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Abstract 
We consider a decision process of choosing an algorithm for selecting the most 

preferred variant. We consider the case when an algorithm has to be chosen and not 
changed afterwards before all feasible variants are known, as it happens e.g. in public 
tenders. 

The fact that the chosen algorithm cannot be changed is the cause of potential 
regret the decision maker can resent when confronted with the selected variant. 

We show how some formal tools of interactive Multiple Criteria Decision 
Making can be employed to confine decision maker's regret.  
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INTRODUCTION 

Decision processes for selecting the most preferred variant can be 
differentiated with respect to rights hold by the involved parties. In autonomous 
processes the sole actor of the decision process is the decision maker (DM). 
This means that the DM can carry out  a decision  process  in  a  fully  sovereign 

 
 
 
 
 
 
 
Fig. 1 Four phases of decision making process 
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manner. In contrast to autonomous processes, in nonautonomous processes 
manners of carrying out decision processes are restricted by rights to the process 
other parties may hold. 

A widely adopted consensus is that every decision process consists  
of four phases usually closed in a feedback learning loop, namely the phase  
of intelligence, design (modeling), choice, and review [5] (Figure 1).  
With regard to the definition given above, a decision process is autonomous if 
in each phase the DM is sovereign in his decisions. The DM enjoys the maximal 
sovereignty in interactive decision making, i.e. when in the third phase the DM 
selects the most preferred variant interacting with a model, directing himself 
only by his own preferences. 

A decision process ceases to be autonomous when the DM's sovereignty 
is restricted. A form of restriction can be, for example, the necessity to negotiate 
with the involved parties the manner in which the process is carried out or just 
to explain and give grounds for the manner adopted. 

Below we focus on nonautonomous processes in which the only 
restriction is that the DM is bound to chose an unequivocal selection algorithm 
for selecting the most preferred variant and to made this algorithm public 
without any possibility to modify it in the future. We call such a decision 
process a frozen process. 

In frozen processes consequences of impertinent choice of selection 
algorithm are irreversible, where pertinent choice is understood as follows:  
a selection algorithm is chosen pertinently if the most preferred variant selected 
by this algorithm is that, which would be selected as the most preferred also  
in the case of an autonomous decision process. Impertinent choice of a selection 
algorithm is a source of DM's (posterior) regret1. 

In general, chances to choose a pertinent algorithm are small. This  
is the case of e.g. public tenders, where parties involved are a tender calling 
entity, bidders, supervisory bodies, and to some extent, the whole society with 
its monitoring institutions (state agencies, media). Though in such cases 
consequences of impertinent choice of selection algorithm are mainly borne  
by a tender calling entity, they clearly also impact, explicitly or implicitly, other 
parties involved. 

Further examples of frozen decision processes are public valuation 
procedures of individuals or institutions such as open competitions or rankings  
of universities. 

                                                      
1 “Regret is a negative, cognitively based emotion that we experience when realizing or imagining  

that our present situation would have been better, had we decided differently” [6]. 
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The issue whether a decision process is frozen or not is context de-
pendent. For example, banks are autonomous in credibility assessments of their 
clients. However, a credit officer cannot alter a credibility assessment procedure 
at his discretion, hence from his standpoint the assessment process is frozen. 

Our aim is to provide the DM with means (methodologies and tools)  
to assess consequences of decisions, similar to means available for him  
in the case of autonomous processes. But as in the case of autonomous 
processes the main objective is to select the most preferred variant, in the case 
of frozen processes the main objective is to choose an algorithm which reflects 
DM's implicit and/or explicit, and usually partial preferences with respect  
to that variant. In other words, the objective is to minimize DM's posterior 
regret understood here as DM's emotion resulting from comparing his implicit 
preferences for the most preferred variant and the most preferred variant 
selected by the chosen algorithm. 

