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Abstract 

The paper is devoted to the application of stochastic dominance rules to portfolio 
selection problem with diversification possibilities. The approach based on multi-cri-
teria decision making methodology, proposed by W. Ogryczak, is considered. The paper 
describes the application of the reference methods to define the set of the SSD effective 
portfolios and to choose the portfolio according to the general model of preference 
under risk. 
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Introduction 

The portfolio selection problem is one of the classical problems  
of decision theory under risk. The selection of portfolio can be done according 
to the investor’s risk preferences described by the certainty equivalent function 
– the utility function in the expected utility theory or the distortion function  
in the dual theory of the decision under risk. These certainty equivalent 
functions are implicit and not available before the decision process. That is why 
the stochastic dominance (SD) concept has been widely applied to portfolio 
selection problems in the last decades. The theoretical attractiveness of SD lies 
in its non-parametric orientation. SD criteria do not require the full specification 
of decision-maker’s risk preferences, but rather rely on general preference 
assumptions [4]. 
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But practical application of SD rules to portfolio problems with diversifi-
cation possibilities is difficult, because these rules are based on pairwise com-
parison of distribution functions of linear combinations of random variables. 
This problem can be modeled using the multi-criteria optimization problem. 
Such approach, proposed by Ogryczak [7], is considered in this paper.  

First, the motivation for the use of the multi-criteria optimization methods 
to define the SSD effective portfolios is presented. We analyze the consistence 
of the preference structure among the criteria of the multi-criteria problem 
generating the SSD effective portfolios with the preferences under risk.  
We consider different models of the risk preferences.  

Then the definition of the set of the SSD effective portfolios by  
the methods of the compromise programming, proposed by M. Zeleny [13],  
is described. 

The selection of the SSD effective portfolio according to the models  
of the risk preferences is also possible. For this aim, we use the bi-reference 
procedure of multi-criteria optimization, proposed by W. Michalowski  
and T. Szapiro [5]. 

1. The models of preference under risk 

The portfolio selection problem is considered, as follows. Let us denote 
the returns of n assets, comprising the investment universe, by 

),...,,( 21 nrrr=r . The returns are the random variables with cumulative 
distributions functions ),...,1(,},Pr{)( nittrtG iri

=∈≤= R . The investor may 

diversify between the assets and the decision vector ),...,,( 21 nxxx=x   
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as a linear combination of random variables is a random variable too with 
cumulative distribution function R∈≤= ttRtGR },Pr{)( .  

The random returns of portfolios are compared using the investor’s risk 
preferences described by the function of the certainty equivalent – the utility 
function u(t) in the expected utility theory or the distortion function w(t)  
in the dual theory of the decision under risk. 

The utility function u(t) assigns to the value b][a,t ∈  the probability  
u(t) with which the lottery, where the gain b is given with probability u(t)  
or gain a is given with probability (1-u(t)), is equivalent to the receiving  
the certainty value t. The utility function u(t) is non-decreasing on t and for  
a risk-averse decision-maker this function is concave on t. 
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If the investor’s preferences are described by the utility function u(t),  
the optimal portfolio is the one maximizing the Neumann-Morgenstern’s 
expected utility function of the portfolio return: 

max)()()()( →== ∫
b

a
R tdGtuREuRU  (1) 

In the dual theory of decision under risk [12] the certainty equivalent  
is the distortion function w(t). Distortion function w(p) assign to the probability 
value [0,1]p ∈  the part of the lottery gain, which received certainly is equi-
valent to the participation in lottery where gain is given with probability p.  
The distortion function w(p) is non-decreasing on p and w(0) = 0, w(1) = 1.  
The risk-averter’s distortion function is convex on p. 

If the distortion function describes the investor’s preferences, the optimal 
portfolio is the one which maximizes the Yaari’s functional: 
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where: 

G*R(t) = Pr{R > t} = 1 – GR(t)  t∈R  survival function of R, 

)()( 1* pGR
− = inf{t | G*R(t) ≤ p} 0≤p≤1 – inverted function of G*v(t). 
 
