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Abstract 

Stochastic dynamic programming (DP) is a strong mathematical tool allowing 
modeling and solving many multiperiod decision processes. Multiple objective and dy-
namics characterize many sequential decision problems. In the paper we consider 
returns in partially ordered criteria set as a way of generalization of single criterion DP 
models to multiobjective case.  

In the present paper, on the basis of theoretical findings, described in our pre-
vious papers we consider exemplary stochastic DP profit maximization processes. 
Because of the lack of space we omit the general, formal description of such a process 
and concentrate on explanation, how the theory of DP models in partially ordered 
criteria space works. Both in level-volume and velocity-volume process we will con-
sider formulated problems step by step, first as single criterion problems and next as bi- 
-criteria ones. Conclusions are presented in the last section. 
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Introduction 

Stochastic dynamic programming (DP) is a strong mathematical tool  
for modeling and solving many multiperiod decision processes. There are many 
stochastic DP applications in different fields. One of the most important of them 
is the profit maximization problem. Different aspects of this problem have been 
considered in literature. Recently Teunter [12] proposed a stochastic DP 
algorithm for determining the optimal disassembly and recovery strategy,  
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the quality-dependent recovery options and associated profits for assemblies. 
Zhang and Piplani [19] utilized yield management technique and stochastic DP 
modeling to achieve maximization of expected profit in Make-To-Order 
manufacturing companies. Jonker et al. [13] present a joint optimization 
approach addressing the segmentation of customers into homogeneous groups 
and determining the optimal policy towards each segment. They propose  
a stochastic DP procedure based on the long-run maximization of expected 
average profit. Kamrad and Siddique [4] consider supply chain contracts as the 
producer’s profit maximization problem with respect to the supplier’s reaction 
and analyze risk reduction in a unique framework as a stochastic DP problem. 
Sboui et al. [11] present a profit maximization stochastic DP model for supply 
chain management.  

Many sequential decision problems are characterized by multiple 
objective and dynamics. Research extending the principle of optimality for-
mulated in Bellman [1] to multiobjective case made it possible to apply  
the vector principle of optimality to deterministic, stochastic and fuzzy 
problems. A review of multiobjective dynamic programming (MODP) models 
was done by Li and Haimes [6] and more recently by Trzaskalik [13]. 

Changeable hierarchy problems belong to the most challenging issues  
in MODP. Period criteria for separate periods and multiperiod criteria for  
the whole process can be distinguished. A period criterion is called important  
in a given period if it is considered in the evaluation of the process  
in that period. The following questions can be asked: how multiperiod criteria 
depend on period criteria and how to define preference structure in such a case?  
The notion of importance of criteria and the definition of preference structure  
was introduced and elaborated by Trzaskalik [16, 15, 14].  

Another way of generalization of single criterion DP models is to con-
sider returns in partially ordered criteria space. First attempts were done  
by Mitten [7], Sobel [9], Steinberg and Parks [10], Henig [2]. More recently, 
discrete DP problems with partially ordered criteria space were considered  
by Trzaskalik and Sitarz [18, 17]. It is worth noticing that MODP is based on 
the Pareto concept of optimality that determines a partial order in the criteria 
space, so each MODP model is also a DP model with returns in partially 
ordered criteria space. On the other hand, there exist single criterion DP 
problems with returns in partially ordered criteria space, which obviously  
are not MODP problems. Examples can be found below. 

In the present paper we will consider stochastic problems of profit 
maximization as examples of DP problems in partially ordered criteria space. 
We will consider a situation in which important criteria for consecutive periods 
depend on the progress of the process until now, and, in particular,  
on the cumulated values of criteria from the beginning of the process. 
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The problem is stated as follows. We consider an investment multiperiod 
decision process. Decisions can be made at the beginning of consecutive 
periods. Probabilistic distributions of period returns are known. Two situations 
are of interest.  

In the level-volume case we assume that the decision maker applies  
two criteria:  
1a. The profit should be greater or equal to a given level (level criterion). 
2. The profit should be as big as possible (volume criterion).  

In the velocity-volume case it is assumed that the decision maker’s criteria 
are as follows: 
1b. The profit should be greater or equal to a given level as soon as possible 
(velocity criterion). 
2. The profit should be as big as possible (volume criterion).   

Such problems are examples of multiperiod, multiobjective processes, 
whose sets of important criteria depend on cumulated values of profit from  
the beginning of the process. We will define the set of important criteria  
as a function of these values. Such problems are close to real-life problems 
considered by decision makers in financial assessment of investments.  