In frozen decision processes the range of information about variants can 
vary between two extremes, from full information (all variants are known 
before a selection algorithm is chosen) to lack of any information (no variant  
is known before a selection algorithm is chosen). In general, DM's regret should 
be minimal in the former case. In all other cases the DM can make use  
of hypothetical variants. Hypothetical variants convey DM' his expectations 
about and, at the same time, his expertise on possible variants. Creating  
and evaluating hypothetical variants is the main (and practically only) tool  
to confine DM's regret. 

In this paper we analyze frozen decision processes. Our aim is to identify 
the extent of freedom the DM possesses when choosing selection algorithm,  
as well as to identify his ability to minimize his regret. We also aim  
at establishing a methodology for supporting the DM in choosing selection 
algorithms. 

We adopt a simplifying assumption that the only party which in a frozen 
decision process can resent regret is the DM. 

The outline of the paper is as follows. In Section 1 we introduce 
necessary definitions and notation. In Section 2 we present those elements  
of Multiple Criteria Decision Making [4, 1. 3], which we use in Section 3  
to propose how to support choice of selection algorithms in the case of frozen 
decision processes. Next, we present conclusions and we point to further 
possible directions of research. 
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1. DEFINITIONS AND NOTATION 

Let  denote a decision variant, X − a space of decision variants,  
X0 − a finite subset of feasible variants, and . Then the Multiple 
Criteria Decision Making (MCDM) problem is formulated as: 

“  
 

(1) 

where , 
are objective (criteria) functions; “ denotes the operator of deriving all 
efficient variants in X0 according to the definition of efficiency given below. 

In MCDM to compare variants x one makes use of their outcomes . 

Relations between outcomes in space  induce relations between variants  
in space X. 

Below we make use of the following notation: and . 
Outcome  is called efficient if  implies 

. Variant  is called efficient if  is efficient. 
Observe that in frozen processes the DM deals with X0 and Z, which may 

contain hypothetical variants and hypothetical outcomes. 

2. THE PROPOSED APPROACH 

As a vehicle for supporting the DM in choosing selection algorithm  
in the case of frozen decision processes we employ interactive MCDM methods, 
which on the base of model (1) enable the DM to select the most preferred 
outcome (variant). 

In interactive MCDM at each iteration the DM evaluates at least one pair 
of outcomes and establishes preference f  between them. The selection  
of the most preferred outcome is made possible by assuming that DM's 
preferences are consistent with his implicit value function. 

Since outcomes are vectors of numbers, it is reasonable to assume  
that DM's preference relation f  is a partial order. Since there is no reason  
to exclude the case that two or more variants have the same outcome,  
the relation induced in the set of feasible variants X0 by relation f  is in general  
a quasi-partial order. 
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Consistency between the implicit value function and preference relation 
f  (we assume, by analogy to interactive MCDM, that consistency holds), 
entails implication: 

(2) 

which establishes a set of conditions on the DM's implicit value function. 
We employ here weighted linear scalarizing functions, widely used  

in MCDM, namely: 

 
(3) 

where  . For these functions condition (2) reduces to: 

 
(4) 

Evaluating  pairs of outcomes results in a system of inequalities: 

 
(5) 

where and  are elements of pair . 

It is easy to show that if  and   

and ,  (i.e.  dominates ), then inequality 

 is redundant. Hence, it is suffcient to evaluate only pairs 
of efficient outcomes. This entails the following observation. 

Lemma 2.1  
The most preferred outcome selected consistently to implication (2), 

where  are weighted linear scalarizing functions, is efficient. 

Derivation of efficient outcomes is carried with the use of scalarizing 
functions, which attain their extremal values at eficient outcomes. In particular, 
one can make use of weighted linear scalarizing functions. For each 

, maximization of the corresponding linear scalarizing 
function yields an efficient outcome [4, 1, 3]. 

Each vector  satisfying (5) and  defines 
function  preserving (in the sense of (4)) all h relations  
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The set of all such vectors (we denote this set as ) defines the extent  
of exibility the DM has when choosing a selection algorithm consisting  
in maximizing a linear scalarizing function. 