The utility function and the distortion function are complementary de-

scriptions of the decision-maker’s attitude to the risk and are explored together 
in the modern theories of decision under risk. Rank-dependent Expected Utility 
Theory (RDUT) [8] and Cumulative Prospect Theory (CPT) [11], using  
the combination of the utility function and the distortion function in the model  
of decision-maker’s preferences, allow to describe the preferences under risk 
more flexibly.  

The most characteristic feature of this theories is the consideration  
of the rank-dependence and reference-dependence of the preferences under risk 
[9, 1]. The rank-dependence of the decision-maker’s preferences is the non- 
-linear perception of the probabilities – the overweighting of large probabilities 
and underweighting of small probabilities. The reference-dependence of the de-
cision-maker’s preferences means that the losses (the negative deviations from 
the status-quo) are perceived differently than gains. The aversion to the loss 
weights significantly more than the attraction of a corresponding gain,  
this feature called loss aversion. 
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2. Stochastic dominance concept  

and portfolio selection problem 

In practical applications full information about the preference function  
is not usually available and this is the reason for using the stochastic dominance 
criteria that rely on a set of general assumptions rather than a full specification 
of the preference function.  

Stochastic dominance criteria allows to divide the set of feasible de-
cisions into efficient and inefficient sets depending on general assumption about 
attitude to risk. Uncertain returns are compared by pointwise comparison  
for some performance function constructed from distributions functions [4]. 

The first stochastic dominance (FSD) criterion assumes that the decision- 
-maker prefers more to less. The return of portfolio x′ dominates the return  
of portfolio x″ in the sense of first stochastic dominance if and only if 
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where })(|inf{)()1( ptGtpG RR ≥=−  is a p-quantile function of random variable 
R. 

The second stochastic dominance (SSD) criterion assumes risk aversion. 
The return of portfolio  x′ dominates the return of portfolio x″ in the sense  
of second stochastic dominance if and only if 

RttGdGdGtG R

t

R

t

RR ∈∀=≤= ′′
∝−

′′
∝−

′′ ∫∫ ),()()()( )2()2( αααα  

or      ∫ ∫ ≤∀=≥= −
′′

−
′′

−
′

−
′

p p

RRRR ppGdGdGpG
0 0

)2()1()1()2( 0),()()()( αααα  

A portfolio is efficient if its return is nondominated.  
An SSD efficient portfolio is preferred to an inefficient portfolio within 

all risk-averse preference models where larger returns are preferred.  
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3. SSD consistent portfolio diversification  

as a multi-criteria optimization problem 

The diversification of portfolio makes an infinite number of choice alter-
natives.  

Stochastic dominance consistent diversification is possible within 
multiple-criteria optimization methodology [7]. This approach based on point-
wise approximation of the stochastic dominance conditions to a set of criteria 
for multi-criteria optimization problem. 

This approach, based on the quantile stochastic dominance conditions, 
allows for taking into consideration non-expected utility theories of choice 
under risk.  

In this approach the finite set of tolerance levels of probability  
0 < λ1< λ2,..., λK = 1 is selected and the criteria )()2(

kRG λ−  are maximized for 
k=1,…,K. If the joint probability function of returns: 

mjrrrrrrp njnjjj ,...,1},...,,Pr{ 2211 =∀==== , is known, this multiple criteria 

problem can be modeled as a problem of maximization of  the worst conditional 
means of portfolio return 

k
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(3) 

This multiple criteria model is consistent with the SSD relation  
in the sense that the set of efficient solutions of this multi-criteria problem  
is the set of the portfolios with nondominated returns in the sense of second 
stochastic dominance. 

Using the multi-criteria optimization methods we can not only generate 
the SSD efficient portfolios, but also to choose the best portfolio according  
to the decision-maker’s preferences. When choosing the solution of the multi- 
-criteria problem (3) we consider the preferences among the criteria  
of the problem (3). These preferences are consistent with the Yaari (2) model  
of preferences under risk.  
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The Yaari’s functional (2) can be rewrite in the form [1]: 

∫ ∫ ′−+′== −−−
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From (4) we can see that the Yaari’s functional can be approximated  
by the linear combination of the worst conditional means of portfolio returns 

k
mλ  with the positive coefficients )1( kwd λ−′  and expected value of portfolio 
returns with coefficient )0(w′ . The coefficients )( pwd ′  are positive, because 
the function )( pw  is convex, if it presents risk aversion. 

