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Abstract 

This paper deals with the problem of the derivation of lower and upper 
approximations of an efficient element set. 

We consider the case where upper approximations cannot be derived as criteria 
mapping images of infeasible variants. 
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Introduction 

Under assumption that all criteria are of the type “the more the better” 
each outcome (i.e. the image of an admissible variant under the criteria 
mapping) lies “below” the Pareto set (the set of efficient outcomes) or is an 
element of this set. A number of such outcomes form a lower approximation  
of the Pareto set. 

By analogy, we consider an upper approximation of the Pareto set, i.e.  
a set of elements of the outcome (criteria) space which lie “above” the Pareto 
set. 

Having pairs of lower and upper approximations is of interest for two 
reasons. First, provided that elements of a lower and upper approximation  
are uniformly distributed along the Pareto set, we are in position to assess  
the maximal error one makes when representing an efficient outcome y  
by an outcome y’ taken from the lower approximation and dominated by y 
[Kaliszewski 2008; Miroforidis 2008, 2010; Kaliszewski et al. 2011, 2012].  
That is important in cases where deriving elements of the Pareto set is com-
putationally costly and working with lower approximations of the Pareto set 
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instead of the Pareto set itself is a rational option. Second, given a pair of lower 
and upper approximations lower and upper bounds on components of any 
efficient outcome pointed to by the Decision Maker preferences can be easily 
calculated. How the Decision Maker preferences point to efficient outcomes 
will be explained below. 

In this paper we discuss problems arising when deriving upper 
approximations and we illustrate our considerations by an illustrative example. 

In our earlier papers we have proposed to conduct interactive multiple 
criteria decision processes with outcome assessments instead of outcomes 
themselves [Miroforidis 2008, 2010; Kaliszewski, Miroforidis 2010a, b; 
Kaliszewski et al. 2011]. By an outcome assessment we mean lower and upper 
bounds on values of outcome components. Such an approach stemmed from  
a variety of Multiple Criteria Decision Making problems where efficient out-
comes are given implicitly by a set of constraints and therefore have to be 
derived by solving optimization problems. To provide for versatility of such  
an approach we have adapted it to employ evolutionary calculations (Evolutio-
nary Multiobjective Optimization) driven by Decision Maker preferences 
revealed in the course of interactive decision processes. 

We have founded our approach on two constructs, namely on lower 
approximations, i.e. finite subsets of feasible variants, and upper approxi-
mations, i.e. finite subsets of infeasible variants with some specific properties. 
The formal definitions of both constructs are given in the next section. 

Of interest are lower and upper approximations which are tight, i.e. their 
images under the criteria mapping are close, in a sense, to the set of efficient 
outcomes. Tight approximations provide for tight bounds in outcome assess-
ments mentioned above. Moreover, images of tight lower and upper approxi-
mations represent sets of efficient outcomes within measurable accuracy. 
Except for our earlier papers we are aware of only one paper attempting  
to exploit a similar concept, namely Legriel et al. [2010]. 

Evolutionary Multiobjective Optimization (EMO) methods and 
algorithms are dedicated to deriving tight lower approximations and that subject 
is represented by numerous publications, see e.g. Deb [2001], Coello Coello  
et al. [2002]. In contrast to this, deriving lower and upper approximations  
is a novel concept.  

A lower approximation always exists as long as the set of feasible 
variants is nonempty. However, the existence of an upper approximation is not 
guaranteed in general. In this work we consider the case where upper 
approximations cannot be derived as images of infeasible variants under criteria 
mappings. 
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The outline of the paper is as follows. In Section 1 we provide basic 
definitions and notation. In Section 2 we briefly outline the concept  
of approximating the set of efficient outcomes with the help of lower shells  
and upper shells. In Section 3 we address the case where upper shells do not 
exist and propose how to deal with that case to have our concept of outcome 
assessments still workable. Section 4 concludes. 

1. Definitions and notation 

Let x denote a (decision) variant, X  a space of variants, 0X  a set  
of feasible variants, .0 XX ⊆  Here we assume that X and 0X  are infinite.  
Then the underlying model for MCDM is formulated as: 

“max” f (x) 

0Xx∈ , 
(1)

where kRXf →: , ),...,( 1 kfff = , kiRXfi ,...,1,: =→ , ,2≥k  are criteria 
functions; ”max” denotes the operator of deriving all efficient variants  
(as defined below) in 0X . 

Element t  of ,, kRTT ⊆  is: 
– efficient in ,T  if ii tt ≥ , ,,...,1 ki =  ,Tt ∈  implies ,tt =  
– weakly efficient in ,T  if there is no ,Tt ∈  such that ii tt > , .,...,1 ki =  

Variant 0Xx ∈  is called efficient (weakly efficient) in 0X  if )(xfy =   
is efficient (weakly efficient) in ).( 0Xf  Elements of )( 0Xf  are called out-
comes.  

