)  
is reformulated as an innovation MODNLP problem (6) 

“Max”        z = Cx 

s.t.  TAx  − b ≤  0 

pb ≤ B 

x ≥ 0 

(6)

The multi-objective optimization can be then seen as a dynamic process in three 
time horizons: 
1. Short-term equilibrium:  

– trade-off, 
– operational thinking.       

2. Mid-term equilibrium:  
– trade-off free,    
– tactical thinking. 

3. Long-term equilibrium:  
– beyond  trade-off free, 
– strategic thinking.   

The process is illustrated by example 1. 

Example 1 

The MOLP problem is formulated as follows: 
Max z1  =   x1 +  x2  
Max z2  =   x1 + 4x2  

3x1 + 4x2 ≤ 60, 

x1 + 3x2 ≤ 30, 

x1 ≥ 0, x2 ≥ 0. 
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The MODNLP problem is formulated as follows: 
Input:   p = (0.5, 0.4)   B = 42, 
            unit costs  v = pA = (1.9, 3.2). 

 
Max  z i   = c i x    i = 1, 2,…, k                       z1*  = 22.11,  z2*  = 52.50,  
         s.t.    vx ≤ B  
                  x ≥ 0  

 
Min          f = vx                                   x1* = 11.98,  x2*  = 10.13  
    s.t.     Cx ≥ z*                                   B* = vx* = 55.17  
                x  ≥ 0                                    b* = Ax*     b1*  = 76.48,  b2* = 42.39 

761.0*1 ==
B
Br  

 
Optimal system design for B:  x = r1 x* , b = r1 b* ,  z  = r1 z*, 
x1 = 9.12,  x2 = 7.71, b1 = 58.23,  b2 = 32.25,  z1 = 16.83,  z2 = 39.96.  
 
The innovation MODNLP problem is formulated as follows: 
Input:   p = (0.5, 0.4)   B = 42, 

the technological innovation matrix  ⎥
⎦

⎤
⎢
⎣

⎡
=

7.00
08.0

T ,  

unit costs  v = pTA = (1.48; 2.44), 

z1*  = 28.38,  z2*  = 68.85, 

x1*  = 14.89,  x2*  = 13.49, 

B* = vx* = 54.95, 

r1 = 0.764,  

x1 = 11.38,  x2 = 10.31,   

z1 = 21.69,  z2 = 52.62.  

 
The solutions in different time horizons are represented in Figure 1. 
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Figure 1. Solutions for the illustrative example 

 
Figure 1 shows the non-dominated frontier (P1-P2-P3) for the MOLP 

problem, the solution (point P4) of the MODNLP problem and the solution 
(point P5) of the innovative MODNLP problem. The solution of the MODNLP 
problem is not fully trade-off free in this example. The solution of the 
innovative MODNLP problem shows the beyond trade-off free trajectory. 

4. Applications 

The tradeoff-free decision making has a significant number of method-
logical applications. All such applications have the tradeoff-free alternative  
in common: 
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– Compromise programming – minimize distance from the ideal point. 
– Risk management – portfolio selection – tradeoffs between investment 

returns and investment risk. 
– Game theory – win-win solutions. 
– Added value – value for the producer and value for the customer – both must 

benefit. 
There are real applications of the De Novo approach. For example, the 

production plan for an actual production system is defined taking into account 
financial constraints and given objective functions [Babic and Pavic 1996].  
The paper [Zhang et al. 2009] presents an Inexact DNP approach for the design  
of optimal water-resources-management systems under uncertainty. Optimal 
supplies of good-quality water are obtained with different revenue targets  
of municipal–industrial–agricultural competition under a given budget taken 
into account. 

In the next part a supply chain design problem is formulated. Supply 
chain management has generated a substantial amount of interest from both 
managers and researchers. Supply chain management is now seen as 
a governing element in strategy and as an effective way of creating value for 
customers. A supply chain is defined as a system of suppliers, manufacturers, 
distributors, retailers and customers where material, financial and information 
flows connect participants in both directions [see for example Fiala 2005]. 
There are many concepts and strategies applied to the design and management 
of supply chains. The fundamental decisions to be made during the design phase 
are the location of facilities and the capacity allocated to these facilities.  
An approach to designing an economically optimal supply chain is to develop 
and solve a mathematical programming model. A mathematical program 
determines the ideal locations for each facility and allocates the activity to each 
facility so that the costs are minimized and the constraints of meeting  
the customer demand and the facility capacity are satisfied. A general form  
of the model for the supply chain design is given below. 

