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Abstract 

We present an approach to modeling equilibrium in non-cooperative non-zero 
sum games taking into account player altruism. The altruistic preferences concern  
the relations between changes of the given player’s and the other players’ pay-offs.  
The degree of altruism is represented by the altruistic coefficient for each pair  
of players. We prove that any Pareto optimal strategy profile can be an equilibrium  
if the level of player altruism is high enough. 
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Introduction 

In recent years one can observe a tendency toward enhancing the game- 
-theoretical apparatus integrated into the economic theory. The “classical” game 
theory models are based on the assumption that a player aims only at increasing 
his/her own pay-off. Such models are unable to explain why cooperation 
emerges in the wide variety of prisoner’s dilemma-like economic affairs in real 
life. Let us refer to the journalistic article by Paul Krugman* [2009], where  
he criticizes the current state of economical science in the context of the world 
economy crisis. He points out, among other methodological defects, that  
the view of individual behavior of economic agents is primitively rational.  
The cognitive and behavioral approaches to economics, in contrast, are 
considered to be new directions of research for tackling the complex behavior  
of economic agents in the context of their personality. Thus, new models 
explaining player behavior are needed.  

                                                      
* The winner of the Nobel Memorial Prize in Economic Sciences in 2008. 
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Since the initial models of player behavior are based on the assumption  
of absolute egoism, the attempts to enhance them imply introducing non- 
-egoistic features into the player behavior. The idea of modeling altruistic 
behavior can be traced back to Edgeworth [1881] (as described in Collard 
[1975]). Edgeworth proposed to increase an individual’s utility by a value 
proportional to the utility of another person. The most popular models  
of altruistic player behavior in games have the form of utility functions which 
depend not only on the player’s pay-off, but also on pay-offs of the other 
players. For example, the utility function by Fehr and Schmidt [1999] includes 
negative terms as penalties for distributional unfairness. The function by Bolton 
and Ockenfels [2000] depends on the relation between the player’s own and the 
average pay-offs. Charness and Rabin [2002] built their function assuming that 
the player is interested in increasing the minimal and the average pay-offs of the 
other players.  

Our approach differs from those mentioned above. We consider the 
situation where a player chooses his/her strategy while the other players’ 
strategies are fixed. We formulate a condition when the player prefers not  
to change his/her strategy. Thus, the proposed preference model is bound 
directly to the notion of equilibrium, and the existence of a utility function 
characterizing the player preferences is not required.  

1. The definition of altruistic equilibrium 

Consider a p-person, p > 1, non-cooperative non-zero sum game (S,a), 
where  
S=S1×S2 × … × Sp is the set of strategy profiles, Sk:= {1,2, … , mk}, mk  > 1,  
is the strategy set of k-th player, k∈Np:= {1,2, … , p}; 
a=(a1,a2, … , ap): S → Rp is the vector of pay-off functions, ak: S → R  
is the pay-off function of k-th player yielding pay-off ak(I) for each strategy  
profile I ∈ S. 

For any strategy profile I=(i1,i2, … , ip) and any player k, define another 
strategy profile which differs from I only by strategy of player k:  

I〈k,j〉=(i′1, i′2, … , i′p), where i′l=il for any l≠k and i′k=j, j∈Sk, j≠ik. 

Definition 1. Strategy profile I is a Nash equilibrium in game (S,a), if  

ak(I) ≥ ak(I〈k,j〉) for any k∈Np and any j∈Sk. 
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Definition 2. Strategy profile I is Pareto optimal in game (S,a),  
if there does not exist any other strategy profile I′ such that 

a(I′) ≥ a(I),  a(I′) ≠ a(I). 

We propose the following assumption about the altruistic behavior  
of players: 

each player evaluating one strategy versus another, 
prefers not to gain in his/her pay-off, if this leads to  

disproportionately large loss in pay-offs of other players. 