We denote the set of efficient variants of 0X  by .N  Elements of )(Nf  
are called efficient outcomes for, by the definition, they are efficient  
in ).( 0Xf  

We define on X − the dominance relation p  , 

)()'(' xfxfxx <<⇔p , 

where <<  denotes ,,...,1),()'( kixfxf ii =≤  and )()'( xfxf ii <  for at least  
one i . If ,' xx p  then we say that 'x  is dominated by x  and x  is dominating '.x  
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2. Lower and upper shells 

In this paper we are concerned with specific lower and upper 
approximations of the set of efficient outcomes stemming from the concept  
of lower shell and upper shell [cf. also Kaliszewski 2008; Kaliszewski 
Miroforidis 2010a, b; Kaliszewski et al. 2010, 2011]. 

The following definitions of lower and upper shells come from 
[Miroforidis 2008, 2010]. 

Lower shell is a finite nonempty set 0XSL ⊆ , elements of which satisfy 

'' xx
LL SxSx p∈∈ ¬∃∀ . (2)

Nadir point nady  is defined as 
.,...,1),(min kixfy iNx

nad
i == ∈  

Upper shell is a finite nonempty set 0\ XXSU ⊆ , elements of which 
satisfy 

,'' xx
UU SxSx p∈∈ ¬∃∀  (3)

,'' xxNxSx U
p∈∈ ¬∃∀  (4)

),(xfy nad
Sx U

≤∀ ∈  (5)

where the last inequality means kixfy i
nad
i ,...,1),( =≤ 1. 

To illustrate the concept of lower and upper shells, in Figure 1 we present 
an example of the images of lower and upper shells under criteria mapping 
derived for a problem described in Kaliszewski, Miroforidis, [2010b].  
The problem is as follows 

“max” ))(),(( 21 xfxf  

where 2
2
11 )( xxxf +−= , ,1

2
1)( 212 ++= xxxf  

subject to 0Xx ∈ , where 0X  is defined as 

                                                      
1 Since for N is not known (if otherwise, there is no need to approximate N) this definition is not operational 

and in Kaliszewski et al. [2010] we have shown how to overcome this by a somewhat weaker constructs 
than upper shells, with no direct reference to N. But if upper shells do not exist those we weaker constructs 
exist neither. 
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3. The case of nonexistence of US  

The existence of upper shells is not in general guaranteed. A collection  
of problems, selected from the EMO literature, for which upper shells do not 
exist, has been identified in Kaliszewski, Miroforidis [2010a].  

 
 

Figure 1. The images of elements of a lower shell (squares) and an upper shell (triangles) under 
the criteria mapping for the example problem of Section 3: left − full view, right − 
window 4 ≤ f1(x) ≤ 5.5, 7.8 ≤ f2(x) ≤ 8.0 

 
The nonexistence of upper shells means that there is no 0, XxXx ∉∈ , 

such that )()'( xfxf <<  for some 0' Xx ∈ . However, it does not mean that there 
does not exists kRy ∈ , such that yxf <<)'(  for some 0' Xx ∈ . In formulas  
for bounds on outcome components elements x  of US  appear only indirectly,  
via elements uSxxf ∈),( . Therefore we can replace elements uSxxf ∈),( , 
with elements kRy ∈  having the same property as uSxxf ∈),( , regardless 
existence of x  such that ).(xfy =  

7,4

7,6

7,8

8

8,2

8,4

8,6

-4 -3 -2 -1 0 1 2 3 4 5 6 7

f 2(
x)

f1(x)

7,8

7,9

8

4 4,5 5 5,5

f 2(
x)

f1(x)



Ignacy Kaliszewski, Janusz Miroforidis 126

To implement this concept we are to define an appropriate counterpart  
of the notion upper shell. We shall call such a construct a virtual upper shell.  

Virtual upper shell is a finite nonempty set ),(\ 0XfRVS k
U ⊆  elements 

of which satisfy 

,'' yy
UU VSyVSy <<¬∃∀ ∈∈  (7)

),(xfyNxVSy U
<<¬∃∀ ∈∈  (8)

.yynad
VSy U

≤∀ ∈  (9)

In the algorithm presented below we operationalize the condition (8) 
replacing it by 

).(xfy
LU SxVSy <<¬∃∀ ∈∈  (8’)

The following EMO-type algorithm derives virtual upper shells. It builds 
directly on the logic of algorithm PDAE/M proposed in Miroforidis [2010],  
cf. also Kaliszewski et al. [2011, 2012]. 

To limit the domain of searching through the set ),(\ 0XfRk  we assume 
existence of bounded set (box) 

},,...,1,|{ kiYyYRyR U
i

L
i

kk
DEC =≤≤∈=  

such that ).int()( 0
k
DECRXf ⊆  

 
Algorithm  PDAE/M_VSU 

1. 1 == :,0: j
LSj Ø, =:j

UVS  Ø. 

2. Generate randomly  1≥η   elements of   0X  and derive from those elements 
0
LS . 

3. j
LSS =: ; for each element x  of S  perform Steps 4-6. 