In the present paper, on the basis of theoretical findings described  
in our previous papers [17, 18] we will consider examples of stochastic DP 
profit maximization processes. Because of the lack of space we will omit  
the general, formal description of such processes and concentrate on expla-
nation of how the theory of DP models in partially ordered criteria space works. 
Both in the level-volume and velocity-volume process we will consider  
the problems step by step, first as single criterion problems and next as bi- 
-criteria ones.  

The paper consists of six sections. In Section 1 we will describe the con-
sidered process and in particular, its dynamics and outcomes. In Section 2  
we will consider the level-volume case and in Section 3, the velocity-volume 
case. In Section 4 we will review all the process realizations from the point  
of view of criteria considered and problems solved. Conclusions are presented  
in section 5.  

1. Description of the process 

Let us consider an example of the multiperiod decision process, presented 
in Figure 1. The nodes of the graph correspond to the states of the process  
and the arcs correspond to the feasible period decisions. Paths in the graph 
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leading from the initial states of the process to its end correspond to process 
realizations. We assume that the transition functions of the process are de-
terministic. This means that if in a given state a decision is made, then the state 
of the process at the beginning of the next period is determined by means  
of the appropriate transition function. Outcomes (profits) of the process  
in subsequent periods are realizations of discrete random variables with given 
distributions. The values on arcs are intepreted as probabilities of profits equal 
to 0, 1, 2,... For instance, if at the beginning of period 4 the process  
is in the state 0 and we take decision 0, the probability of profits are realizations  
of period random variable ξ4(0,0). We have the following probabilities (see 
Figure 1):  

P[ξ4(0,0)=0] = 0.1  P[ξ4(0,0)=1] = 0.2 P[ξ4(0,0)=2] = 0.7 
We denote this probability distribution as (0.1, 0.2, 0.7). 

 
 
 
 
 
 
 
 
 
 
Figure 1. The graph of the process under consideration 

 
Let us consider a process realization starting in the state y1 and consisting 

of states and decisions: y1, x1, y2, x2, y3, x3, y4, x4, y5. Since the transition 
functions are deterministic, it is sufficient to consider the states only and to omit 
the decisions, so we denote this realization as d = (y1, y2, y3, y4, y5). The total 
outcome for the realization d is a realization of random variable ξ(d), which  
is the sum of realizations of random variables ξt(yt, xt) for t=1,...,4, hence  

ξ(d) =  ξ1(y1, x1) + ξ2(y2, x2) + ξ3(y3, x3) + ξ4(y4, x4) 
For instance, for the process realization d0 = (0, 0, 0, 0, 0) we have  

ξ(d0) = ξ1(0,0) + ξ2(0,0)+ ξ3(0,0) + ξ4(0,0) 
It is easy to find the probability distribution p(d0) for ξ(d0). We obtain:  

P[ξ(d0)=0]=0      P[ξ(d0)=1]=0.1 
P[ξ(d0)=2]=0.2   P[ξ(d0)=3]=0.7 
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We denote the set of all process realization as D and the set of all discrete 
probability distributions for all the realizations of the process as Ξ(D).  

Let us consider the second example of the realization of the process,  
for instance d4= (0, 0, 1, 0, 0) (for the numbering of realizations see Table 1).  
The probability distribution for ξ(d4) is as follows:  

P[ξ(d4)=0] = 0.05     P[ξ(d4)=1] = 0.15 
P[ξ(d4)=2] = 0.45   P[ξ(d4)=3] = 0.35 

We can compare process realizations according to the FSD (first stochastic 
dominance) rules (see [8]). Let us compare d0 and d4. For the realizations 
considered we obtain the following cumulated values: 
1. Realization d0:  

c0(d0) = P[ξ(d0)=0] = 0  
c1(d0) = P[ξ(d0)=0] + P[ξ(d0)=1] = 0.1 
c2(d0) = P[ξ(d0)=0] + P[ξ(d0)=1] + P[ξ(d0)=2] = 0.3 
c3(d0) = P[ξ(d0)=0] + P[ξ(d0)=1] + P[ξ(d0)=2] + P[ξ(d0)=3] = 1 
ck(d0) = 1 for k ≥ 4 

2. Realization d4: 
c0(d4) = P[ξ(d4)=0] = 0.05 
c1(d4) = P[ξ(d4)=0] + P[ξ(d4)=1] = 0.2 
c2(d4) = P[ξ(d4)=0] + P[ξ(d4)=1] + P[ξ(d4)=2] = 0.65 
c3(d4) = P[ξ(d4)=0] + P[ξ(d4)=1] + P[ξ(d4)=2] + P[ξ(d4)=3] = 1 
ck(d4) = 1 for k ≥ 4 

Since for each k=0,1,2,... we have ck(d0)≤ck(d4) and ck(d0)≠ck(d4), it means  
that ξ(d0) dominates ξ(d4) according to the first degree stochastic dominance 
rule. We denote it as p(d0) FSD P(d4).  