To quantify this assumption, for each pair of players we introduce  
the altruistic coefficient. Denote two players by k and l, k ≠ l, and denote  
the altruistic coefficient of player k with respect to player l by αkl, αkl ≥ 0.  
This coefficient applies in the following situation. Let player k evaluate one  
of his/her strategies, say i, over another his/her strategy, say j, under  
the assumption that the strategies of the other players are known. Let strategy i 
give player k a greater pay-off in comparison to j, but if player k chooses i  
over j, then player l loses in his/her pay-off. In these terms, the above 
assumption is reformulated as follows: 

player k does not prefer strategy i to strategy j,  
if the pay-off loss of player l multiplied by αkl  

is greater or equal to the pay-off gain of player k. 

We define the matrix of altruistic coefficients Α = (αkl)p×p∈ , 

where αkk  := 1, k∈Np, and  is the set of non-negative matrices with ones 
on the main diagonal. 

Definition 3. Strategy profile I is called altruistic equilibrium or  
Α-equilibrium, if for any player k∈ Np and any his/her strategy j∈ Sk, j≠ ik,  
the following implication holds:  

if  ak(I〈k,j〉) > ak(I), then for some player l∈Np, l≠k, it follows  

αkl(al(I) – al(I〈k,j〉 )) ≥ ak(I〈k,j〉 ) – ak(I). (1)

  

pp×
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Literally, Α-equilibrium is a strategy profile such that no player wants  
to change his/her strategy for the following reason: if the player can gain in pay- 
-off by changing his/her strategy, then this leads to pay-off loss of another 
player such that the absolute value of the pay-off loss multiplied by the 
corresponding altruistic coefficient is greater than or equal to the pay-off gain  
of the first player.  

A player's altruistic behavior restricts the domains in which players act 
exclusively in their own interests. The greater a player's altruistic coefficient is, 
the more severe this restriction. On the other hand, if αkl  = 0 then player k does 
not feel any altruism with respect to player l and acts as in an “ordinary” game. 
Indeed, for αkl  = 0 the implication in Definition 3 takes the form: 

if ak(I〈k,j〉) > ak(I) then ak(I〈k ,j〉) – ak(I) ≤ 0 

which holds true if and only if ak(I〈k ,j〉) ≤ ak(I). It follows that the definition  
of Α-equilibrium is equivalent to the definition of Nash equilibrium, if all the 
altruistic coefficients are equal to zero. 

Let us compare our concept of altruistic equilibrium to the concept 
implied by the Edgeworth’s [1881] proposition on altruism (see Collard 
[1975]). Under the Edgeworth’s assumption that the player’s pay-off  
is increased by a value proportional to the pay-off of the other player,  
the equilibrium definition in a two player game takes the following form: 

Strategy profile I is an Edgeworth Α-equilibrium in game (S,a)  
if and only if 

a1(I)–a1(I〈1,j〉) ≥ α12(a2(I〈k,j〉)–a2(I)) and  
a2(I)–a2(I〈1,j〉) ≥ α21(a1(I〈k,j〉)–a1(I))  for any  j∈Sk. 

Our Definition 3 has the following form in the case of two players: 

Strategy profile I is an Α-equilibrium in game (S,a) 
if and only if 

a1(I) – a1(I〈1,j〉) ≥ min{0, α12(a2(I〈k,j〉) – a2(I))} and 
a2(I) – a2(I〈1,j〉) ≥ min{0, α21(a1(I〈k,j〉) – a1(I))}  for any  j∈ Sk. 

The main difference is that the approach based on the Edgeworth’s 
proposition may lead to a situation where a player sacrifices a small part  
of his/her pay-off to the benefit of another player. Our approach does not imply 
such a possibility.  
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Note that in the general case, the Edgeworth’s Α-equilibrium in game 
(S,a) is equivalent to the Nash equilibrium in game (S,a′) with the linearly 
transformed pay-off function: a′(I) = Α a(I) for any I ∈ S. 

2. Altruism and cooperation  

One important consequence of altruistic behavior is that it may lead  
to cooperation among players. We will prove that if the players are altruistic 
enough, then there exists an altruistic equilibrium which is efficient (Pareto 
optimal). 

Definition 4. We call strategy profile I locally efficient, if there does not 
exist k∈p, j∈Sk\{ik} such that  

ak(I〈k,j〉) > ak(I) and al(I〈k,j〉) ≥ al(I) for any l∈ Np\{k}. 