4. Select element  0' Xx ∈   such that  .' xx p¬   Select element  k
DECRy ∈'   

such that  '.)( yxf <<  
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5. If xxSx j
L p':∈¬∃   then 

5.1.  },'{: xSS j
L

j
L ∪=   

5.2.  }.'|{\: xxSxSS j
L

j
L

j
L p∈=  

6. If ')(:0 yxfXx =∈¬∃   and  ': yyVSy j
U <<∈¬∃   and  

)(': xfySx j
L <<∈¬∃   then 

6.1.  },'{: yVSVS j
U

j
U ∪=  

6.2.  }.'|{\: yyVSyVSVS j
U

j
U

j
U <<∈=  

7.  If  maxjj =   then STOP, otherwise  1+= jj  and go to 3. 
 

Step 1 initializes, whereas in Step 2 an initial lower shell is derived from 
a number of elements of 0X . 

Step 3 specifies that an attempt to modify j
LS  has to be made at each  

of its elements. It has been found in Miroforids [2010] that such a deterministic 
strategy, as opposed to random selection of elements to be modified, reduces 
clustering of elements in j

LS  and thus produces much more uniform lower 
approximations of .N  

The evolutionary multiobjective optimization principle is realized  
in Step 4 via the mutation operation. In this step element 'x  is selected in the 
following process: 

4.1. xx =:' . 

4.2. ).,1( mrndInti =  

4.3. If  5.0)1,0( ≤= rndInti   then 

       );)1,0(1)('(':'
)1(2 maxj

j

i
U
iii rndxXxx

−

−−+=  

otherwise 

).)1,0(1)('(':'
)1(2 maxj

j
L
iiii rndXxxx

−

−−+=  

4.4. If  xx p¬'   then go to 5; otherwise go to 4.1. 
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Function ),( barndInt  returns an integer number from the range [a,b]  
with uniform distribution. Function ),( barnd  returns a random real number  
from the range [a,b] with uniform distribution. The presented method  
of mutations and the strategy of decreasing mutation range have been taken 
form the literature [cf. e.g. Michalewicz 1996]. 

In Step 5 an attempt is made to modify the current lower shell j
LS   

with the newly generated element 'x .  
Similarly, in Step 6 the same attempt is made with respect to the current 

virtual upper shell j
UVS . Here the tricky point is to verify whether for given 'y  

there exists 0Xx ∈  such that '.)( yxf =  If yes then no amendment of j
UVS   

is made2. The existence of 0Xx ∈  such that ')( yxf =  can be verified  
by solving the optimization problem ||)('||min xfy −  subject to 0Xx ∈   
by an evolutionary optimization algorithm. 

In Step 7 the stopping rule is checked, where maxj  is the limit for the 
number of iterations of algorithm PDAE/M_VSU. 

We illustrate the concept of lower shells and virtual upper shells with 
Figure 2, where we present the image of a lower shell under the criteria 
mapping and a virtual upper shell derived for the problem DTLZ1a from Deb  
et al. [2001], as follows. 

“max” (f1(x, g),  f2(x, g)) 

where f1 = 0.5x1(1 + g), f2 = 0.5(1 – x1)(1 + g), all objective functions are to be 
minimized, and 

g = 100 [5 + ∑
=

6

2i

(xi – 0.5)2 − cos(2π(xi – 0.5))] 

0X = {x | xi ∈  [0, 1],  i = 1,..., 6}. 

Set N is made up of elements in which x2,..., x6 = 0.5 and x1 ∈ [0, 1]. 
Elements of )( LSf  and UVS  were derived in 60 iterations of algorithm 
PDAE/M_VSU. 

                                                      
2 If there exists 0Xx ∈  such that ')( yxf =  then x  is a suitable element for Step 5 for 

)'(')( xfyxf =<<  entails xx p¬' . To exploit this fact the order of Step 5 and Step 6 should be 
reversed. However, in this paper we do not investigate this variant of the algorithm. 
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Figure 3 shows the criteria mapping of 200 feasible (squares)  

and infeasible (triangles) variants generated randomly for the problem DTLZ1a. 
Variants have been generated from a box containing 0X  and checked  

for feasibility. As expected, no elements of kR  dominating any element  
of )(Nf  have been produced. It can be proved that no such element exists. 

 
 
 
 
 
 
 
 

 
 
Figure 2. The images of elements of a lower shell (squares) under the criteria mapping  

and elements of a virtual upper shell (triangles) for the DTLZ1a problem. Set f(N)  
is represented by the continuous line 

 

4. Concluding remarks and directions  
for further research 

In this paper we have proposed how to derive upper approximations  
of the Pareto set when upper shells do not exist. To this aim we have introduced 
the concept of virtual upper shells and we have shown on a numerical example 
that the idea is perfectly viable. 
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Figure 3. The images of feasible variants (squares) and infeasible variants (triangles) of total 200 

variants generated randomly under the criteria mapping for the DTLZ1a problem. Set 
f(N) is represented by the continuous line 

 
With virtual upper shells in place we are in the position to derive, for any 

instance of problem (1), an approximation of the Pareto set in the form of a pair  
of a lower approximation ),( LSf  where LS  is a lower shell, and an upper 
approximation in the form of UVS . 

In our previous papers we addressed the problem of efficiency  
of algorithms we proposed to derive US . The question of efficiency of the 
algorithm we proposed in this work to derive UVS  has been left to further 
research. 
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