2. Level-volume case  

2.1. Level criterion  

The level criterion is important as long as the cumulated profit is less  
than 2. Because we analyze the process ex ante, before it has started, we are 
only interested in process realizations, whose cumulated probability distri-
butions have the form (r0, r1, r2,…,), and 
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r0 = r1 = 0 (1) 

Probability distributions for all these realizations dominate (according to FSD 
rule) the “weakness” probability distribution p  = (0, 0, 1).  

For any process realization the multiperiod level criterion function FL 
takes one of the following values:  
1 – assumed level of profit will be reached,  
0 – assumed level of profit will not be reached.  
It is possible to find the value FL(d) applying the formula  

⎩
⎨
⎧ =

=
otherwise,0

pp(d)orpFSDp(d)if,1
)d(FL  (2) 

Depending on the value FL(d), each realization d is classified to one of two 
classes. Let D(i)={d: FL(d)=i} (i=0,1) be the set of all process realizations  
from the class i. We have D(0)∪D(1)=D, D(0)∩D(1) = ∅.  

The preference structure can be described as follows: each process 
realization from D(1) dominates any realization from D(0). Realizations 
belonging to the same class are equally preferred. Let DL denote the set  
of efficient realizations. We have DL = D(1). The set DL can be obtained  
by means of the forward procedure for dynamic process with partially ordered 
criteria space (see [17]). Process realizations belonging to DL are marked  
in Table 1. 

2.2. Volume criterion 

Volume criterion is important in all the periods considered. The multi-
period volume criterion function FV has the form: 

FV(d) = p(d) (3) 

Let di, dj, di ≠ dj be feasible process realizations. di dominates dj iff  p(di) FSD 
p(dj). A realization dV is efficient if there doesn’t exist any other realization d 
such that: 

p(d) FSD p(dV) (4) 

The set DV of all efficient realizations can be obtained by means of forward 
dynamic procedure. Process realizations belonging to DV are marked in Table 1 
(column 12). 
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2.3. Bi-criteria case 

The criteria space is defined as the product {0, 1} × Ξ(D). The vector 
multiperiod criterion function has the form FLV = [FL, FV]’. For each process 
realization d we have FLV(d) = [i, p(d)]’ (i∈{0,1}, p(d)∈Ξ(D)). The preference 
structure is defined as follows. A realization dLV is efficient if 

d
¬ ∃     i ≥ iLV  ∧  p(d) FSD p(dLV) ∧ (i ≠ iLV ∨ p ≠pLV) (5) 

The set DLV of all the efficient realizations can be obtained by means  
of the forward dynamic procedure. Process realizations belonging to DLV  
are marked in Table 1 (column 13).  

Let us notice that some maximal elements from the criteria space  
are generated by more than one process realization.  

3. Velocity-volume case  

3.1 Velocity criterion  

The velocity criterion is important as long as the cumulated profit is less 
than 2. The moment of achievement of the required level of profit is important  
– the sooner the better. Similarly as before, we are interested only in those 
process realizations for which the condition (1) is fulfilled.  

For any process realization, the multiperiod velocity (speed) criterion 
function FS takes one of the following values:   
4 – assumed level of profit will be reached at the end of the period 1,  
3 – assumed level of profit will be reached at the end of the period 2,  
2 – assumed level of profit will be reached at the end of the period 3,  
1 – assumed level of profit will be reached at the end of the period 4,  
0 – assumed level of profit will not reached.   
Depending on the value FS(d), each realization d is classified to one of five 
classes. Let D(i)={d: FS(d)=i} (i=0,...,4) be the set of all process realizations 
from the class i. We have ∪i=0...4D(i)=D, ∩i=0,...,4D(i)=∅. 

The preference structure is described as follows: for i>j each process 
realization from D(i) dominates any process realization from D(j). Realizations 
belonging to the same class are equally preferred. Efficient realizations DS 
belong to the highest non-empty class. The set DS can be obtained by means  
of dynamic forward procedure. Process realizations belonging to DS are marked 
in Table 1 (column 14). 
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3.2. Volume criterion 

The set of efficient realizations with respect to the volume criterion  
is obtained in the same way as in Section 2.2. 