The coefficients representing the preferences among the criteria  
of the problem (3) characterize the form of the Yaari’s functional, describing 
the preferences under risk. That is why the choice of the final solution  
of the problem (3) using the multi-criteria methods is consistent with  
the decision-maker’s preferences under risk. 

To define the set of efficient portfolios and choose the best portfolio 
according to the decision-maker’s preferences the multi-criteria optimization 
methods based on the idea of the reference point are useful. These methods 
generate the efficient solutions, in which criteria values vector is closest  
to the vector of the desired (reference) values of criteria.  

It is possible to define the set of the SSD efficient portfolios by applying 
to problem (3) the method of compromise programming proposed by M. Zeleny 
[13]. This method is based on the idea of the reference point. 

The best portfolio according to the decision-maker’s preferences can  
be found using the interactive methods to solve the problem (3). One  
of the interactive methods is a bi-reference procedure of multi-criteria 
optimization [5]. 

4. The definition of the SSD efficient portfolios  
using the reference multi-criteria optimization 
methods 

To define the set of the SSD efficient portfolios we apply to the multi- 
-criteria problem (3) the method of compromise programming, proposed  
by M. Zeleny [13] (described in [2, 3]). This method allows to define the set  
of effective solutions of the multi-criteria problem, in which criteria values 
vectors are closest to the vector of the reference (desired) values of criteria 
according to the set of metrics. This set of solutions is called the set  
of compromise solution. 
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This set of efficient solutions can be defined by solving the two-criteria 
problem: 
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where: 

)(xkf  − k-th criterion of the multi-criteria problem (k=1,…, n), 

ka  − reference value  of the k-th criterion (k=1,…,n), 

kv  − weight of the k-th criterion (k=1,…,n). 
 
Using the parametric method to solve the two-criteria problem (5),  

we can define the corner points of the set of compromise solutions. 
Applying this methods to problem (3) we have to choose the set  

of reference values of criteria. It is reasonable to assume that a reference point  
is a certain portfolio return of  the desired value. Then, if the desired value  
of portfolio return is ∗y , than the reference value of the k-th criterion  
in the problem (3) is ∗ykλ . 

The two-criteria problem defining the set of compromise solutions  
of the problem (3) is the problem (6). 

The weights kv  used in the problem (5) to normalize the criteria values  
are not necessary to use in the problem (6). 

Solving the problem (6) by the parametric method we can define corner 
points of the set of the SSD efficient portfolios, whose returns are closest  
to the reference return ∗y . 

By varying the value of the reference return we can define the corner 
points of the set of the SSD efficient portfolios in the area of the reference 
return. 
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(6) 

To define the best portfolio with respect to the decision-maker’s risk 
preferences we can use the interactive multi-criteria decision making methods. 
Using the interactive methods we do not need to define the preference function 
in explicit form, but investigate the decision-maker’s preferences trying  
to generate the most acceptable effective solution.  

One of the interactive methods based on the idea of reference point  
is a bi-reference procedure of multi-criteria optimization [5]. In this method  
the structure of preference is specified by two sets of reference points (worst  
and ideal values of criteria), that is why it can be used to search for the best 
portfolio according to the decision-maker’s risk preferences. 

When the worst and the ideal values of the criteria are identified,  
the improvement direction from the worst to the ideal points is constructed.  
A trial solution is found by moving from a current solution along the improve-
ment direction, while maximizing the step size. For a trial solution  
the decision-maker is requested to divide the set of criteria to three categories:  
those to be improved, those to be unchanged, and those which may be relaxed. 
Based on this partition new sets of worst and ideal values of criteria  
are constructed, a new improvement direction is calculated and a new trial 
solution is found. The method terminates when two trial solutions are reason-
ably similar.  

By varying the set of the ideal values of portfolio and the partition  
of the set of criteria we can realize different strategies of the best solution 
search, modeling the rank-depending and the reference-depending risk pre-
ferences. 
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5. Illustrative example 

Сonsider the diversification among the 4 investment projects. The joint 
probabilities of the project’s returns are estimated and given in Table 1. 