Clearly, . Without loss of genera-

lity we assume that elements of Λ satisfy additional condition  

3. SUPPORTING CHOICE OF SELECTION ALGORITHMS 

It is rational to assume that at the start of choosing a selection algorithm 
the DM has only some vague preferences with respect to the most preferred 
outcome. The aim of the algorithm selection (frozen) process is to specify those 
preferences and evoke more partial preferences. Recall that set X0 can,  
and in some cases should, include hypothetical variants. 

If selection algorithm is chosen when all variants are known, one can 
expect that the DM chooses always an algorithm which selects the most 
preferred variant and hence there is no cause for regret. However, this is not 
always the case, as shown in the following example. 

Example 3.1 
Let three variants be given which outcomes are = (2, 6), = (3, 3), 

 = (6, 2). Let outcome y2 be the most preferred outcome. Then,  
by (2): 

 
But it is easy to check that this system is inconsistent, i.e. . This entails 
that there is no function such that it attains its largest value for . 

Weighted linear functions allow deriving the most preferred outcomes 
only if they are located on the convex hull (i.e. the smallest polyhedral set 
containing Z) of Z. Below, for the sake of clarity of presentation, we assume 
that this is the case. We admit that this is an oversimplification of reality, but  
we do this because weighted linear functions are predominantly used  
in interactive MCDM (a good example of such a „standard” are methods  
to select a winner in public tenders). Relaxation of this assumption would 
require using e.g. weighted Tchebycheff functions [4, 1, 3] as scalarizing 
functions. This, however, falls outside of the scope of this paper. 
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The idea of supporting choice of selection algorithm consists in analyzing 
set . Recall that elements of this sets are vectors satisfying system  

of conditions (5), where and  are pairs of outcomes for which the DM 
expressed preference (in the sense of relation ).f  

In particular, if all outcomes are known and the DM points to the most 
preferred (and hence efficient) outcome , then the set of conditions: 

,  for each   (7) 

is to hold. Then set  contains all vectors , for which: 

  for each   (8) 

In this case we distinguish set  as . Hence, for each   

the algorithm (Algorithm Δ ) defined as follows: 

“select ” 

selects . In other words, set  is the stability set of outcome   

with respect to perturbations of . 

Example 3.2 
Given are three variants with outcomes as in Example 3.1.  

Set  such that for all Set  Algorithm Δ  selects outcome   
is given by the system of inequalities: 

 
On the other hand, set  such that for all  Algorithm Δ  
selects outcome  is given by the system of inequalities: 

)( 21
1
22

1
11

3
22

3
11 λλλλλλ >+>+ henceyyyy  

)( 22
2
22

2
11

3
22

3
11 3 λλλλλλ >+>+ henceyyyy  

Sets , are obviously disjoint, as illustrated in Figure 2. 
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Fig. 2. Stability regions of y1 and y3 (Example 3.2) 
 
If (8) does not hold, set  contains vectors  for which Algorithm Δ  

can select different outcomes (and therefore to different variants) and DM's 
regret varies accordingly. 

Example 3.3 
Given are three variants with outcomes as in Example 3.1. Assume that 

set  defined by the following condition: 

 
Then for some  Algorithm Δ  can select the following outcomes:   

and . 

In general, , where   
is the set of vectors  such that for any  Algorithm Δ  selects only 

, = 1,...,L, ,ZL ≤  and denotes closure of a set. Set  determine 

stability regions of outcomes ,  . 

Lemma 3.1 
The most preferred outcome is a vertex of the convex hull of Z. 

Proof 
By the adopted assumption, the most preferred outcome, say outcome 

, is located on the convex hull of Z. Suppose it is not a vertex. Then there 
exists at least one outcome  such that: 

 for some  

Hence, by (2), , which by (8) is a contradiction.  
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From Lemma 3.1 we infer the following obvious observation. 

