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Abstract. The properties of a simple fluid, or Ising magnet, confined in an L×∞ geometry, 

are studied by means of numerical density-matrix renormalization-group techniques. 

Whereas the particle-particle potential is short ranged, the wall-particle potential is long 

ranged decaying as h1/l
p
 for various values of p-integer, where l = 1,2,…,L labels the co- 

lumns across the strip and h1 is the reduced amplitude of the boundary field. For the short-

range wall-particle potential, according to the Kelvin equation, the bulk coexistence field 

scales as 1/L for large L; thermodynamics and scaling arguments predict higher-order cor-

rections of the 1/L
2
 and 1/L

5/3
 types at partial and complete wetting, respectively. However, 

at complete wetting for a large range of surface fields and temperatures a correction 

to scaling of type 1/L
4/3
 has been found recently. We discuss the influence of long-range 

wall-fluid potentials on the scaling. Results are obtained for several values of h1 for strips of 

widths up to L = 690. 

1. Introduction 

Wetting phenomena are very common in nature [1]; the most familiar situation 

is a liquid-vapour system in contact with a solid wall. Usually one considers 

a semi-infinite geometry with a solid planar wall that preferentially adsorbs one of 

the phases of a system in thermodynamic equilibrium. Below the bulk critical tem-

perature Tc, the adsorbed phase forms either isolated droplets or a thick macro-

scopic layer. The first case, known as partial wetting, occurs for temperatures 

below the wetting temperature Tw, while the second case occurs for Tw ≤ T < Tc and 

it is referred to as complete wetting. Here, as a model system the Ising model is 

considered and both phases, the liquid one and the other the vapour one, corre-

spond to two phases with opposite magnetization. The fact that a wall can favour 

one of phases, in Ising language, corresponds to introducing surface magnetic field 

h1. The bulk magnetic field h refers to the chemical potential of the liquid-vapour 

system. In the two-dimensional (d = 2) Ising model the wetting temperature is 

known exactly [2] and decreases monotonically with the surface field h1 (see 

Fig. 1b). 

For finite systems a partial wetting is restricted to temperatures below, so 

called, the interface delocalisation temperature Td(L) as shown in Figure 1a. 

When L grows to infinity Td(L) scales to the wetting temperature Tw as 
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thickness of the wetting layer for a semi-infinite system. 

 

 
Fig. 1. (a) Phase diagram of the Ising model for a bulk system in the (h,T) plane 

(solid line). The dashed lines are the phase diagrams of confined systems 

with identical (1) and opposing (2) boundary fields. (b) Dependence of the wetting 

temperature on the field h1 for the short-range wall-particle potential 

In this paper we analyse the effect of wetting on the thermodynamics of the Ising 

model confined in an L×∞ geometry with identical boundaries. For the short-range 

wall-particle potential, if L→∞, i.e. in the bulk, phase coexistence occurs for tem-

peratures T < Tc and for vanishing bulk magnetic field h = 0. It is well known that 

the combined effect of surface fields and confinement shifts phase coexistence to 

a finite value of the bulk magnetic field h = h0(L) ≠ 0, which for large L scales, 

according the Kelvin equation [3], as 
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where: σ0, mb and θ are the surface tension, the bulk spontaneous magnetization 

and the contact angle, respectively. In other words, to have equilibrium between 

two phases, or phase coexistence, one needs a bulk field of the order of 1/L that 

compensates the effect of the surface fields. This phenomenon is analogous to the 

capillary condensation for a fluid confined between parallel surfaces, where the 

gas-liquid transition occurs at a lower pressure than in the bulk. 

To complete the picture it is worth adding that the finite size scaling predicts 

that the capillary critical point [hc(L), Tc(L)] (see Fig. 1a) scales as 
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where d is the dimensionality, ν and β are the correlation length and magnetization 

exponents [4]. 
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Albano et al. [5] and Parry and Evans [6] analysed the next order correction 

term to the Kelvin equation. Both studies, using scaling and thermodynamics 

arguments, concluded that at partial wetting, the leading correction to scaling term 

is of type 1/L
2
. In the case of complete wetting the correction is expected to be 

non-analytic due to a singularity of the surface free energy. For the d = 2 Ising 

model [5, 6] the predicted correction term is proportional to 1/L
5/3
. Monte Carlo 

simulations on M×L lattices with M >> L were also performed [5]; the dominant 

1/L scaling of the Kelvin equation was well verified, but the data were not accurate 

enough to convincingly test the type of corrections to scaling. 