In other words, I is locally efficient if it is not “dominated” by any 
“neighbor” strategy profile I〈k,j〉. Here “domination” differs from the Pareto 
domination relation by the requirement ak(I〈k ,j〉) > ak(I), and “neighborhood”  
of strategy profiles is understood as difference in only one player's strategy.  

Theorem 1. Let I∈ S. There exists Α = (αkl)∈  such that I is an  
Α-equilibrium if and only if I is locally efficient. 

Proof. Sufficiency. Suppose that I is locally efficient. Then for any 
player k such that: 

ak(I〈k,j〉) > ak(I) for some strategy j∈Sk, j≠ik, 

there exists another player l such that 

al(I〈k ,j〉) < al(I). 
If αlk satisfies 

,   

then we have (1). It follows that I is an Α-equilibrium, if the altruistic 
coefficients are large enough. 
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Necessity. If I is not locally efficient, then for some k∈p and some 
j∈Sk\{ik} we have 

ak(I〈k,j〉) > ak(I)  and  al(I〈k ,j〉) ≥ al(I)  for any  l∈Np\{k}. 

It follows that there does not exist l ∈ Np, l ≠ k, and positive αlk satisfying (1). 
Therefore I is not an Α-equilibrium for any altruistic coefficients.  

It is evident that any Pareto optimal strategy profile is locally efficient. 
Therefore Theorem 1 implies: 

Corollary 1. For any Pareto optimal strategy profile I∈ S in game (S, a), 

there exists Α∈  such that I is an Α-equilibrium. 
Actually, Corollary 1 is a stronger proposition than the existence of an 

altruistic equilibrium being Pareto optimal. We have proved that any Pareto 
optimal strategy profile can be an altruistic equilibrium, if the altruistic 
coefficients of players are large enough. Observe that the existence of a Nash 
equilibrium in the game is not required. 

Let us illustrate the altruistic equilibrium concept by the example of the 
prisoner's dilemma game. The classical interpretation of the game is that both 
players are suspected in a crime they committed together. They are separated 
from each other and interrogated simultaneously. Each of them have to decide 
either to betray the partner or to stay silent. The absolute values of pay-offs 
indicate how many years of imprisonment will a player get depending on both 
players’ decisions.  

Example 1. Denote the players by Player A and Player B. The pay-off 
matrix is following: 

 Player A stays silent Player A betrays 
Player B stays silent (−0.5, −0.5) (0, −10) 
Player B betrays (−10, 0) (−2, −2) 

Here the two numbers in parentheses denote Player A’s and Player B’s  
pay-offs, respectively.  

The paradox is that the cooperative solution (stay silent, stay silent) is not 
an equilibrium (in the sense of Nash), if the players behave rationally. On the 
contrary, the unique equilibrium is (betray, betray) which yields a non-efficient 
outcome. 

Now suppose that both altruistic coefficients are equal to 0.1. 
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Consider the situation where Player A stays silent. If Player B had 
betrayed instead of staying silent, he/she would condemn Player A to additional 
9.5 years of imprisonment while avoiding only 0.5 year imprisonment  
for him/herself. The pay-off loss of Player A multiplied by the altruistic 
coefficient is greater than the pay-off gain of Player B (9.5 ⋅ 0.1 > 0.5). Then 
according to our assumption, Player B prefers to stay silent. Analogously,  
if Player B stays silent, then Player A prefers to stay silent too. Thus, (stay 
silent, stay silent) is an equilibrium in the sense that no player deviates from 
his/her strategy if the partner does not.  

3. Characterization of strategy profiles in terms  
of altruistic equilibrium  

According to Theorem 1, any (and only such) locally efficient strategy 
profile can be an altruistic equilibrium for sufficiently large altruistic 
coefficients. The following question arises: for what values of altruistic 
coefficients a given strategy profile is an altruistic equilibrium?. Answering this 
question means characterizing a locally efficient strategy profile I by a set  
of matrices Ω(I) such that I is an Α-equilibrium if and only if Α ∈ Ω(I). We can 
build such a characterization with the help of the trade-off concept.  

