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Abstract. The one-dimensional time-fractional advection-diffusion equation with the Caputo 

time derivative is considered in a half-space. The fundamental solution to the Dirichlet 

problem and the solution of the problem with constant boundary condition are obtained 

using the integral transform technique. The numerical results are illustrated graphically. 
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1. Introduction 

Fractional calculus (the theory of integrals and derivatives of arbitrary order) 

has many applications in different areas of physics, biology and engineering [1-5]. 

The time-fractional advection-diffusion equation  
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describes diffusion or heat conduction with additional velocity field, transport pro-

cesses in porous media or groundwater hydrology. This equation can be obtained 

as a consequence of the balance equation for mass and the time-nonlocal constitu-

tive equation for the matter flux with the “long-tail” power kernel [6] (compare 

the analysis of [6] with the analysis of the generalized Fourier or Fick law carried 

out in [7-10]). The comprehensive survey of literature on the fractional advection- 

-diffusion equation can be found in [11]. In the previous paper [12] the fundamen-

tal solution to the Cauchy problem for time-fractional advection-diffusion equation 

with one spatial variable was obtained in the domain x−∞ < < ∞ . In the present 

paper we study the Dirichlet problem for this equation in a half-line 0 x< < ∞ . 

Two types of boundary conditions are considered: the Dirac delta boundary condi-
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tion for the fundamental solution and the constant boundary condition for the 

sought-for function. 

2. The fundamental solution to the Dirichlet problem 

We consider the time-fractional advection-diffusion equation 
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where 0 1, 0 , 0 , 0, 0x t a vα< ≤ < < ∞ < < ∞ > > . In equation (2) /c t
α α

∂ ∂  is the 

Caputo fractional derivative of the order α  [13]: 
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where ( )xΓ  is the gamma function. Equation (3) simplifies for 0 1α< < : 
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The equation (2) is considered under zero initial condition 

 ( ),0 0c x = , (5) 

and the Dirichlet boundary condition 

 ( ) ( )0
0,c t g tδ=  (6) 

with ( )tδ  being the Dirac delta function. In the above condition we have intro- 

duced the constant multiplier 
0
g  to obtain the nondimensional quantity displayed 

in figures. 

The zero condition at infinity is imposed as follows: 
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Introducing the new sought-for function 
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the initial-boundary-value problem (2), (5)-(7) is reduced to the following one: 
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To solve the Dirichlet problem under consideration we use the Fourier sine 

transform with respect to the spatial coordinate x : 
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The Fourier sine transform of the second order derivative of a function is defined 

by the relation: 
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Application of the Fourier sine transform (13) to equation (9) using (15) leads to 
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Next, we use the Laplace transform with respect to the time t . For the function 

( ),u t 0 ,t< < ∞  this transform is defined by 
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with the inverse carrying out according to the Fourier-Mellin formula 
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where γ  is a positive fixed number. 

For the Laplace transform rule the Caputo fractional derivative requires 

the knowledge of the initial values of the function and its integer derivatives 

of the order 1,2, , 1:k n= −K   
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Equation (19) simplifies for 0 1α< < :  
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Applying the Laplace transform to equation (17) and taking into account 

the rule (20) with the initial condition (10) gives  
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In the transform domain we get: 
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Inversion of the integral transforms results in the solution: 
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where the formula [8] 
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has been used with 
,

( )E zα β  being the Mittag-Leffler function in two parameters 

α , β  and having the series representation 
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Returning to the quantity ( , )c x t  according to (8), we get 
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The quantities appearing in the fractional advection-diffusion equation (2) 

and the boundary condition (5) have the following physical units: [c] = kg/m
3
, 

[x] = m, [t] = s, [a] = m
2
/s

α
, [v] = m/s

α
, [g0] = kg · s/m

3
. At a level of individual 

particle motion the classical diffusion ( 1α = ) corresponds to the Brownian motion 

which is characterized by a mean-squared displacement increasing linearly with 

time 

 2
x at≈  with [a] = m

2
/s  

Anomalous diffusion is exemplified by a mean-squared displacement with the 

power law time dependence 

 2
x at

α

≈  with [a] = m
2
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Using the nondimensional quantities 
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one obtains the following solution: 
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The results of numerical calculations for different values of the drift parameter 

v  and the order of the time-fractional derivative α  are shown in Figures 1-4. 
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Fig. 1. The fundamental solution to the Dirichlet problem for  α = 1 

 

Fig. 2. The fundamental solution to the Dirichlet problem for  α = 0.5 

 

Fig. 3. The fundamental solution to the Dirichlet problem for 0v =  
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Fig. 4. The fundamental solution to the Dirichlet problem for 3v =  

3. Constant boundary value of a function 

Next we consider the time-fractional advection-diffusion equation (2) under 

zero initial condition (5), the condition (7) at infinity and the Dirichlet boundary 

condition with constant boundary value of the sought-for function: 
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0,c t c= . (29) 

As above, the new sought-for function u  is introduced (see (8)), and the Laplace 

transform with respect to time and the Fourier sine transform with respect to the 

spatial coordinate give the solution in the transform domain: 
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Taking into account that 
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we obtain 
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or, after inversion of the integral transforms, 
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In this case ,1( ) ( )E z E z
α α

≡  is the Mittag-Leffler function in one parameter α  (see 

the series representation (25) with 1β = ). 

Taking into account the following integral [14]: 
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and returning to the quantity ( ),c x t  according to (8), we get 
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and 
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where 
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other nondimensional quantities are the same as in (27). 

The results of numerical calculations according to the solution (36) are shown 

in Figures 5-8 for different values of the drift parameter v  and the order of the 

time-fractional derivative α . 
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Fig. 5. The solution to the Dirichlet problem with constant boundary value 

of a function for  α = 1 

 
Fig. 6. The solution to the Dirichlet problem with constant boundary value 

of a function for  α = 0.5 

 
Fig. 7. The solution to the Dirichlet problem with constant boundary value 

of a function for 0v =  
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Fig. 8. The solution to the Dirichlet problem with constant boundary value 

of a function for 3v =  

4. Conclusions 

We have considered the time-fractional advection-diffusion equation with the 

Caputo fractional derivative in the case of one spatial coordinate in the semi-infinite 

domain 0 x< < ∞ . The Laplace transform with respect to time and the Fourier sine 

transform with respect to the spatial coordinate have been used. The fundamental 

solution to the Dirichlet problem and the solution to the problem with constant 

boundary condition for the sought-for function have been obtained. The results 

of numerical calculations are displayed in figures for different values of the drift 

parameter v  and the order α  of the Caputo fractional derivative. It is seen from 

the figures that decreasing of the order of the fractional derivative α  (taking 

memory into account) leads to retardation of the mass transport process (both the 

pure diffusion and the influence of the drift parameter). This is due to the compli-

cated internal structure of the modeled medium (the presence of pores, inclusions, 

combs, etc.) which causes the memory effects. The influence is more noticeable 

for the fundamental solution than in the case of constant boundary condition. 

The numerical calculations were carried out using the package Mathematica. 
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