Lemma 3.2  

Partition of set  into subsets  depends only on effcient 

vertices of the convex hull of Z. 

By the above lemma system of inequalities (5) can be confined exclusi-
vely to inequalities generated by efficient vertices of the convex hull of Z. 

The DM can control the level of his regret imposing conditions that 
certain outcomes (and therefore the corresponding variants) are not selected  
by Algorithm Δ . This is equivalent to imposing conditions on admissible 
vectors . Namely, if he wants that  is not selected by Algorithm Δ  he 

has to set weights  such that .  
On the other hand, the DM can control the level of his regret imposing 

the condition that a certain outcome (and the corresponding variant) is selected 
by Algorithm Δ  as the most preferred. Here again, this is equivalent  
to imposing a condition on admissible vectors . Namely, if he wants that   

is selected by Algorithm Δ  he has to set weights  such that . 
Identification of sets of weights for which Algorithm Δ  selects given 

outcome  leads to the following question: which vector  from set  
ensures the maximum stability of the most preferred outcome  with respect 
to perturbations of decision problem parameters? 

Let us consider first stability of the most preferred outcome   

with respect to perturbations of vectors  (in the sense of value , 
where  is perturbed vector). Outcome  is the most stable (robust)  
with respect to perturbations of vector  if such a vector is the most distant 
from all constraints which define set . Such a vector can be defined  
in the following way. 

Vector  most distant from a constraint, which defines  as a con-
sequence of relation , can be found by solving the following 
optimization problem: 
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Fig. 3. Stability of an outcome in the weight space 

 
For all constraints which define  vector  maximizing all 

,  simultaneously, can be found by solving  
the following optimization problem (Figure 3): 

 

 

 

 
(9) 

Consider now stability of the most preferred outcome  with respect  

to variations of the remaining outcomes (in the sense of value  where 

 is perturbed outcome). Recall that in the considered problem some variants 
can be hypothetical and therefore their outcomes can vary. Outcome  

is the most stable with respect to variations of outcomes , , 

, if the minimal of differences: 

 
is maximal (Figure 4). Hence, vector  satisfying this requirement can be again 
found by solving problem (9). 
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Therefore vector  for which outcome  is the most stable with 
respect to variations of weights at the same time ensures the highest stability  
of  with respect to variations of other outcomes. As the former observation 
pertains to the weight space, the latter observation pertains to the outcome 
space. 

 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 4. Stability of an outcome in the outcome space 
 

The interpretation in the weight space is rather straightforward. Vector 
 which solves (9) corresponds to the point in set  located in the same 

distance to all constraints which define this set. 
More interesting is interpretation of vector  in outcome space.  

This vector in normal to the hyperplane tangent to  and at the same time 
maximizing the minimal distance to all efficient outcomes adjacent to . 

CONCLUDING REMARKS AND DIRECTIONS  
FOR FURTHER RESEARCH 

Probably the most spectacular area of the above considerations can be 
public tenders, where public money is involved. In many occasions the variant 
selected is not the most preferred (in the earlier defined sense), but by the rules 
of public tenders (where decision processes are frozen) it is the winner.  
This causes regret, often formulated verbally: If I (we) had known that such 
variants were proposed, I (we) would have chosen a different selection 
algorithm. 
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Careful analysis of frozen decision process problems with the help  
of the technics discussed above could in many cases reduce regret. This is  
of particular importance when tender is organized for the first time in a field 
new to the DM, where a significant regret can materialize. 

It is rather obvious that the process of choosing an algorithm for selection 
of the most preferred variant, besides considering hypothetical variants, has  
to also address selection of criteria. One should not regard model (1) as given  
and fixed, but model specification should be also an element of the process  
of algorithm selection. Appropriate model specification in frozen decision 
processes will be a subject of further research. 

Another issue for further research will be also the possible use of other 
scalarizing functions than linear weighted functions. 
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