Next, using density-matrix renormalization-group (DMRG) techniques, it was 

found [7] that for a large range of surface fields and temperature higher order cor-

rections are of type 1/L
4/3
. This apparent disagreement is due to the fact that even 

for the large sizes considered (L ~150) the wetting layer has a limited thickness, so 

that the singular part of the surface free energy which determines the correction to 

scaling behaviour is dominated by the contacts with the walls. In this cases a sim-

ple random walk argument indeed predicts a correction-to-scaling term of the type 

1/L
4/3
 for a thin wetting layer [7]. 

However, it is known [8] that long-range forces modify the wetting behaviour 

significantly. Therefore, in the present paper, we study an Ising model with a long-

-range wall-particle potential. It is reasonable to expect that for such a potential the 

wet layer should be thicker with respect to the short ranged wall-particle interac-

tions, which is likely to shrink the region with anomalous corrections to the Kelvin 

equation. 

2. Model 

In spite of the name, the DMRG has only some analogies with the traditional 

renormalization group being essentially the numerical, iterative basis, truncation 

method. It was proposed by White in 1992 as a new tool for the diagonalization of 

quantum chain spin Hamiltonians [9]. Later, it was adopted by Nishino for d = 2 

classical systems at non-zero temperatures [10]. The DMRG method allows to 

study much larger systems than it is possible with standard exact diagonalization 

method (up to L = 20÷30 for Ising strips) and provides data with remarkable accu-

racy. While applying the DMRG method for classical d = 2 spin systems, symmet-

ric transfer matrices are considered. Comparisons with exact results for the case of 

vanishing bulk magnetic field and boundary fields acting only on spins in the sur-

face layers show that this technique gives very accurate results in a wide range of 

temperatures [11]. Recently the method has been also applied to an Ising film 

subject to long ranged boundary fields to study the solvation force behaviour [12]. 

The Ising model has played a central role in the theory of critical phenomena. It 

can model many interesting physical situations and it is simple enough to be stud-

ied in great detail. Moreover in d = 2 this model is amenable to the systematic 
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investigations for arbitrary boundary and bulk fields by means of the DMRG 

method. 
 

  

Fig. 2. The plots of xL versus 1/L for the short-range wall-particle potential (p = 9) 

 
Fig. 3. The plots of xL versus 1/L for the long-range wall-particle potential (p = 3) 

We consider an Ising model in a slit geometry subject to identical boundary 

fields. Our results refer to the d = 2 strip defined on the square lattice of the size 
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M×L, M→∞. The lattice consists of L parallel columns at spacing a = 1, so that the 

width of the strip is La = L. We label successive columns by the index l. At each 

site, labeled (k,l), there is an Ising spin variable taking the value σkl = ±1. We assu- 

me nearest-neighbour interactions of strength J and Hamiltonian of the form 
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where h and Hl are in units of the coupling constant J. The first term in (3) is a sum 

over all nearest-neighbour pairs of sites, while in the second term h is the bulk 

magnetic field. The value s

lL

s

ll
HHH
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+=

1
 is the total boundary magnetic field 

experienced by a spin in column l. The single-boundary field s

l
H  is assumed to 

have a form ps
l lhH /

1
=  with p > 0, and the reduced amplitude of the boundary 

field h1 ≥ 0. 

3. Results 

In order to find the corrections to the Kelvin equation it is preferable to con-

sider only temperatures not too close to Tc, where DMRG iterations converge very 

quickly. Moreover, when one is far below T = Tc, one avoids the effect of cross-

over from an initial scaling (for small L) of the type (2) towards the final scaling 

(for enough large L) according to the Kelvin equation. In the present study we have 

calculated a series of values of h0(L) up to L = 690 with different values of bound-

ary fields at T = 1. 

We assume the following expansion for the bulk magnetic field h0, which re-

stores the phase coexistence: 

 ...)(
0
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γα
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L

A
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where we expect α = 1 and A given by the Kelvin equation (1). In order to calcu- 

late the exponents α and γ we define the logarithmic derivatives 
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for L = 30, 60,…,690 (in steps of L = 30). Then introducing the expansion (4) into 

the definition (5) one has to the lowest orders in 1/L 
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Figures 2 and 3 show plots of xL versus 1/L for different values of surface fields 

at p = 9 and 3, respectively. For the first case the wall-particle potential decays so 

fast that there we expect the short ranged boundaries behaviour. From the exact 

solution by Abraham one knows that for the wetting temperature Tw = 1 the corre-

sponding value of the surface field equals to h1 ≈ 0.927. Therefore it is clear that 

the plots in Figure 2 for h1 < 0.927 correspond to the case of partial wetting, where 

the scaling behaviour of xL should be linear in 1/L since one expects γ = 2 and 

α = 1 in Eq. (6). The fact that the data follow straight lines confirms the behaviour 

predicted by the theory for the short-range case (p = 9). It is worth noticing that at 

h1 = 0.85, the data follows a straight line only for large L. Therefore, we can con-

clude that the closer h1 is to the coexistence line value (at h ≈ 0.927 here), the 

larger L is necessary to reach an asymptotic regime. 