Model 

Our model of a supply chain consists of 4 layers with m suppliers,  
S1, S2, … Sm, n potential producers, P1, P2, … Pn, p potential distributors,  
D1, D2, … Dp, and r customers, C1, C2, … Cn. 

The following notation is used:  
ai  = annual supply capacity of supplier i, 
bj = annual potential capacity of producer j, 
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wk = annual potential capacity of distributor k, 

dl  = annual demand of customer l, 
P
jf = fixed cost of potential producer j, 
D

kf  = fixed cost of potential distributor k, 
S
ijc  = unit transportation cost from Si to Pj, 
P
jkc  = unit transportation cost from Pj to Dk, 
D
klc  = unit transportation cost from Dk to Cl, 
S
ijt  = unit transportation time from Si to Pj, 
P
jkt  = unit transportation time from Pj to Dk, 
D
klt  = unit transportation time from Dk to Cl, 
S
ijx  = number of units transported from Si to Pj, 
P
jkx  = number of units transported from Pj to Dk, 
D
klx  = number of units transported from Dk to Cl, 
P
jy  = bivalent variable for build-up of fixed capacity of producer j, 
D
ky = bivalent variable for build-up of fixed capacity of producer k. 

 
With this notation the problem can be formulated as follows: 
The model has two objectives. The first one expresses the minimizing of total 
costs. The second one expresses the minimizing of total delivery time. 

Min
 

1
1 1 1 1 1 1 1 1

p p pn m n n r
P P D D S S P P D D
j j k k ij ij jk jk kl kl

j k i j j k k l

z f y f y c x c x c x
= = = = = = = =

= + + + +∑ ∑ ∑∑ ∑∑ ∑∑
 

Min
 

2
1 1 1 1 1 1

p pm n n r
S S P P D D
ij ij jk jk kl kl

i j j k k l

z t x t x t x
= = = = = =

= + +∑∑ ∑∑ ∑∑
 

Subject to the following constraints: 
– the amount sent from the supplier to the producers cannot exceed the 

supplier’s capacity  

,   

1

 1, 2, ..., ,
n

ij i
j

x a i m
=

≤ =∑
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– the amount produced by the producer cannot exceed the producer’s capacity 

1
,    1,  2,  ...,  ,

p

jk j j
k

x b y j n
=

≤ =∑
 

– the amount shipped from the distributor should not exceed the distributor’s 
capacity 

1
,     1,  2,  ..., ,

r

kl k k
l

x w y k p
=

≤ =∑
 

– the amount shipped to the customer must equal the customer’s demand 

1
,     1,  2,  ...,  ,

p

kl l
k

x d l r
=

= =∑
 

– the amount shipped out of producers cannot exceed units received  
from suppliers 

1 1
0,    1,  2,  ...,  ,

pm

ij jk
i k

x x j n
= =

− ≥ =∑ ∑
 

– the amount shipped out of the distributors cannot exceed quantity received 
from the producers 

1 1

0,    1,  2,  ...,  ,
n r

jk kl
j l

x x k p
= =

− ≥ =∑ ∑
  

– binary and non-negativity constraints 

{ }, 0,1 ,

, , 0,   1,  2,  ...,  ,   1,  2,  ..., ,    1,  2,  ...,  ,   1,  2,  ...,  .
j k

ij jk kl

Y

x x x i m j n k p l r

∈

≥ = = = =  
The formulated model is a multi-objective linear programming problem. The 
problem can be solved by an MOLP method.  