3.3. Bi-criteria case  

The criteria space is defined as the product {0, 1, 2, 3, 4} × Ξ(D).  
The vector multiperiod criterion function has the form FSV = [FS, FV]’. For each 
realization d∈D we have F(d) = [i, p(d)]’. A realization dSV is efficient  
if condition (4) is fulfilled. The set DSV of all the efficient realizations can be 
obtained by means of the forward dynamic procedure. Process realizations 
belonging to DSV are marked in Table 1 (column 15). 

4. Review of process realizations 

The set of process realizations and the results obtained for the considered 
process are shown in Table 1. Its structure is as follows: 
column 1 – number of realization, 
column 2 – trajectory (sequence of states), 
column 3 – probability of profit at the level 0, 
column 4 – probability of profit at the level 1, 
column 5 – probability of profit at the level 2, 
column 6 – probability of profit at the level 3, 
column 7 – probability of profit at the level 4, 
column 8 – probability of profit at the level 5, 
column 9 – value of the level criterion, 
column 10 – value of the velocity criterion,   
column 11 – efficient realizations for the level criterion,  
column 12 – efficient realizations for the volume criterion,  
column 13 – efficient realizations for the level-volume case, 
column 14 – efficient realizations for the velocity criterion, 
column 15 – efficient realizations for the velocity-volume case.   
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Table 1 

 
Process realizations and results 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 00000 0 0  0,1 0,2 0,7          
1 00001 0 0  1            
2 00010 1 2   1    x       
3 00011 1 2   1    x       
4 00100 0 0 0,05 0,15 0,45 0,35          
5 00101 0 0 0,5 0,5            
6 00110 0 0 0,25 0,5 0,25           
7 00111 0 0 0,25 0,5 0,25           
8 01000 1 2   0,05 0,15 0,45 0,35 x x      
9 01001 1 2   0,5 0,5   x       
1 01010 1 2    0,5 0,5  x x x   x 
11 01011 1 2    0,5 0,5  x x x   x 
12 01100 1 3 0 0 0,05 0,15 0,45 0,35 x x x x x 
13 01101 1 3 0 0 0,5 0,5   x   x   
14 01110 1 3 0 0 0,25 0,5 0,25  x   x   
15 01111 1 3 0 0 0,25 0,5 0,25  x   x   
16 10000 1 2 0 0 0,1 0,2 0,7  x       
17 10001 1 2 0 0 1    x       
18 10010 1 2 0 0 0 1   x       
19 10011 1 2 0 0 0 1   x       
20 10100 0 0 0 0,05 0,15 0,45 0,35         
21 10101 0 0 0 0,5 0,5           
22 10110 0 0 0 0,25 0,5 0,25          
23 10111 0 0 0 0,25 0,5 0,25          
24 11000 1 2 0 0 0,075 0,175 0,575 0,175 x       
25 11001 1 2 0 0 0,75 0,25   x       
26 11010 1 2 0 0 0 0,75 0,25  x       
27 11011 1 2 0 0 0 0,75 0,25  x       
28 11100 1 3 0 0 0,075 0,175 0,575 0,175 x   x   
29 11101 1 3 0 0 0,75 0,25   x   x   
30 11110 1 3 0 0 0,375 0,5 0,125  x   x   
31 11111 1 3 0 0 0,375 0,5 0,125  x   x   
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Conclusions 

It is worth comparing the number of efficient realizations for single-
criterion processes with the number of efficient realizations in bi-criteria cases 
(see Table 2).  

 
Table 2 

 
The number of efficient realizations 

Process Criterion 1 Criterion 2 Bi-criteria case 

level-volume 22 4 4 

velocity-volume 8 4 3 

 
The number of efficient realizations in the bi-criteria case (both in level- 

-volume and in velocity-volume problems) is less or equal to the number  
of efficient realizations in the single-criterion case. Such situations occur 
infrequently in multiobjective programming. We can explain this by recalling 
that our single criteria problems have outcomes in partially ordered criteria 
spaces which usually contain more than one maximal element (contrary  
to single-objective mathematical programming problems, whose criterion space  
is an ordered set and usually there exists a unique optimal solution). Additional 
explanation for the case under consideration can be found in the construction  
of criteria and their dependences. If the required level of profit is reached faster, 
cumulated profits can be bigger than profits cumulated later.  

The presented solution can be extended to any multiperiod process  
with finite number of periods, states and decisions. 
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