Trade-off coefficients are widely used in multiple criteria decision 
making to characterize solutions in terms of partial preferences concerning 
relative importance of criteria (see Kaliszewski [2006]). We define the trade-off 
coefficient in a game as the ratio between the improvement of a player's pay-off 
and the worsening of another player's pay-off caused by the former player's 
strategy change. 

Definition 5. For any strategy profile I, any pair of players k, l ∈ Np, 
k ≠ l, and any k-th player's strategy j∈ Sk such that ak(I〈k,j〉) > ak(I)  
and  al(I〈k,j〉) < al(I), the number 

 
is called altruistic trade-off coefficient of player k with respect to player l  
for strategy profile I and strategy j. 

In the following obvious proposition, we reformulate the definition  
of Α-equilibrium in terms of altruistic trade-off coefficients. 
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Proposition 1. A locally efficient strategy profile I is an Α-equilibrium  
if and only if for any player k ∈ Np and any strategy from his/her strategy set 
j ∈ Sk, j ≠ ik, the following implication holds: 

if  ak(I〈k,j〉) > ak(I), then there exists  
another player l ∈ Np such that al(I〈k,j〉) < al(I) and Tkl(I,j) ≤ αkl. 

Let us apply this proposition to characterize the cooperative solution  
of the Prisoner's Dilemma game  

Example 2. Consider the Prisoner's Dilemma game described in Section 
3, where the players and the strategies are numbered in the following way: 
Player A = 1, Player B = 2, “stay silent” = 1 and “betray” = 2.  

Consider the strategy profile I:= (1,1). It is locally efficient. Let us 
calculate the altruistic trade-off coefficients for I:  

T12(I,2) = T21(I,2) = 0.5/9.5 = 1/19. 

According to Proposition 1, strategy profile I is an Α-equilibrium if and 
only if α12 ≥ 1/19 and α21 ≥ 1/19. So it suffices that each player considers  
the other player's interests 19 times less important than his/her own interests,  
to make the cooperation possible. 

It is easy to characterize a strategy profile in a game with two players 
with the help of the following evident corollary from Proposition 1. 

Corollary 2. Let p = 2. A locally efficient strategy profile I = (i1,i2)  
is an Α-equilibrium if and only if α12 ≥ τ12 and α21 ≥ τ21, where 

τkl = max{Tkl(I,j): j∈ Sk, j ≠  ik, ak(I〈k,j〉) > ak(I), al(I〈k,j〉) < al(I)}, 
(k,l) ∈ {(1,2),(2,1)} } 

and the maximum over the empty set is assumed to be zero. 
Unfortunately, in a game with more than two players it is impossible  

to characterize a strategy profile by lower bounds of altruistic coefficients.  
In other words, it is impossible to represent the characterization in the following 
form: the strategy profile is Α-equilibrium if and only if αkl ≥ τkl for any 
k,l ∈ Np, k ≠ l, where τkl is the lower bound for altruistic coefficient.  
This difficulty is illustrated by the following example.  

Example 3. Consider the game with 3 players each having 2 strategies 
and following pay-off functions: 
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Player 1 pay-off function  

 i2=1 i2=2 
 i3=1 i3=2 i3=1 i3=2 

i1=1 4 3 0 1 
i1=2 5 1 1 3 

 
 
 

Player 2 pay-off function  

 i1=1 i1=2 
 i3=1 i3=2 i3=1 i3=2 

i2=1 3 3 5 1 
i2=2 4 1 1 4 

 
 
 

Player 3 pay-off function  

 i1=1 i1=2 
 i2=1 i2=2 i2=1 i2=2 

i3=1 10 2 0 1 
i3=2 8 1 1 6 

 
It is easy to check that the strategy profile I := (1,1,1) is locally efficient. 

Let us characterize it with the help of altruistic trade-off coefficients. 
Altruistic trade-off coefficients of Player 1: T13(I,2) = 0.1; T12(I,2)  

is undefined because when Player 1 changes his/her strategy from 1 to 2, 
Player's 2 pay-off is not decreased. 