A clearly different behaviour is observed for the long-range wall-particle po- 

tential in Figure 3 (at p = 3), where the linear dependence occurs only below 

h1 = 0.80. Therefore, it seems that here the phase coexistence appears for a lower 

value of restricted boundary field h1. In details the influence of the long ranged 

boundary potential on the coexistence line Tw(h1) will be presented elsewhere. 

As one can see in Figures 2 and 3 the values of the scaling exponent α obtained 

from the DMRG converge very well to the expected value 1 (the detailed extrapo-

lation will be presented elsewhere). Thus, the Kelvin equation dependence is of 

fairly general character and it does not depend on the range of the wall-particle 

potential, which is in agreement with the Monte Carlo results [5]. To consider 

higher-order corrections (setting α = 1) one obtains from the equation (6) 

 

 

Fig. 4. The plots of ln(xL−1) versus lnL for the short-range wall-particle potential (p = 9). 

The meaning of the symbols is the same as in Figure 2 
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Figures 4 and 5 show plots of ln(xL−1) versus lnL for different values of surface 

fields at p = 9 and 3, respectively. In both cases the behaviour at partial and com-

plete wetting can be clearly distinguished. 

 

 
Fig. 5. The plots of ln(xL−1) versus lnL for the long-range wall-particle potential (p = 3). 

The meaning of the symbols is the same as in Figure 3 

At partial wetting the straight dotted lines with slope –1 fit very well the asymp- 

totic behaviour, so γ = 2 here. At complete wetting for large L the plots are well 

fitted with dashed lines with slope –2/3 (γ  = 5/3) in agreement with the current 

theory. However, one can notice that the smaller the range of the boundary poten-

tial is, the larger L is necessary to reach the asymptotic regime. Therefore, in 

agreement with the previous results [7], in Figure 4 (a short-range wall-particle 

case for p = 9) the data for a large range of L (more or less up to L = 250) are well 

fitted by straight lines with slope –1/3 (γ = 4/3). It is in consistence with the pre- 

vious explanation that even for large system sizes, like L = 100÷200, the wetting 

layer has a limited thickness, so the singular part of the surface free energy that 

determines the corrections-to-scaling behaviour is dominated by the contacts with 

the walls. In this case a simple random walk argument predicts a correction of the 

type γ = 4/3 for a thin wetting layer [7]. When the range of the wall-particle poten-

tial grows, then a wetting layer is getting thicker and for smaller L the asymptotic 

limit (γ = 5/3) is reached. 
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Fig. 6. The magnetization profiles of the two coexisting phases at T = 1 and h1 = 1 

(for L = 120), approaching complete wetting, for different ranges 

of the wall-particle potential 

The above arguments are illustrated in Figure 6, where the magnetization pro-

files for two coexisting phases are presented. The magnetizations are plotted as 

a function of the scaled variable (l−1)/(L−1) at T = 1 and h1 = 1; this corresponds 

to a regime of complete wetting [Tw(h1 = 1) = 0]. We should also stress that the 

profiles refer to bulk fields slightly lower and higher than the coexistence field 

h0(L). For bulk field exactly equal to h0(L) the magnetizations of the two coexist-

ing phases are averaged and it is not possible to distinguish between them. The 

negative bulk field favours a bulk phase with negative magnetization (vapour) 

but the positive boundary fields favour the adsorption of positive spins (liquid) 

at the boundaries. Since T ≥ Tw the positive spins form a layer that wets the walls. 

Obviously for a long-range wall-particle potential (p = 3) the wetting layer is thi- 

cker than for the short-range case (p = 9). 

4. Conclusions 

In this paper we have analysed the influence of a long-range wall-particle 

potential on the thermodynamics of an Ising model in a strip geometry. We confir-

med that the bulk coexistence field scales according to the Kelvin equation and we 

verified the previous results for leading correction terms at partial and complete 

wetting. The comparison of results for different ranges of a wall-particle potential 

confirms the previously proposed scenario to explain the origin of the anomalous 

corrections to the Kelvin equation at complete wetting. 
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