 
Table 1 

Probability 

Returns (%) 

project A project B project C project D 

pj r1j r2j r3j r4j 

0,1 −200 90 50 350 

0,1 −105 90 10 150 

0,3 25 85 10 −100 

0,3 75 −39 0 −120 

0,2 100 −150 0 50 

 

We have to define the portfolio weights 1,4,..1,0
4

1
==≥ ∑

=i
ii xix  which 

maximize the random return of the portfolio: max
4

1
∑ ⎯→⎯= xii xrR  

Assuming risk-aversion of the decision-maker’s preferences, we applied 
the second stochastic dominance rule to define the effective portfolios. 

We formulated the multi-criteria problem for maximizing the worst 
conditional means of portfolio return (3) for the set of the probability levels 
λ = {0,1; 0,4; 0,6; 0,9; 1} and solved it using the M. Zeleny’s method  
of the compromise programming (6). 

By warying the value of the reference return *y from 6 to 10, we defined 
the corner SSD effective portfolios with expected portfolio return around 10. 
This corner effective portfolio is presented in Table 2. 

 
Table 2 

Expected value  
of portfolio 
return (%) 

SSD effective portfolios (decisions weights) 

X1 X2 X3 X4 

1 2 3 4 5 
9,80 0,09 0,02 0,89 0 

10,21 0,14 0,03 0,83 0 
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Table 2 contd. 

1 2 3 4 5 
10,48 0,15 0,01 0,84 0 

10,34 0,15 0,03 0,82 0 

10,54 0,16 0,01 0,83 0 

10,19 0,15 0,05 0,79 0,01 

10,37 0,16 0,03 0,8 0,01 

9,72 0,2 0,1 0,66 0,04 

9,79 0,25 0,11 0,57 0,07 

 
As a final decision we can select any portfolio presented in Table 2. 
To generate the portfolio in accordance with the decision-maker’s risk 

preferences we used the bi-reference procedure, proposed by W. Michalowski 
and T. Szapiro. 

We selected the set of the worst values of the criteria of the multi-criteria 
problem maximizing the worst conditional means of the portfolio return: 

 
λ 0,1 0,4 0,6 0,9 1 

mλ
W(0) -6 0 0 5,4 8 

 
Selecting the portfolio by the bi-references procedure, we performed 

three search strategies, modeling reference-depending and rank-depending risk 
preferences. 

The first strategy is to model the aversion to worst returns. We improved 
the values of the worst conditional means for levels from 0,1 to 0,4, relaxing  
the values for the other levels. 

The second strategy modeled the aversion to the worst returns and the 
aversion to not receiving the best returns. We improved the values of the worst 
conditional means for the levels 0,1 and 1, relaxing the values for the other 
levels. 

The third strategy modeled loss-aversion, when the losses were the 
returns less than 0. We looked for the portfolio with the positive value of the 
worst conditional mean for the level 0,1 by improving the value for the level 0,1 
and relaxing the values for other levels. Then this solution was improved  
by fixing the achieved value for level 0,1 and improving the value for other 
levels. 

The portfolios selected by the strategies are presented in Table 3. 
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Table 3 

 x1 x2 x3 x4 

Strategy 1 0,10 0,03 0,87 0 

Strategy 2 0,21 0,14 0,65 0 

Strategy 3 0,14 0,08 0,78 0 

 
The values of the worst conditional means of the selected portfolios  

are presented in Figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The worst conditional means of the returns of the portfolios selected by the three 

strategies 

Conclusions 

The SSD-consistent portfolio selection can be modeled using the multi- 
-criteria decision making approach. The consistency of the preferences for  
the criteria of the multi-criteria problem generating the SSD-effective portfolios 
with the preferences under risk allows to select the SSD-effective portfolio 
using the multi-criteria optimization methods. The reference methods are useful 
for this problem.  
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By applying the method of the compromise programming, proposed  
by M. Zeleny, we defined the corner SSD-effective portfolios with returns 
around the reference value. By using the interactive bi-references multi-criteria 
optimization method, proposed by W. Michalowski and T. Szapiro, we selected 
the best portfolios with respect to the decision-maker’s preferences under risk, 
modeling the rank-dependence and the reference-dependence of the preferences. 
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