The De Novo approach can be useful in the design of the supply chain. 
Only a partial relaxation of constraints is adopted. Producer and distributor 
capacities are relaxed. Unit costs for capacity build-up are computed: 

P
jP

j
j

f
p

b
=  = cost of unit capacity of potential producer j,  

D
D k
k

k

fp
w

= = cost of unit capacity of potential distributor k. 
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Variables for build-up capacities are introduced: 
P
ju  = variable for flexible capacity of producer j, 
D
ku = variable for flexible capacity of producer k. 

The constraints for non-exceeding producer and distributor fixed capacities  
are replaced by the flexible capacity constraints and the budget constraint: 

1
0,    1,  2,  ...,  ,

p
P

jk j
k

x u j n
=

− ≤ =∑  

1
0,     1,  2,  ..., ,

r
D

kl k
l

x u k p
=

− ≤ =∑  

1 1

.
pn

P P D D
j j k k

j k

p u p u B
= =

+ ≤∑ ∑  

Example 2 
An example of the supply chain with 3 potential producers, 3 potential 

distributors, and 3 customers was tested. Data are presented in Tables 1, 2  
and 3.  

 
Table 1 

 
Unit transportation costs 

P
ijc

 
D1 D2 D3 

D
jkc C1 C2 C3 

P1 5 3 8 D1 3 1 4 
P2 3 6 2 D2 6 7 2 
P3 8 4 5 D3 5 4 8 

 
 

Table 2 
 

Unit transportation time 

P
ijc

 
D1 D2 D3 

D
jkc C1 C2 C3 

P1 4 2 3 D1 6 1 2 
P2 3 2 2 D2 3 2 5 
P3 1 5 3 D3 1 4 2 
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Table 3 

 
Capacity and costs for producers and distributors 

 P1 P2 P3 D1 D2 D3 
Capacity 250 300 200 300 200 300 

Costs 150 200 180 50 60 90 
unit cost 0.60 0.67 0.90 0.17 0.30 0.30 

Customer demand: d1 = 100, d2 = 150, d3 = 200. 
 
We get the ideal objective values z* by solving single objective problems. 

The interactive method STEM is used for finding a compromise non-dominated 
solution. The De Novo approach is used for the supply chain design. The results 
are compared in Table 4. 

 
Table 4 

 
Results for supply chain design 

 Max  z1 Max  z2 Compromise De Novo 

11
Px  0 0 0 0 

12
Px  200 0 50 0 

13
Px  0 0 0 0 

21
Px  250 0 200 250 

22
Px  0 0 0 0 

23
Px  0 250 100 100 

31
Px  0 200 100 100 

32
Px  0 0 0 0 

33
Px  0 0 0 0 

11
Dx  100 0 0 0 

12
Dx  150 150 150 150 

13
Dx  0 50 150 200 

21
Dx  0 0 0 0 

22
Dx  0 0 0 0 
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Table 4 contd. 

 Max  z1 Max  z2 Compromise De Novo 

23
Dx  200 0 50 0 

31
Dx  0 100 100 100 

32
Dx  0 0 0 0 

33
Dx  0 150 0 0 

1
Pu  250 0 250 0 

2
Pu  300 300 300 350 

3
Pu  0 200 200 100 

1
Du  300 300 300 350 

2
Du  200 0 200 0 

3
Du  0 300 300 100 

1z  2660 4670 3830 3644 

2z  2900 1350 1800 1700 

B  460 520 730 444 

 
The De Novo approach provides a better solution in both objectives  

and also with lower budget thanks to flexible capacity constraints. The capacity  
of supply chain members has been optimized with regard to flows in the supply 
chain and to the budget. 

Conclusions 

De Novo programming is used as a methodology of optimal system 
design for reshaping feasible sets in linear systems. The MOLP problem  
is reformulated by given prices of resources and a given budget. Searching for  
a better portfolio of resources leads to a continuous reconfiguration and 
reshaping of systems boundaries. Innovations bring improvements to the 
desired objectives and the better utilization of available resources. These 
changes can lead to beyond tradeoff-free solutions. Multi-objective optimization 
can be regarded as a dynamic process. The De Novo approach has been applied 
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to the supply chain design problem; it provides a better solution than traditional 
approaches applied to fixed constraints. The De Novo programming approach  
is open for further extensions and applications. 
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