Altruistic trade-off coefficients of Player 2: T21(I,2) = 0.5; 
T23(I,2) = 0.25. 

Altruistic trade-off coefficients of Player 3 are undefined because 
a3(1,1,2) < a3(1,1,1), which means that Player 3 is not interested in changing 
his/her strategy. So the degree of this player’s altruism does not influence  
the equilibrium. 

Applying Proposition 1, we obtain that I is an Α-equilibrium if and only if 

α13 ≥ 0.1  and  (α21 ≥ 0.5 or α23 ≥ 0.25). 

Thus, instead of a set of constraints on the altruistic coefficients, we have  
a logical expression which does not necessarily include all of them.  
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In general, the strategy profile characterization implied by Proposition 1 
can be formulated as follows: 

Locally efficient strategy profile I is Α-equilibrium if and only if 

 (2)

where 

 is the subset of players who can improve their 
pay-offs by changing their strategies, 

 is the subset of player k 's 
strategies, for which his/her pay-off is greater than the initial pay-off, 

 is the set of players who suffer from 
player k changing his/her strategy to j. 

Thus, the set of matrices characterizing a strategy profile may have  
a rather complicated structure in the case of a large number of players. 

Conclusion 

We presented an approach to modeling equilibrium in multi-player non- 
-zero sum games taking into account the relative preferences of players, namely  
the relative importance of their own gains and other players’ losses. We suppose 
that in addition to striving for their own profit, players are concerned with not 
harming the interests of other players disproportionately, which can be referred 
to as altruism. Such a deviation from the egoistic behavior in real life may  
be conditioned by moral and ethic concerns, fear, reputation concern, and many 
other motivation factors.  

The intensity of mutual altruism of players is quantified by a non- 
-negative altruistic coefficient. When the altruistic coefficients are zero,  
the altruistic equilibrium is reduced to the Nash equilibrium, so the concept 
proposed may be considered as a generalization of the Nash equilibrium 
concept. 

Our approach does not require to characterize player preferences in terms  
of a utility function (in contrast to other approaches, see Fehr and Schmidt 
[1999], Bolton and Ockenfels [2000], Charness and Rabin [2002]). On the 
contrary, the proposed equilibrium condition is based on direct comparison  
of pay-off differences. It is worth to note that the proposed model is not the only 
possible formalization of the player altruism concept in terms of relative 
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importance preferences. The model based on the Edgeworth’s proposition (see 
the end of Section 2) describes a slightly different variant of the altruistic 
behavior. 

The clear interpretation of the model proposed makes it useful for 
analyzing equilibrium situations in terms of relative preferences. For example, 
after estimating the degree of player altruism, one can describe a range  
of possible equilibria. And vice versa, analyzing the information about 
equilibria achieved and unachieved among locally efficient solutions, one can 
estimate the degree of player altruism in terms of bounds on altruistic 
coefficients. This can be done by characterizing strategy profiles in terms  
of altruistic trade-off coefficients (see Section 4).  

Another possible application of the model proposed is in the field  
of repeatedly played games. This research area attempts to explain cooperative 
behavior through natural selection mechanisms. For example, Axelrod [1980, 
1984] conducted game tournaments with two players and found out a long-term 
incentive for cooperation in their behavior. In the framework of evolutionary 
approach, Robson [1990] proposed a model where a prisoner's dilemma-like 
game is repeatedly played in a population of players and there are “mutants” 
who cooperate by playing with other “mutants” and betray by playing with the 
rest of individuals. An invasion of “mutants” displays the advantage of the 
cooperation strategy. Chlebuś et al. [2009] built a computer simulation  
of a society, where economic activity is modeled dynamically by repetitive 
playing of random prisoner's dilemma-like games. By varying parameters  
of players’ behavior, one can analyze how the propensity to cooperate 
influences social welfare. Other examples of the evolutionary approach applied 
to the game theory can be found in Nowak and Sigmund [2004], Szabó and Fáth 
[2007]. Our model can be used to quantify the degree of player altruism  
in evolutionary simulations. It would be interesting to trace the dependence 
between the inclination to altruism and the survivability or welfare of the player 
population. 
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